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 Economic dispatch (ED) is one of the most important topics in power system operation 

and planning. The main purpose of this paper is to develop simple and effective 

mathematical models for the ED problem. Two stages were considered to solve this 

problem. First, the ED problem is formulated using linear piecewise functions and then 

optimally solved using the LP technique at various load values. The effectiveness of the 

LP in optimally solving the ED problem is verified by applying it to two different test 

systems. The results are compared with those obtained using other ED optimization 

techniques. The LP optimization performance of the proposed method is found to be 

similar to those of the reported techniques. In the second stage, the data collected from 

the optimization process in the first stage are transferred to TuringBot software. This 

software is adopted to build efficient mathematical models for the optimal power 

generation (output parameters) as functions of the load values (input parameters). The 

main objective of these models is to easily evaluate the optimal power sharing of the 

generators in an online fashion under rapid variable loading conditions without the need 

to solve the ED-LP based problem. Optimization techniques, including the LP, 

generally require considerable simulation times for linearization and optimization code 

execution, particularly under fast load variations. Thus, the main features of the 

developed models in this paper are simplicity, accessibility, as well as the ability in 

obtaining an efficient and optimal solution with a faster execution time. 
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1. INTRODUCTION 

 

The economic dispatch (ED) problem is a crucial topic in 

the field of power system planning and operation. The main 

objective of the ED solution is to determine the power 

generated by each generator in order to minimize the total cost 

while meeting several constraints including load demand and 

minimum and maximum generation capacity for each 

generator. An efficient and accurate evaluation of the power 

generated by each generator can improve the system 

significantly and lead to a reliable operation of the power 

system. In recent years, various optimization methods have 

been proposed to solve the ED problem. The methods differ in 

different aspects including accuracy, execution time, 

complexity and simulation workspace. In general, the 

techniques can be categorized into classical or traditional 

techniques and heuristic techniques. 

Classical techniques have been frequently employed in 

solving the ED problem. Examples of such techniques include 

lambda iteration algorithm (LIA), Lagrange multiplier and 

gradient method. In addition, heuristic and artificial intelligent 

approaches have been widely adopted for the ED optimization 

purposes. These techniques include genetic algorithm (GA), 

tabu search (TS), particle swarm optimization (PSO) and 

simulated annealing (SA). Other methods include the cost 

composite function, dynamic programming (DP) and 

quadratic programming (QP). Moreover, hybrid methods have 

been also used to solve the ED problem. 

A literature survey has recently explored several studies 

reported on solving the ED problem using both established and 

new techniques. Examples of such techniques include the 

gradient method [1], fast lambda iteration (FLA) [2], and 

enhanced lambda iteration (ELI) algorithm [3]. 

The PSO is frequently used for ED applications. A thorough 

literature survey [4] has been conducted on several studies that 

employed the PSO along with its modified versions to solve 

the ED problem. Other recent heuristic techniques include the 

symbiotic organism search (SOS) [5], ant lion optimization 

(ALO) [6], differential evolution (DE) [7], grey wolf 

optimization (GWO) [8], flower pollination algorithm (FPA) 

[9], and gravitational search algorithm (GSA) [10]. 

Hybrid techniques have been recently employed to optimize 

the ED problem. A gradient search method with an improved 

Jaya algorithm has been proposed to solve the ED problem 

considering environmental issues [11]. Moreover, the bees 

algorithm (BA) along with the TS has been studied [12], 

wherein the results were better than those obtained using the 

general BA. In addition, the hybrid QP and compact 

formulation method (CFM) have been used for the ED with 

line losses and prohibited operating zones [13]. Firefly and 

self-regulating particle swarm optimization (FSRPSO) 

algorithms are hybridized to solve and optimize the ED 

problem [14]. 

The ED problem has been also adopted in the field of 

Distributed Generation (DG) and smart grids. The objective of 

ED in the DG field is to optimize the optimal power sharing 
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from different energy sources rather than only one 

conventional source. Examples of DG sources include wind, 

solar, battery storage and fuel cell. Thus, adopting such 

sources add more complexity to the ED optimization model as 

each DG source has its own limitations and constraints that 

have to be considered in the optimization process. Various 

approaches have been proposed to optimize the power 

generated by different DG systems in smart grid environment 

[15-17]. 

In the field of LP, a quick and effective LP algorithm has 

been applied to solve the ED problem where there are several 

interconnected micro-grids [18]. Computational experiments 

demonstrated the accuracy and speed of the LP model [18]. An 

algorithm to solve the ED problem while integrating 

renewable energy resources has been described [19]. The 

algorithm adopts LP owing to its flexibility and reliability. An 

LP-driven multi-criteria decision making approach has been 

presented for a multi-objective ED in smart grids [20]. In 

another study, LP based hybrid method for the ED of both 

energy and reserve is discussed. Assuming the reserve 

requirement is evaluated in the optimization process, the 

technique is used to estimate the optimal power flow and the 

reserve assigned to each generating unit. This methodology 

combines LP with two meta-heuristic algorithms: mean-

variance mapping optimization (MVMO) and evolutionary 

particle swarm optimization (EPSO) [21]. 

In general, the complexity of the ED optimization problem 

depends mainly on the objective function and the operational 

system constraints. For example, this would include ignoring 

or considering transmission line losses. In addition, various 

other constraints may be added in the problem including the 

prohibited zone, ramp rate limits, valve point effect, and 

consideration of environmental issues and carbon emissions. 

This would add more complexity to the ED problem and more 

advanced techniques are thus required to find the optimal 

solution. For example, several studies have analyzed the ED 

problem in consideration of carbon emissions [22-24]. In 

addition, the ED problem considering the valve point effect 

has been also discussed [25, 26]. 

This high number of research work in this field indicates 

that this area of study is still under consideration and 

investigation, and there is still an opportunity to improve the 

ED optimization process in terms of simplification and 

accuracy. Although the previously published algorithms have 

shown efficient performance in solving the ED problem, they 

are still in need for some requirements. The majority of such 

algorithms are not easy for anyone to understand. It is not a 

simple task to understand the algorithm, write the code and 

tune the parameters and carry out the simulations. Special 

software programs are also required to perform such 

simulations. Such programs are usually costly and not easily 

available in any PC. The main contribution of this work is to 

develop simple mathematical models that can easily evaluate 

the optimal power sharing among all generators in very simple 

and quick way. The models can be easily evaluated without 

requiring to solve the ED problem. Moreover, the models can 

be easily implemented in any software such as Excel, 

MATLAB or any other computational platform. 

Another issue in the optimization techniques is the need of 

solving the ED problem and performing and executing the 

optimization process at each load value. The actual power 

systems are usually subjected to rapid load variations. Thus, 

carrying out the optimization process at each and every load 

value may increase the simulation time. On other hand, the 

developed models in this paper can be executed instantly 

without a need to any iterative algorithms or trial and error 

operations, hence leading to considerable time saving.  

In this paper, all quadratic cost functions are first linearized 

using piecewise linearized cost functions. After the linearized 

model is formulated, two ED test systems are solved using the 

LP optimization model. Accurate mathematical models are 

then developed using TuringBot software for each generating 

unit based on the ED simulations and data collected from the 

LP model. The main objective of such mathematical models is 

to accurately and rapidly determine the optimal solution under 

fast load variations without having to solve the ED-LP based 

algorithm for each load value. The computational analysis in 

this study was carried out using MATLAB environment on a 

PC with a 64-bit operating system and a 2.6 GHz processor. 

The rest of this paper is organized as follows. Section 2 

discusses the ED problem and the linearization approach. 

Section 3 explains how the general optimization mathematical 

models are formulated. TuringBot software is briefly 

presented in section 4. The simulation results and comparative 

analysis are discussed in section 5 and 6 for the ED-LP based 

solution and the mathematical models performance, 

respectively. Finally, the conclusions of this study are given in 

section 7. 

 

 

2. OPTIMAL ECONOMIC DISPATCH USING LINEAR 

PROGRAMMING 

 

This section discusses the ED problem concept and explains 

in detail the linearization methodology of the quadratic cost 

functions of the generators in order to be appropriately used in 

the optimization process using the LP concept. 

 

2.1 Economic load dispatch problem 

 

The ED problem is an important optimization problem in 

the area of power generation, operation and planning. In the 

ED problem, several generating units with their respective cost 

functions are given. The objective of the ED is to evaluate the 

produced power by each generating unit in order to minimize 

the total fuel cost while satisfying the generation-load balance 

and other technical and operational constraints. In power 

plants, the ED is considered as a major activity for power 

system operation and planning for engineers. Therefore, it is 

highly recommended to accurately estimate the optimal power 

produced by each generating unit. This can lead to a significant 

enhancement to the power system reliability. 

A typical power plant has several generating units. At any 

instant of time, the available generating units should be able to 

meet the total load requirement. The ED optimization process 

ultimately estimates the optimal power sharing by each 

generating unit to supply a certain load in the minimum 

possible cost [27]. Therefore, the objective of the ED 

optimization process is to find the optimal values of the 

powers outputted by the generators which will minimize the 

total cost and satisfy the power demand, units capacity and 

other operational constraints. 

Figure 1 shows the structure of a system composed of N 

generating units connected to a common bus, supplying a 

certain load Pload. The input to each unit Ci(Pi) represents the 

cost of power generation. The output Pi represents the power 

produced by that unit. The total cost of the system is the 

summation of the respective generation costs of all units. The 
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first constraint considered here is that the summation of the 

power generated by each unit must be equal to the supplied 

load. The second constraint is the generating capacity limits of 

each unit. These limits define the maximum and minimum 

powers that can be produced by each unit. 

 

 
 

Figure 1. ED problem representation with N generating units 

 

In the optimization process, the objective function Z 

represents the total cost of the power generated for supplying 

a given load, while subjected to the defined constraints. Thus, 

the objective function of the optimization process of the ED 

problem is represented as follows: 

 

1

Minimize ( )
N

i i
i

Z C P
=

=  (1) 

 

This function describes the relationship between the fuel 

cost and the power produced by each generating unit. There is 

one cost function for each unit representing the actual behavior 

of the generator. In the optimization process, it is required that 

the power sharing by each generator for supplying a certain 

load to be accurately optimized such that the fuel cost is 

minimized. 

The cost function usually has the form of a quadratic 

equation. This function may be also represented by a cubic 

function for some generating units. Therefore, the quadratic 

representation of the total cost in $/h for a given generator, i 

takes the following form: 

 
2

( )
i i i i i i i

C P a b P c P= + + , i=1, …, N (2) 

 

where, Ci(Pi) is the total generation cost of generator i; ai, bi, 

and ci are the cost constants of generator i; N is the number of 

generators; and Pi is the power output of generator i. 

The following equality constraint is defined as the power 

balance equation and is used to impose a balance between the 

total generation and demand. By ignoring the transmission line 

losses, this balance is expressed in the form of the following 

constraint: 

 

1

N

i load
i

P P
=

 =  (3) 

 

The following inequality constraints are the capacity 

bounds of the power generator. Each unit i has a lower limit 

(pi,min) and an upper limit (pi,max) on the power generation. 

These minimum and maximum limits represent the generation 

capacity of the generating unit which are related to the 

technical specifications and design of the generator. These 

limits are represented by the following constraints: 

 

,min ,max
, 1, ....,

i ii
p P p i N  =  (4) 

 

where, pi,min and pi,max are the minimum and maximum power 

outputs of generator i, respectively. 

 

2.2 Linearization methodology and linear programming 

 

As discussed previously, the cost function presented in (2) 

is in a quadratic form. Given this nonlinear cost equation for 

generator i, it is possible to approximate the nonlinear curve 

by a series of straight-line segments [28]. Figure 2 shows an 

example of a linearized cost function represented by three 

linear segments. The linearization methodology has been 

explained in details in Ref. [28]. 

For simplicity, in the piecewise linearization approach, the 

segment widths W are generally considered equal. Therefore, 

the segment width W can be obtained as follows: 

 

,min,max
( ) /

ii
W p p K= −

 
(5) 

 

where, K is the number of segments. Notably, employing more 

segments will decrease the segment width and improve the 

linearization accuracy. However, this increases the 

computation time. 

 

 
 

Figure 2. Quadratic cost function linearized by three 

piecewise linear functions 

 

For generator i, the last point of segment k is evaluated by 

the following equation: 

 

,min
, 1, ...., , 0, ....,

ik i
p p k W i N k K= +  = =  (6) 

 

where, pi0=pi,min and piK=pi,max. 

The linear segment slope, sik is evaluated by estimating the 

cost values at the starting and end points of a segment (pi,k–1 

and pi,k, respectively). Then the difference is divided by the 

segment width. This is represented by the following equation: 

 

, 1
[ ( ) ( )] /

ik i ik i i k
s C p C p W

−
= −  (7) 

 

Hence, the cost function for generator i can be re-written as 

follows. 

 

,min 1 1 2 2
( ) ....

i i i i i i i iK iK
C P C s P s P s P= + + + +  (8) 

 

where, 

 

0 , 1, 2, ....,
ik

P W k K  =  (9) 
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and 

 

,min 1 2
....

i i i i iK
P P P P P= + + + +  (10) 

 

Therefore, as shown from Eq. (8), this equation is a linear 

function of the Pik values, which can be optimally evaluated 

using the LP optimization technique. It is worth to note that 

the fixed cost constants Ci,min are not considered in the LP 

optimization process. However, these constants will be added 

later after solving the optimization problem and evaluating the 

optimal total cost. 

The decision variables in the linearized problem include Pik, 

where Pik is calculated from the beginning of segment k. For 

each segment k, the value of the corresponding parameter Pik 

is obtained as follows. 

 

 , , 1 , 1
min( , ) ,   if  

0,  otherwise                                     

i i k i k ik i k

ik

P p p P p
P − −

− 
=  (11) 

 
 

3. ACCURATE REPRESENTATION OF GENERAL 

OPTIMIZATION PREDICTIVE MODELS FOR 

ONLINE ECONOMIC DISPATCH 

 

Several previously reported studies have solved the ED 

problem in an offline manner. Thus, the ED optimization 

algorithm was required to be simulated whenever the load 

changes to determine the optimal solution. Consequently, a 

longer time is required to solve the ED problem for each load 

value. Hence, an accurate and simple model is needed to deal 

with such fast load variations. This section proposes an online 

dynamic ED model that can be used to determine the optimal 

solution for any load value without simulating the ED-LP 

based optimization algorithm.  

The proposed model is first formulated by considering the 

generating units shown in Figure 1. This figure shows N 

generating units with known cost functions required to supply 

the connected load Pload. Thus, given the range of the load 

values, the ED problem is solved for each specific load value, 

wherein the output parameters are the optimal power 

generated by each generation unit. The proposed LP 

optimization process is employed to solve the dynamic ED 

problem wherein the input parameters (load values) and output 

parameters (optimal power values) are stored and recorded. 

After finalizing the simulations of the load values, the results 

are recorded in a table, as listed in Table 1. Here, L1, L2, L3,…., 

Ln represent the load values selected to develop the model 

(training process). The values must be selected to cover a 

representative and uniform range of possible connected 

demands and must be within the range of the sum of the 

minimum and maximum generator limits. 

 

Table 1. Collected data used to build the general 

optimization model for each generator 

 
Input 

parameters 
Output parameters 

Load (kW) Popt1 (kW) Popt2 (kW) . . PoptN (kW) 

L1 

L2 

L3 

. 

. 

Ln 

Popt11 

Popt12 

Popt13 

. 

. 

Popt1n 

Popt21 

Popt22 

Popt23 

. 

. 

Popt2n 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

PoptN1 

PoptN2 

PoptN3 

. 

. 

PoptNn 

A mathematical model for each generator can be formulated 

using the data collected and recorded in the table. This model 

considers the load value as the input parameter and the optimal 

powers obtained using the LP as the output parameters. The 

mathematical formulation for each generator takes the 

following forms: 

 

1 1
( )

opt
P f L=  (12) 

 

2 2
( )

opt
P f L=  (13) 

. 

. 

( )
optN N

P f L=  (14) 

 

Therefore, each unit has its own optimization model as a 

function of the input demand. TuringBot software is adopted 

to build and formulate the mathematical models based on the 

collected data. Figure 3 shows a flow chart, summarizing the 

steps followed to build the general optimization model for a 

selected generator. Figure 4 shows a descriptive block diagram 

of the general optimization model. 

 

 
 

Figure 3. Flowchart of the proposed methodology for general 

optimization model 

 

 
 

Figure 4. Descriptive block diagram of the general 

optimization model 
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4. TURINGBOT SOFTWARE: OVERVIEW 

 

TuringBot is a desktop software that uses symbolic 

regression to find mathematical models from data values. This 

software is employed to determine mathematical relationships 

that describe sets of measured inputs and outputs data in their 

simplest form [29]. Figure 5 shows the block diagram of the 

basic function of TuringBot. 

 

 
 

Figure 5. Basic function of TuringBot 

 

In this figure, the input parameters, u1….un and the 

corresponding output parameter y are measured 

experimentally or by simulations, at which sufficient samples 

are necessary to represent all operating conditions of the 

system. The collected input and output data are transferred to 

TuringBot software to start the training process and formulate 

the mathematical models. The mathematical relationship 

representing the output parameter as a function of the input 

parameters is given as follows. 

 

1 2
( , , ....., )  

n
y f u u u=  (15) 

 

In TuringBot, different mathematical models are developed 

and the user can simply select the best model that fits the 

input/output data with the lowest error. 

 

 

5. SOLUTION OF THE ED PROBLEM USING LINEAR 

PROGRAMING 

 

5.1 Overview 

 

As stated earlier, the proposed ED-LP based algorithm is 

applied to different benchmark test systems. Two test systems 

are selected here to carry out this analysis. The first system is 

a microgrid system consisting of a microturbine and two diesel 

generators, while the second system is comprising 

conventional thermal generating units. For each system, the 

optimal solution for a selected load value is found using the 

LP and then compared with the values obtained using some 

other reported techniques.  

 

5.2 Simulation results 

 

5.2.1 DG test system 

Three DG systems are incorporated into this system, 

representing a small microgrid. The cost functions for the DG 

have the same form as that of the quadratic cost equation of 

the conventional generators, shown in Eq. (2). Constant 

parameters values and power generation limits for each DG 

can be found in the study [30].  

The system is discussed here in terms of the ED using the 

LP for a fixed load value. The quadratic cost functions of the 

generators are linearized using piecewise linearization as 

described previously. The problem can then be formulated as 

a linear equation, which is appropriately used in the LP based 

model. The MATLAB function linprog is employed to 

determine the optimal solution to this problem. Table 2 lists 

the optimal solutions found using the LP for a load value of 

200 kW. In addition, the table compares the ED-LP based 

solutions with some other techniques including the QP using 

the CPLEX solver and iterated-based algorithm (IBA) [30], 

LIA [27], and ALO [6]. 

 

Table 2. Optimal solution of the three DG system microgrid 

 
Load (kW) 200 

Method CPLEX 

[30] 

IBA 

[30] 

LIA 

[27] 

ALO 

[6] 

LP 

(proposed) 

P1 (kW) 

P2 (kW) 

P3 (kW) 

Total cost 

($/h) 

67.949 

73.996 

58.055 

 

11.076 

67.96 

74 

58.03 

 

11.076 

67.949 

73.996 

58.055 

 

11.076 

67.949 

73.996 

58.055 

 

11.076 

67.95 

73.997 

58.053 

 

11.0763 

 

5.2.2 Ten thermal units test system 

This system comprises ten thermal units having quadratic 

cost functions. Constants values and generator limits can be 

found in Ref. [31]. Table 3 lists the optimal solutions to the 

ED problem obtained using the LP, as well as those obtained 

using the LIA [27] and ALO [6] for a 2000-kW demand.  

 

Table 3. Optimal solutions of the ten-unit test system 

 
Load (kW) 2000 

Method LIA [27] ALO [6] LP (proposed) 

P1 (kW) 

P2 (kW) 

P3 (kW) 

P4 (kW) 

P5 (kW) 

P6 (kW) 

P7 (kW) 

P8 (kW) 

P9 (kW) 

P10 (kW) 

Total cost ($/h) 

600 

600 

300 

100 

50 

100 

100 

50 

50 

50 

16579.75 

600 

599.99 

300.01 

100 

50 

100 

100 

50 

50 

50 

16579.759 

600 

600 

300 

100 

50 

100 

100 

50 

50 

50 

16579.75 

 

5.3 Discussion 

 

As can be seen from Table 2 for the DG system and Table 

3 for the ten thermal units system, the solution obtained using 

the LP is similar to that obtained using the other techniques, 

thus verifying the effectiveness of the proposed methodology. 

Hence, at this stage, the ED-LP based algorithm can be 

efficiently used to build the general predictive optimization 

models for modeling the optimal solution under varying load 

conditions without having to solve the ED-LP based algorithm 

for each load value. 

 

 

6. DYNAMIC SOLUTION OF THE ED PROBLEM 

USING MATHEMATICAL MODELS 

 

6.1 Overview 

 

The main objective of this subsection is to formulate 

accurate mathematical predictive models of the optimal power 

generated by each unit under variable loading conditions. 

Therefore, for training data collection, the ED-LP based 

problem is solved for a wide and representative range of loads. 

For the DG system, the demand is varied from 90 kW up to 
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400 kW in steps of 1 kW. For the ten thermal units system, the 

load is varied from 800 kW to 3200 kW. It should be noted 

that any load value out of this range gives an infeasible 

solution, as it would be beyond the sum of the minimum and 

maximum generator limits. For each load value, the optimal 

power generated by each generation unit is determined. This 

process is repeated for all the selected load values and the 

optimal solutions obtained in each case are recorded and stored. 

Figure 6 shows the trend in the optimal solutions obtained for 

each DG with respect to the response to the load variations. 

Also, for the ten thermal units system, Figure 7 shows the 

optimal solutions for demand values ranging from 800 kW to 

3200 kW, obtained using the same approach as that applied to 

the three-DG microgrid. 

 

 
 

Figure 6. Behavior of the optimal power of each DG under 

variable loading conditions 

 

 
 

Figure 7. Behavior of optimal power of each thermal unit 

under variable loading conditions 

 

6.2 Simulation results 

 

6.2.1 DG system 

From Figure 6, it is clear that some mathematical 

relationships can be obtained for each parameter as a function 

of the load demand. A single mathematical model for each 

parameter can be formulated. However, for more accurate 

representation, optimal power mathematical relationship can 

be divided into approximately 4–5 functions based on the load 

values. Thus, following this arrangement, the final general 

predictive optimization models for each DG are as shown in 

Eqns. (16)-(18): 

 

1

50,     90 143.25

0.3162 4.7084,     143.25 207.5

0.4247 17.81,     207.5 316.75

200,     

opt

L

L L
P

L L

L elsewhere

 

+  
=

−  

−







 
(16) 

 

2

20,     90 95.75

0.6265 40.06,     95.75 143.25

0.4284 11.6868,     143.25 207.75

0.5753 42.18,     207.75 316.75

140,     

opt

L

L L

P L L

L L

elsewhere

 

−  

= −  

−  









 

(17) 

 

3

70,     90 95.85

0.3735 9.9424,     95.85 143.25

0.2554 6.9778,     143.25 207.58

60,     

opt

L L

L L
P

L L

elsewhere

−  

−  
=

+  







 
(18) 

 

Thus, Eqns. (16)-(18) are employed here to determine the 

optimal solution of the DG microgrid for any load value within 

the feasibility range. These equations can be simply coded in 

MATLAB or any other software to directly evaluate the 

optimal solution. To check the validity of the developed 

models, a set of new random load values are used as input 

variables for both the ED-LP based algorithm and the 

developed general optimization models. Figure 8 shows 50 

new load values selected randomly within the feasibility range. 

 

 
 

Figure 8. Randomly generated load profile within the 

feasibility range of the microgrid 

 

6.2.2 Ten thermal units system 

For this system, the general predictive optimization models 

have been also formulated using the data collected from the 

ED-LP based simulations. The formulation procedure is the 

same as that performed for the three-DG microgrid system. 

Based on the load variations and by following the solution 

trend shown in Figure 7, the optimal powers of each generation 

unit are formulated as a function of the load values as follows: 

 

1

700,     800 1300

600,     
opt

L L
P

elsewhere

−  
=




 (19) 

 

2

100,     800 1300

1200,     1300 1800

600,     

opt

L

P L L

elsewhere

 

= −  






 (20) 

 

3

100,     800 1800

1700,     1800 2100

400,     

opt

L

P L L

elsewhere

 

= −  






 (21) 
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4

100,     800 2175

0.4444 866.7,     2175 2490

2250,     2490 2650

400,     

opt

L

L L
P

L L

elsewhere

 

−  
=

−  







 
(22) 

 

5

50,     800 2100

2050,     2100 2175

0.5556 1080,     2175 < 2490

300,     

opt

L

L L
P

L L

elsewhere

 

−  
=

− 







 
(23) 

 

6

100,     800 2650

2550,     2650 2850

300,     

opt

L

P L L

elsewhere

 

= −  






 (24) 

 

7

100,     800 2850

2750,     2850 2950

200,     

opt

L

P L L

elsewhere

 

= −  






 
(25) 

 

8

50,     800 3000

2950,     3000 3150

200,     

opt

L

P L L

elsewhere

 

= −  






 (26) 

 

9

50,     800 2950

2900,     2950 3000

100,     

opt

L

P L L

elsewhere

 

= −  






 
(27) 

 

10

50,     800 3150

3100,     
opt

L
P

L elsewhere

 
=

−





 (28) 

 

Therefore, Eqns. (19)-(28) are used now as general 

predictive models that can evaluate the optimal solution for 

any load value without the need to solve the ED-LP 

optimization problem.  

The validity of the proposed models is tested now using 

some random and new input load values. Figure 9 shows the 

randomly generated load profile selected from the feasibility 

range. 

 

 
 

Figure 9. Randomly generated load profile within the 

feasibility range of the 10 thermal units 

 

 

6.3 Discussion 

 

Thus, for both test systems, the performance of the 

mathematical models in estimating the optimal power 

generation is compared with the LP solution. Figure 10 shows 

the comparison of the optimal solutions obtained using both 

approaches for each DG, including the difference absolute 

percentage error. Also, Figures 11 and 12 show the 

comparison between the optimal solutions found using the 

ED-LP based algorithm and the developed mathematical 

models for the ten thermal units system. The figures clearly 

show that the percentage error is very low for all cases, thus 

verifying the high accuracy of the developed mathematical 

models and the ability of such models in accurately 

determining the optimal solutions for any load value within the 

feasibility range without having to simulate the ED-LP based 

algorithm. 

 

 
 

Figure 10. Optimal solution comparisons between proposed 

ED-LP based algorithm and the developed general 

optimization models of the microgrid 

 

 
 

Figure 11. Optimal solution comparisons between proposed 

ED-LP based algorithm and proposed general optimization 

models for units 1-5 
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Figure 12. Optimal solution comparisons between proposed 

ED-LP based algorithm and proposed general optimization 

models for units 6-10 

 

 

7. CONCLUSIONS 

 

In this paper, an ED solution methodology is proposed 

based on the LP concept by linearizing the quadratic cost 

functions of the generation units. A piecewise linearization is 

employed, wherein thousands of segments are used to 

precisely convert the quadratic functions to linear functions. 

The effectiveness of the methodology is verified by applying 

it to two different benchmark test systems, and the results are 

compared with those of other recently reported ED 

optimization techniques. A general optimization predictive 

model is then proposed for each generation unit using simple 

mathematical models, in which the input variable is the load 

value and the output is the optimally generated power.  

The simulations have shown the ability of the developed 

mathematical models to evaluate the optimal power generation 

from all generating units. Moreover, simplicity is another 

feature of the proposed method. Only a few and simple 

mathematical equations could represent the feasible operating 

conditions for the selected systems. The models are accessible 

and easy to be implemented and coded in any software. The 

models can also be evaluated instantly without performing any 

complicated algorithms and iterative operations. Thus, the 

developed models have the features of simplicity, accessibility, 

accuracy and fast execution time. 
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