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 In the present work, demonstrate the analytical method to analyze the instability 

phenomenon by using Laplace transform. For the analysis of instability two phase 

immiscible flow through the homogenous porous media is adopted. Fingering method 

is used to develop the Burger’s equation. Which is used to obtain the saturation of water 

by Laplace transform method. The analytical results show that the saturation of water 

decreases with an increase in injected fluid and time. The obtained analytical results 

also satisfied and confirmed from the simulated results that shows the saturation of 

water. 
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1. INTRODUCTION 

 

The fingering phenomenon has been discussed, which 

occurred in two immiscible phase flow through the 

homogeneous porous media. It has been reported that the 

simply investigated the unidirectional flow of immiscible 

fluids in the large medium. The variation in the values of 

pressure, saturations and speed of fluid in a single space 

direction corresponds to the movement direction [1]. 

In case of thicker porous medium, the vertical components 

of velocity of fluid could not be ignored. For the porous 

medium, the analyzed value of forces represents the interfaces, 

that are generally distorted (encroachment) the fronts. The 

front is referred to the zone of medium in which saturation of 

injected phase sharply rises. The encroachment on the scale of 

the front is known as tongue phenomenon. If it occurred on the 

smaller scale, then it’s referred as fingering [2]. The condition 

of the stability of instability is directed to the encroachment. It 

has been reported that the instabilities depend on the mobility 

ratio (M). It is also reported that the mobility ratio (M) higher 

than 1 is more precisely for the appearing of instabilities [3]. 

The injected fluids that are more transportable than native fluid 

could be causes of harmful instabilities. The difference in 

viscosities of flowing fluids causes the occurrence of the 

phenomenon of fingering. Most of the reports showed that the 

capillary pressure has been neglected. Further Borana et al. [4] 

have included the capillary pressure in the analyzed of fingers. 

Scheidegger [1] has given a review on the instabilities of 

displacement fronts in porous media and represented the most 

practically significant method for the oil production in the oil 

reservoir engineering. Hence, at the time of oil recovery 

process the fingers should be stabilized [4]. 

Therefore, the authors should be attention towards the study 

of finger phenomenon with capillary pressure. The individual 

pressure of two flowing phases may be replaced by their 

common mean pressure and the behavior of the fingers. These 

can be determined by the statistical treatment. Darcy’s law 

(2003), the equation of continuity and certain basic 

assumptions yields given a nonlinear partial differential 

equation for the motion of saturation of injecting fluid [5]. 

The earlier reports have been investigated the instabilities in 

displacement process through the homogeneous porous media 

by various methods. In the earlier study, we reported the 

analytic solution of instability phenomena using Fourier 

Transform method [6]. However, no report prevails for using 

Laplace transform for solving the problem of instability 

phenomena [7-9].  

Here, we demonstrate the analytical solution of instability 

phenomenon by using Laplace Transform method. It is also 

discussed the correlation and confirm the observed results of 

the analytical methods with simulation results. 

 

 

2. STATEMENT OF THE PROBLEM 

 

In the porous medium, when a fluid is displaced by another 

fluid of lesser viscosity, instead of regular displacement of the 

whole front, with relatively great speed the protuberance 

occurs. These protuberances known as fingers and the 

phenomenon is referred as fingering. 

We assume that a finite cylindrical piece of homogeneous 

porous medium of length L that are fully saturated with oil. 

This cylindrical piece displaced by the injecting water that 

give rise to fingers (protuberance). 

At the initial boundary, the entire oil is displaced through a 

small distance due to the injection of water. Therefore, 

assumed that the compete saturation exists at the initial 

boundary condition. The value of x being measured in the 

direction of displacement. 

For the mathematical formulation, the Darcy’s Law 

considered as valid for investigate the flow of system and 

macroscopic behavior of fingers that obtained by statistical 

method.  

In the statistical treatment of finger, the average behavior of 
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the two fluids (oil and water) are considered. Scheideger [1] 

introduced the process of motion with the concept of fictitious 

relative permeability. They described the two immiscible of 

injected fluid flow through the porous media.  

In the injected fluid level (x) at time t, the saturation of 

injected fluid (Si) is defined as the average cross-sectional area 

that occupied in the porous media by fingers, and can be 

obtained by the analytical expression. 

 

 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

3.1 Fundamental equation 

 

From the validity of Darcy’s law, let assumed that the 

seepage velocity of water and oil are (Vw) and (Vo) 

respectively and can be written as: 

 

𝑉𝑤 = −
𝑘𝑤
µ𝑤
𝑘
𝜕𝑃𝑤
𝜕𝑥

 (1) 

 

𝑉𝑜 = −
𝑘𝑜
µ𝑜
𝑘
𝜕𝑃𝑜
𝜕𝑥

 (2) 

 

where, k is the permeability of the homogeneous medium, 

kw, Pw and μw are represents the relative permeability, 

pressure and viscosity of water similarly, ko, Po and μo are 

the relative permeability, pressure and viscosity of oil.  

Let assume that the relative permeability of water and oil 

are the functions of water saturation (Sw) and oil saturation 

(So), respectively.  

The equation of continuity can be written as: 

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

+
𝜕𝑉𝑤
𝜕𝑥

= 0 (3) 

 

𝜑
𝜕𝑆𝑜
𝜕𝑡

+
𝜕𝑉𝑜
𝜕𝑥

= 0  (4) 

 

where, 𝜑 is the porosity of the medium, From the definition 

of phase saturation, the porous medium considered as fully 

saturated, and it is evident from: 

 

𝑆𝑤 + 𝑆𝑜 = 1 (5) 

 

The capillary pressure (Pc) is also known as pressure 

discontinuity of the flowing phases across their common 

interface and can be written as: 

 

𝑃𝑐 = 𝑃𝑜 − 𝑃𝑤  (6) 

 

For the determination of the mathematical analysis, 

assumed for instabilities the standard form of an analytical 

expression for the relationship between the relative 

permeability, phase saturation and capillary pressure, is 

given as: 

 

𝑘𝑤 = 𝑆𝑤 , 𝑘𝑜 = 𝑆𝑜 = 1 − 𝑆𝑤  (7) 

 

𝑃𝑐 = −𝛽𝑆𝑤 (8) 

 

Here negative sign indicates the direction of water 

saturation opposite to the capillary pressure and β assumed a 

constant with smaller parameter.  

The value of oil pressure (Po) is given by [3]: 

 

𝑃𝑜 =
1

2
(𝑃𝑜 + 𝑃𝑤  ) +

1

2
(𝑃𝑜 − 𝑃𝑤) 

𝑃𝑜 = 𝑃 +
𝑃𝑐
2
, 𝑃𝑜 =

1

2
(𝑃𝑜 + 𝑃𝑤  ) 

(9) 

 

where, 𝑃 is mean pressure and considered as constant. 

 

3.2 Equation of motion for saturation 

 

Equation of motion for the saturation obtained by the 

substitute the values of Vw from Eq. (1) in Eq. (3) and value 

of Vo from Eq. (2) in (4), can be written as:  

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

=
𝜕

𝜕𝑥
[−
𝑘𝑤
µ𝑤
𝑘
𝜕𝑃𝑤
𝜕𝑥

] (10) 

 

𝜑
𝜕𝑆𝑜
𝜕𝑡

=
𝜕

𝜕𝑥
[−
𝑘𝑜
µ𝑜
𝑘
𝜕𝑃𝑜
𝜕𝑥
] (11) 

 

From the Eq. (6) and (10), after eliminating the term 
𝜕𝑃𝑤

𝜕𝑥
, 

we get: 

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

=
𝜕

𝜕𝑥
[−
𝑘𝑤
µ𝑤
𝑘 {
𝜕𝑃𝑜
𝜕𝑥

−
𝜕𝑃𝑐
𝜕𝑥
}] (12) 

 

From (11) and (12), using Eq. (5), we obtained: 

 
𝜕

𝜕𝑥
[{
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
} 𝑘
𝜕𝑃𝑜
𝜕𝑥

−
𝑘𝑤
µ𝑤
𝑘
𝜕𝑃𝑐
𝜕𝑥
] = 0 (13) 

 

After integrating the above equation with respect to the x, 

we get: 

 

[{
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
} 𝑘
𝜕𝑃𝑜
𝜕𝑥

−
𝑘𝑤
µ𝑤
𝑘
𝜕𝑃𝑐
𝜕𝑥
] = −𝐴 (14) 

 

where, A is integration constant.  

Simplifying the Eq. (14): 

 
𝜕𝑃𝑜
𝜕𝑥

= −
𝐴

𝑘 {
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
}
+

𝑘𝑤

𝜇𝑤 {
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
}

𝜕𝑃𝑐
𝜕𝑥

 
(15) 

 

After simplification the value of 
𝜕𝑃𝑜

𝜕𝑥
 obtained from Eq. (15) 

and substitute in Eq. (12), we obtained: 

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

=
𝜕

𝜕𝑥
[
𝑘𝑤
𝜇𝑤
𝑘{−

𝐴

𝑘 {
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
}
+

𝑘𝑤

𝜇𝑤 {
𝑘𝑜
µ𝑜
+
𝑘𝑤
µ𝑤
}

𝜕𝑃𝑐
𝜕𝑥

−
𝜕𝑃𝑐
𝜕𝑥
}] 

𝜑
𝜕𝑆𝑤
𝜕𝑡

+
𝜕

𝜕𝑥
[
𝑘𝑜
𝜇𝑜
𝑘
𝜕𝑃𝑐
𝜕𝑥

1

{1 +
𝑘𝑜µ𝑤
𝑘𝑤µ𝑜

}
+

𝐴

{1 +
𝑘𝑜µ𝑤
𝑘𝑤µ𝑜

}
] = 0 

(16) 

 

Since, from Eq. (9): 

 

 

 

753



 

𝜕𝑃𝑜
𝜕𝑥

=
1

2

𝜕𝑃𝑐
𝜕𝑥

 

 

The Eq. (14) becomes after substitute the above value: 

 

𝐴 = {
𝑘𝑤
µ𝑤

−
𝑘𝑜
µ𝑜
}
𝑘

2

𝜕𝑃𝑐
𝜕𝑥

 (17) 

 

Now, substituting the value of A in (16), we get: 

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

+
𝜕

𝜕𝑥
[𝑘

𝑘𝑤
2µ𝑤

𝜕𝑃𝑐
𝜕𝑥
] = 0 

𝜑
𝜕𝑆𝑤
𝜕𝑡

+
𝜕

𝜕𝑥
[𝑘

𝑘𝑤
2µ𝑤

𝑑𝑃𝑐
𝑑𝑆𝑤

𝜕𝑆𝑤
𝜕𝑥

] = 0 

(18) 

 

Using Eq. (7), (8) and (18), we get: 

 

𝜑
𝜕𝑆𝑤
𝜕𝑡

−
𝛽𝑘𝑘𝑤
2µ𝑤

𝜕2𝑆𝑤
𝜕𝑥2

= 0 (19) 

 

Let consider: 

 

𝑘 = 𝐶0𝜏
𝜑3

𝑀𝑠(1 − 𝜑)
2
, 𝜏 = (

𝐿

𝐿𝑒
)
2

 (20) 

 

where, φ is porosity; Ms is specific surface area; C0 Kozeny 

constant; Le Effective length of the path of the fluid. 

From Eqns. (19) and (20), we get: 

 

𝜕𝑆𝑤
𝜕𝑡

−
𝛽𝐶0𝜏𝑘𝑤𝜑

2

2µ𝑤𝑀𝑠(1 − 𝜑)
2

𝜕2𝑆𝑤
𝜕𝑥2

= 0 (21) 

 

The obtained equation represents the non-linear partial 

differential equation of motion for the saturation of injected 

fluid through the homogeneous porous medium. 

 

𝑃
𝜕𝑆𝑖

𝜕𝑡
+ (

𝛽𝐾𝑐

𝛿𝑛
)
𝜕

𝜕𝑥
[(𝑃(𝛼𝑆𝑖 − 1)

𝜕𝑆𝑖

𝜕𝑥
)] = 0 [10] 

 

Let consider the capillary pressure co-efficient is to small 

enough use for smaller perturbation parameter. 

The Eq. (21) becomes a singular perturbation problem 

equation by multiplying β with highest derivative term. Such 

the problem with appropriate conditions has been solved by 

either numerically or analytically.  

The set of conditions can be written as: 

 

𝑆𝑤(0, 𝑡) = 0, 𝑆𝑤(1, 𝑡) = 1 (22) 

 

𝑆𝑤(𝑥, 0) = 0 (23) 

 

Let assume that at x=L, there is no flow because of 

consider as impermeable limit, i.e. 

Let 

 

𝑋 =
𝑥

𝐿
, 𝑇 =

𝐶0𝜏𝑘𝑤𝜑
2

2µ𝑤𝑀𝑠(1 − 𝜑)
2𝐿2

𝑡 

 

From (21), we get: 

 

𝜕𝑆𝑤
𝜕𝑇

− 𝛽
𝜕2𝑆𝑤
𝜕𝑋2

= 0 (24) 

 

𝑆𝑤(0, 𝑡) = 0, 𝑆𝑤(1, 𝑡) = 1 (25) 

 

𝑆𝑤(𝑋, 0) = 0 (26) 

 

The above equations now can be solve using Laplace 

transform. 

 

3.3 Mathematical solution by using Laplace transform 

 

Now from Eq. (24), we have: 

 

𝜕𝑆𝑤
𝜕𝑇

= 𝛽
𝜕2𝑆𝑤
𝜕𝑋2

 

 

With the boundary conditions are Sw(0, t)=0, Sw(1, t)=1 and 

initial condition is Sw(X, 0)=0. 

The solution of above partial differential equation using 

Laplace transform method [4], From the Laplace transform: 

 

{
 

 
𝜕𝑆𝑤
𝜕𝑇

= 𝑠𝑆𝑤̅̅̅̅ − 𝑆𝑤(𝑋, 0)

𝜕2𝑆𝑤
𝜕𝑋2

=
𝜕2𝑆𝑤̅̅̅̅

𝜕𝑋2

 (27) 

 

Substitute Eq. (27) in to Eq. (24), so we get: 

 

𝛽
𝜕2𝑆𝑤̅̅̅̅

𝜕𝑋2
= 𝑠𝑆𝑤̅̅̅̅ − 𝑆𝑤(𝑋, 0) (28) 

 

Given initial condition is Sw(X, 0)=0. 

So, (28) becomes: 

 

𝛽
𝜕2𝑆𝑤̅̅̅̅

𝜕𝑋2
− 𝑠𝑆𝑤̅̅̅̅ = 0 

𝛽
𝑑2 𝑆𝑤̅̅ ̅̅

𝑑𝑋2
− 𝑠𝑆𝑤̅̅̅̅ = 0 

𝑑2 𝑆𝑤̅̅ ̅̅

𝑑𝑋2
−
𝑠

𝛽
𝑆𝑤̅̅̅̅ = 0 

(29) 

 

Solution of (3) will be: 

 

𝑆𝑤̅̅̅̅ (𝑋, 𝑠) = 𝑐1𝑒
−√

𝑠
𝛽
𝑋
+ 𝑐2𝑒

√
𝑠
𝛽
𝑋

 
(30) 

 

where, c1 and c2 are arbitrary constants. 

By initial conditions, 𝑆𝑤̅̅̅̅ (0, 𝑠) = 𝐿{𝑆𝑤(0, 𝑇)} = 𝐿{0} = 0. 

Substitute this value in (30), 𝑐1 + 𝑐2 = 0 ⟹ 𝑐1 = −𝑐2. 

So, (30) becomes: 

 

𝑆𝑤̅̅̅̅ (𝑋, 𝑠) = 𝑐2 (−𝑒
−√

𝑠
𝛽
𝑋
+ 𝑒

√
𝑠
𝛽
𝑋
) (31) 

 

Another initial condition, 𝑆𝑤̅̅̅̅ (1, 𝑠) = 𝐿{𝑆𝑤(1, 𝑇)} =

𝐿{1} =
1

𝑠
. 

Substitute this condition in (31): 

 

1

𝑠
= 𝑐2 (−𝑒

−√
𝑠
𝛽
𝑋
+ 𝑒

√
𝑠
𝛽
𝑋
) 

𝑐2 =
1

2𝑠𝑠𝑖𝑛ℎ (√
𝑠
𝛽
)

 
(32) 
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By using (31) and (32) we can find the value of c1: 

 

𝑐1 = −
1

2𝑠𝑠𝑖𝑛ℎ (√
𝑠
𝛽
)

 
(33) 

 

Substitute (32) and (33) in (30) we get: 

 

𝑆𝑤̅̅̅̅ (𝑋, 𝑠) = −
1

2𝑠𝑠𝑖𝑛ℎ (√
𝑠
𝛽
)

𝑒
−√

𝑠
𝛽
𝑋
+

1

2𝑠𝑠𝑖𝑛ℎ (√
𝑠
𝛽
)

𝑒
√
𝑠
𝛽
𝑋

 

𝑆𝑤̅̅̅̅ (𝑋, 𝑠) =

sinh (√
𝑠
𝛽
𝑋) 

𝑠𝑠𝑖𝑛ℎ (√
𝑠
𝛽
)

 

 

By applying Laplace transform, we get the solution: 

 

𝑆𝑤(𝑋, 𝑇) = ∑[𝑒𝑟𝑓𝑐 (
1 − 𝑥 + 2𝑛

2√𝑇𝛽
) − 𝑒𝑟𝑓𝑐 (

1 + 𝑥 + 2𝑛

2√𝑇𝛽
)]

∞

𝑛=0

 

 

3.4 Simulation 

 

Simulation Programme: 

X=0; 

X1=0; 

temp=0; 

temp1=0; 

row=0; 

col=0; 

count=0; 

result=zeros(11,4); 

 

for x=0:0.1:1 

    row=row+1; 

    col=0; 

    for t=0.1:0.1:0.4 

        col=col+1; 

        for n=0:1000 

             

            X=(1-x+(2*n))/(2*sqrt(t*0.1)); 

            X1=(1+x+(2*n))/(2*sqrt(t*0.1)); 

            temp=temp+erfc(X); 

            temp1=temp1+erfc(X1); 

            X=0; 

            X1=0; 

        end 

         

    result(row,col)=temp-temp1; 

    temp=0; 

    temp1=0; 

    end 

end 

 

mat=zeros(11,4); 

for i=1:11 

    for j=1:4 

        mat(i,j)=result(12-i,5-j); 

    end 

end 

 

The obtained results from the analytic and simulation of 

the variation of the saturation in water with respect to the 

injected fluid and time are shown in Figure 1 and Figure 2, 

respectively. The results demonstrate that the saturation in 

water is decreased as increased the injected fluid at fixed 

time. Whereas, Sw slightly decreases with an increase in time 

for the fixed amount of injected fluid. 

 

 
 

Figure 1. Plot between the injected fluid (%) Vs saturation of 

water (%) 

 

 
 

Figure 2. Variation in saturation in water (%) with respect to 

the changes in time (sec.) 

 

 

4. CONCLUSIONS 

 

In conclusions, the analytical and programmable solution of 

instability phenomena of two phase flow of fluid using by 

Laplace transform demonstrate that as increase the injected 

fluid (X) in the porous media results in exponentially decrease 

the saturation of water (Sw) at constant time. Similarly, at 

constant injected fluid increase in time (T) linearly decrease in 

Sw. The results indicate and useful application in the achieved 

appropriate high recovery rate of oil from the given porous 

media. 

 

 

ACKNOWLEDGMENT 

 

This work was supported under expert guidance by 

Bhathawala from Veer Narmad South Gujarat University, 

Surat, Gujarat India. 

755



REFERENCES 

[1] Scheidegger, A.E. (1961). Dynamic similarity of

instabilities of displacement fronts in porous media.

Canadian Journal of Physics, 39(9): 1253-1263.

https://doi.org/10.1139/p61-151

[2] Verma, A.P. (1969). Imbibition in a cracked porous

medium. Canadian Journal of Physics, 47(22): 2519-

2524. https://doi.org/10.1139/p69-309

[3] Laliberte, G.E., Corey, A.T., Brooks, R.H. (1966).

Properties of unsaturated porous media (Doctoral

dissertation, Colorado State University. Libraries).

[4] Borana, R., Pradhan, V., Mehta, M. (2016). Numerical

solution of instability phenomenon arising in double

phase flow through inclined homogeneous porous media.

Perspectives in Science, 8: 225-227,

https://doi.org/10.1016/j.pisc.2016.04.033

[5] Desai, K.R., Pradhan, V.H., Daga, A.R., Mistry, P.R.

(2015). Approximate analytical solution of non-linear

equation in one dimensional imbibitions phenomenon in

homogeneous porous media by homotopy perturbation

method. Procedia Engineering, 127: 994-1001.

https://doi.org/10.1007/s13201-018-0814-7

[6] Patel, K., Bhathawala, P.H. (2017). Analytical study of

instability phenomenon by using Fourier transform.

IOSR J. Math., 13(4): 1-6. https://doi.org/10.9790/5728-

1304030501

[7] Shahnazari, M.R., Maleka Ashtiani, I., Saberi, A. (2018).

Linear stability analysis and nonlinear simulation of the

channeling effect on viscous fingering instability in

miscible displacement. Physics of Fluids, 30(3): 034106.

https://doi.org/10.1063/1.5019723

[8] Thusyanthan, N.I., Madabhushi, S.P.G. (2003). Scaling

of seepage flow velocity in centrifuge models.

Engineering, CUED/D-SOILS/TR326.

[9] Pasquier, S., Quintard, M., Davit, Y. (2017). Modeling

two-phase flow of immiscible fluids in porous media:

Buckley-Leverett theory with explicit coupling terms.

Physical Review Fluids, 2(10): 104101,

https://doi.org/10.1103/PhysRevFluids.2.104101

[10] Patel, K.R., Mehta, M.N., Patel, T.R. (2013). A

mathematical model of imbibition phenomenon in

heterogeneous porous media during secondary oil

recovery process. Applied Mathematical Modelling,

37(5): 2933-2942.

https://doi.org/10.1016/j.apm.2012.06.015

756

https://doi.org/10.1139/p69-309
https://doi.org/10.1103/PhysRevFluids.2.104101
https://doi.org/10.1016/j.apm.2012.06.015



