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Duffing equation can describe many important nonlinear physical systems. In this paper 

a coupled approach based on quasilinearization and Bessel polynomial collocation 

method has been suggested to solve nonlinear duffing oscillator equation. The 

nonlinearity in duffing oscillator can be of various variety. This approach is very 

efficient, stable and reliable to deal with any kind of nonlinearity. Numerical examples 

demonstrate the validity and applicability of the approach on various types of nonlinear 

duffing oscillator equation. 
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1. INTRODUCTION

Duffing oscillator has been one of the key topics for 

research for many scientists, engineers and mathematician 

because of its capacity of modeling various important 

phenomenon. Researchers have used duffing equation to 

model free vibrations of a restrained uniform beam with 

intermediated lumped mass, movement of an oscillating right 

pendulum with slightly large motions, nonlinear oscillations 

of many engineering systems e.g. centrifugal governor 

systems [1], nonlinear vibrations of beams [2], plates [3], fluid 

flow induced vibrations [4] etc. It has been also used to study 

behavior of chaotic dynamical systems, magneto-elastic 

mechanical systems [5]. 

Since many years mathematicians have been in search of 

efficient numerical methods [6, 7] to deal with problems 

arising in engineering. Researchers have been applying variety 

of numerical methods in solving duffing equation over the 

years which include variational iteration method [8], 

differential transform method [9], homotopy perturbation 

method [10], improved Taylor matrix method [11], Laplace 

decomposition algorithm [12], modified homotopy 

perturbation technique [13]. Some researchers have also 

applied coupled approaches [14-18] which are combination of 

two or more numerical methods to solve variety of problems. 

They are combined selectively so that their combination 

reduces their disadvantages and improve their strength. 

In this paper a couple approach is presented which is a 

combination of quasilinearization and Bessel polynomial 

collocation method to solve nonlinear duffing equation of the 

following form: 

𝑦"(𝑥) + 𝑘1𝑦′(𝑥) + 𝑘2𝑦(𝑥) + 𝑘3𝑓(𝑥, 𝑦) = 𝑔(𝑥) (1) 

With initial conditions: 

𝑦(0) = 𝛼, 𝑦′(0) = 𝛽 (2) 

where, k1, k2, k3, α and β are real constants. 

In this approach first the nonlinear duffing Eqns. (1)-(2) is 

converted into linear form which is further solved by Bessel 

polynomial collocation method. Generally, the iterative 

methods work slowly and start getting stuck in the case of 

complex terms e.g. trigonometric, exponential etc. The 

proposed method has high accuracy and is very fast. It can deal 

with complicated nonlinear terms as well as other complex 

coefficients. 

This paper is divided into five sections. In first section, 

introduction of the present work has been given. In second 

section, the proposed couple approach is described in detail. In 

third section, the proposed approach is applied on some 

numerical examples of duffing equation and the results of 

current method is compared with that of other numerical 

methods. In fourth section, the description of error of the 

current method is mentioned. In the last section, the conclusion 

of the current work is mentioned. 

2. DESCRIPTION OF THE COUPLED APPROACH

In this section, we have described the two approached we 

have combined to develop a coupled approach. 

2.1 Quasilinearization 

Here the technique of quasilinearization is explained in 

detail to convert the given nonlinear duffing equation into a 

linear form. 

Let y0(x) be an initial approximation of Eqns. (1) and (2) and 

sequence of its approximated solution {ym(x)} is determined 

by the following recurrence relation [19]. 

𝑦"𝑚+1(𝑥) + 𝑘1𝑦
′
𝑚+1

(𝑥) + {𝑘2

+ 𝑘3𝑓𝑦(𝑦𝑚)}𝑦𝑚+1(𝑥)

= 𝑔(𝑥) − 𝑦"𝑚 − 𝑘1𝑦
′
𝑚

(𝑥)

− 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚),
𝑚 = 0,1,2…

(3) 
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With boundary conditions: 
 

𝑦𝑚+1(0) = 𝛼,   𝑦𝑚+1′(0) = 𝛽 (4) 
 

Hence, quasilinearization transforms nonlinear form (1) to 

(2) into linear form (3)-(4). Now we propose to apply Bessel 

polynomial collocation method [20] to solve linear problem 

(3)-(4). The details of the method are given in the next 

subsection. 
 

2.2 Bessel polynomial collocation method 
 

Here we explain Bessel polynomial collocation method 

using Bessel polynomial matrix method developed by [20].  

To find the truncated Bessel polynomial series 

approximation of the problem (3)-(4) suppose: 
 

𝑦𝑚+1
′′ (𝑥) = ∑ 𝑟𝑛

𝑁

𝑛=0

𝐽𝑛(𝑥) (5) 

where, N≥2 (order of the differential Eq. (1)), rn,m; n=0, 1, 2, …, 

N are unknown coefficients to be determined and Jn(x); n=0, 

1, 2,…, N are Bessel polynomials of first kind defined by: 
 

𝐽𝑛(𝑥) = ∑
(−1)𝑘

𝑘! (𝑘 + 𝑛)!

[[
𝑁−𝑛

2
]]

𝑘=0

(
𝑥

2
)

2𝑘+𝑛

 

 

𝑛 = 0,1,2, … , 0 ≤ 𝑥 < ∞. 
 

Now, the matrix form of Bessel polynomials Jn(x) is written 

as: 
 

𝐽(𝑥) = 𝑋(𝑥)𝐴𝑇 (6) 

 

where,  

J(x)=[J0(x) J1(x) ⋯ JN(x)],  

X(x)=[1 x1 x2 ⋯ xN]. 

 

And if N is odd, 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

0! 0! 20
0

−1

1! 1! 22
⋯

(−1)
𝑁−1

2

(
𝑁 − 1

2
) ! (

𝑁 − 1
2

) ! 2𝑁−1
0

0
1

0! 1! 21
0 ⋯ 0

(−1)
𝑁−1

2

(
𝑁 − 1

2
) ! (

𝑁 + 1
2

) ! 2𝑁

0 0
1

0! 2! 22
⋯

(−1)
𝑁−3

2

(
𝑁 − 3

2
) ! (

𝑁 + 1
2

) ! 2𝑁−1
0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯
1

0! (𝑁 − 1)! 2𝑁−1
0

0 0 0 ⋯ 0
1

0!𝑁! 2𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

. 

 

If N is even, 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

0! 0! 20
0

−1

1! 1! 22
⋯ 0

(−1)
𝑁
2

(
𝑁
2
) ! (

𝑁
2
) ! 2𝑁

0
1

0! 1! 21
0 ⋯

(−1)
𝑁−2

2

(
𝑁 − 2

2
) ! (

𝑁
2
) ! 2𝑁−1

0

0 0
1

0! 2! 22
⋯ 0

(−1)
𝑁−2

2

(
𝑁 − 2

2
) ! (

𝑁 + 2
2

) ! 2𝑁

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯
1

0! (𝑁 − 1)! 2𝑁−1
0

0 0 0 ⋯ 0
1

0!𝑁! 2𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

 

Now, write Eq. (5) in matrix form as: 

 

𝑦𝑚+1
′′ (𝑥) = 𝐽(𝑥)𝑄𝑚; 

𝑄𝑚 = [𝑟0,𝑚 𝑟1,𝑚 ⋯ 𝑟𝑁,𝑚]𝑇 
(7) 

 

From Eqns. (6) and (7), we have: 

𝑦𝑚+1
′′ (𝑥) = 𝑋(𝑥)𝐴𝑇𝑄𝑚 (8) 

 

Integrating Eq. (8) from 0 to x, we get: 

 

𝑦𝑚+1
′ (𝑥) = 𝑦𝑚+1

′ (0) + 𝑋𝑋(𝑥)𝐴𝑇𝑄𝑚 (9) 
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where, 𝑋𝑋(𝑥) = [𝑥
𝑥2

2

𝑥3

3
⋯

𝑥𝑁+1

𝑁+1
]. 

Integrating Eq. (8) from 0 to x, we get: 

 

𝑦 𝑚+1(𝑥) = 𝑦𝑚+1(0) + 𝑦𝑚+1
′ (0) 𝑥 + 𝑋𝑋𝑋(𝑥)𝐴𝑇𝑄𝑚 (10) 

 

where, 𝑋𝑋𝑋(𝑥) = [
𝑥2

1×2

𝑥3

2×3

𝑥4

3×4
⋯

𝑥𝑁+2

(𝑁+1)×(𝑁+2)
]. 

Now, replacing 𝑦𝑚(𝑥), 𝑦𝑚+1(𝑥), 𝑦𝑚+1
′ (𝑥), 𝑦𝑚+1

′′ (𝑥)  in 

Eqns. (3) and (4) with the values in (8)-(10) we get: 

 

𝑋(𝑥)𝐴𝑇𝑄𝑚 + 𝑘1{𝑦𝑚+1
′ (0) + 𝑋𝑋(𝑥)𝐴𝑇𝑄𝑚} + {𝑘2

+ 𝑘3𝑓𝑦(𝑦𝑚)}(𝑦𝑚+1(0)

+ 𝑦𝑚+1
′ (0) 𝑥 + 𝑋𝑋𝑋(𝑥)𝐴𝑇𝑄𝑚)

= 𝑔(𝑥) − 𝑦"𝑚 − 𝑘1𝑦
′
𝑚

(𝑥)

− 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚),      𝑚
= 0,1,2… 

(11) 

 

Let the collocation points xi be defined as: 
 

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖, 𝑖 = 0,1,2, … , 𝑁,

0 < 𝑎 ≤ 𝑥 ≤ 𝑏 ≤ 1 

(12) 

 

Putting collocation points xi into Eq. (11), we get (N+1) 

linear equations in terms of (N+1) unknown r0,m, r1,m, …, rN,m 

as follows: 
 

𝑋(𝑥𝑖)𝐴
𝑇𝑄𝑚 + 𝑘1{𝑦𝑚+1

′ (0) + 𝑋𝑋(𝑥𝑖)𝐴
𝑇𝑄𝑚} + {𝑘2

+ 𝑘3𝑓𝑦(𝑦𝑚)}(𝑦𝑚+1(0)

+ 𝑦𝑚+1
′ (0) 𝑥𝑖 + 𝑋𝑋𝑋(𝑥𝑖)𝐴

𝑇𝑄𝑚)
= 𝑔(𝑥𝑖) − 𝑦"𝑚 − 𝑘1𝑦

′
𝑚

(𝑥𝑖)

− 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚),      𝑚
= 0,1,2… 

(13) 

 

which can be represented as: 
 

𝑈𝑄𝑚 = 𝑊 (14) 
 

where, 

 

𝑈 = 𝑋0𝐴
𝑇 + 𝑃1𝑋1𝐴

𝑇 + 𝑃2𝑋2𝐴
𝑇 

𝑋0 =

[
 
 
 
1 𝑥0 𝑥0

2 ⋯ 𝑥0
𝑁

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑁

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑁 𝑥𝑁

2 ⋯ 𝑥𝑁
𝑁]
 
 
 

(𝑁+1)×(𝑁+1)

 

𝑋1 =

[
 
 
 
 
 
 
 (𝑥0) (

𝑥0
2

2
) (

𝑥0
3

3
) ⋯ (

𝑥0
𝑁+1

𝑁 + 1
)

(𝑥1) (
𝑥1

2

2
) (

𝑥1
3

3
) ⋯ (

𝑥1
𝑁+1

𝑁 + 1
)

⋮ ⋮ ⋮ ⋱ ⋮

(𝑥𝑁) (
𝑥𝑁

2

2
) (

𝑥𝑁
3

3
) ⋯ (

𝑥𝑁
𝑁+1

𝑁 + 1
)
]
 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

𝑋2 =

[
 
 
 
 
 
 
 (

𝑥0
2

1 × 2
) (

𝑥0
3

2 × 3
) ⋯ (

𝑥0
𝑁+2

(𝑁 + 1) × (𝑁 + 2)
)

(
𝑥1

2

1 × 2
) (

𝑥1
3

2 × 3
) ⋯ (

𝑥1
𝑁+2

(𝑁 + 1) × (𝑁 + 2)
)

⋮ ⋮ ⋱ ⋮

(
𝑥𝑁

2

1 × 2
) (

𝑥𝑁
3

2 × 3
) ⋯ (

𝑥𝑁
𝑁+2

(𝑁 + 1) × (𝑁 + 2)
)
]
 
 
 
 
 
 
 

(𝑁+1)×(𝑁+1)

 

𝑃1 = [

𝑘1 0 0 ⋯ 0
0 𝑘1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑘1

]

(𝑁+1)×(𝑁+1)

 

𝑃2 =

[
 
 
 
𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚) 0 0 ⋯ 0

0 𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚) 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚)]

 
 
 

(𝑁+1)×(𝑁+1)

 

 

And 

 

𝑊 =

[
 
 
 
 
𝑔(𝑥0) − 𝑦"𝑚 − 𝑘1𝑦

′
𝑚

(𝑥0) − 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚) − 𝑘1𝛽 − {(𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚))(𝛼 + 𝛽𝑥0)}

𝑔(𝑥1) − 𝑦"𝑚 − 𝑘1𝑦
′
𝑚

(𝑥1) − 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚) − 𝑘1𝛽 − {(𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚))(𝛼 + 𝛽𝑥1)}

⋮
𝑔(𝑥𝑛) − 𝑦"𝑚 − 𝑘1𝑦

′
𝑚

(𝑥𝑛) − 𝑘2𝑦𝑚 − 𝑘3𝑓(𝑦𝑚) − 𝑘1𝛽 − {(𝑘2 + 𝑘3𝑓𝑦(𝑦𝑚))(𝛼 + 𝛽𝑥𝑛)}]
 
 
 
 

(𝑁+1)×1

 

 

Now Eq. (14) can be solved by: 

 

𝑄𝑚 = 𝑈−1𝑊 (15) 

Finally, the approximation ym+1(x) can be achieved by 

replacing g value from Eq. (15) in Eq. (10). 

For starting the iteration process of Eq. (13), the initial 
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approximation y0(x) can be taken according to initial 

conditions. Combining both methods discussed in subsections 

2.1 and 2.2, a coupled approach is generated which we call 

quasilinear Bessel polynomial collocation method (QBPCM). 

It is applied in solving duffing Eqns. (1)-(2) in this paper. 

 

 

3. ERROR ANALYSIS OF QUASILINEAR BESSEL 

POLYNOMIAL COLLOCATION METHOD (QBPCM) 

 

If 𝑟𝑎𝑛𝑘[𝑈] = 𝑟𝑎𝑛𝑘[𝑈: 𝑉] = 𝑁 + 1  then Qm is uniquely 

determined i.e. we get unique solution of Eqns. (1)-(2). If 

𝑟𝑎𝑛𝑘[𝑈] = 𝑟𝑎𝑛𝑘[𝑈: 𝑉] < 𝑁 + 1  then we find particular 

solution and if 𝑟𝑎𝑛𝑘[𝑈] ≠ 𝑟𝑎𝑛𝑘[𝑈: 𝑉] then we will not get 

solution. 

For a given m and N, Let Y(x) be the approximated solution 

of the problem (1)-(2) obtained from QBPCM, where m 

represents number of approximation in quasilinearization 

method and (N+1) represents number of collocation points in 

the Bessel polynomial collocation method. The absolute error 

in approximated solution Y(x) is estimated as: 

 

𝑒𝑁,𝑚(𝑥) = |𝑦(𝑥) − 𝑌| (16) 

 

where, y(x) is exact solution of problem (1)-(2). 

If the exact solution is not available then to perform error 

analysis, we denote and calculate absolute residual error as 

follows: 

 

𝑅𝑒𝑁,𝑚(𝑥) = | 𝑌"(𝑥) + 𝑘1𝑌′(𝑥) + 𝑘2𝑌(𝑥)
+ 𝑘3𝑓(𝑥, 𝑦) − 𝑔(𝑥)| 

(17) 

 

For sufficiently large value of N, 𝑒𝑁,𝑚(𝑥) → 0  and 

𝑅𝑒𝑁,𝑚(𝑥) → 0 as 𝑚 → ∞ i.e. 𝑌(𝑥) → 𝑦(𝑥). 
 

 

4. NUMERICAL EXAMPLES 
 

In this section the applicability of the suggested coupled 

approach has been shown by few numerical examples. All 

computational work has been performed on Matlab.  

Example-1: Let us consider the duffing equation of the 

following type [11]: 

 

𝑦" + 3𝑦 − 2𝑦3 = cos𝑥 𝑠𝑖𝑛2𝑥 

with conditions 𝑦(0) = 0, 𝑦′(0) = 1. 
(18) 

 

By applying quasilinearization, the linearized form of Eq. 

(18) is: 

 

𝑦𝑚+1"(𝑥) + (3 − 6𝑦𝑚
2)𝑦𝑚+1(𝑥)

= 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛2𝑥 − 4𝑦𝑚
3,

𝑚 = 0,1,2, … 

(19) 

 

Now we apply Bessel polynomial collocation method on Eq. 

(19) as mentioned in section 2. The exact solution of Eq. (18) 

is y=sin(x). Table 1 shows the absolute error of the solution by 

the proposed coupled approach for various collocation point N 

and m=3. Table 1 clearly shows that as we increase collocation 

points, the absolute error is reducing and accuracy is getting 

better. 

 

 

 

Table 1. The absolute error of solution of Example-1 by 

proposed approach a m=3 

 
x N=3 N=5 N=7 

0.1 4.3326×10-7 1.9714×10-9 4.1458×10-12 

0.2 2.6072×10-6 8.5622×10-9 1.3494×10-11 

0.3 6.3277×10-6 1.5300×10-8 2.1025×10-11 

0.4 1.0357×10-5 2.0078×10-8 2.8136×10-11 

0.5 1.3443×10-5 2.4388×10-8 3.5090×10-11 

0.6 1.5052×10-5 2.9500×10-8 4.0913×10-11 

0.7 1.5717×10-5 3.4221×10-8 4.6751×10-11 

0.8 1.6900×10-5 3.6986×10-8 5.2446×10-11 

0.9 2.0300×10-5 4.0280×10-8 5.6556×10-11 

1.0 2.6513×10-5 4.9719×10-8 6.7456×10-11 

 

Table 2. Comparison of absolute error of solution of 

Example 1 by proposed approach with that of other 

numerical methods 

 
x Proposed approach MVIM ITMM 

0.0 0 0 0 

0.1 1.97×10-9 3.60×10-7 4.62×10-8 

0.2 8.56×10-9 1.02×10-5 6.12×10-7 

0.3 1.53×10-8 2.35×10-5 4.28×10-7 

0.4 2.00×10-8 9.78×10-7 2.29×10-7 

0.5 2.43×10-8 1.60×10-5 4.23×10-7 

0.6 2.95×10-8 3.10×10-5 4.03×10-7 

0.7 3.42×10-8 8.50×10-5 3.32×10-7 

0.8 3.69×10-8 2.19×10-5 5.66×10-7 

0.9 4.02×10-8 3.18×10-5 8.87×10-6 

1.0 4.97×10-8 3.22×10-5 1.43×10-5 

 

In Table 2 we have compared our results with that of two 

other numerical methods. We have taken the absolute error of 

solution at N=5, m=5 by our proposed approach. The other two 

results are by modified variational iteration method (MVIM) 

[21] at 20 chebyshev points at 11th iteration and Improved 

Taylor matrix method (ITMM) for 5th degree Taylor’s 

polynomial [11]. Through Table 2 it can be seen that the 

method is in good agreement with the results of other methods 

even for a low value of N and m. It is obvious that the accuracy 

will be higher if we take higher number of collocation points 

N and number of iterations m (Figure 1). 

 
 

Figure 1. Comparison of exact solution and numerical 

solution by current method at number of collocation points 

N=3 and 5 at 5th iteration 
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Example 2: Consider the duffing equation 

𝑦" + 0.4𝑦′ + 1.1𝑦 + 𝑦3 = 2.1cos (1.8𝑥)
with conditions 𝑦(0) = 0.3 and 𝑦′(0) = −2.3

(20) 

The linearized form of Eq. (20) using quasilinearization is: 

𝑦𝑚+1"(𝑥) + 0.4𝑦𝑚+1′(𝑥) + (1.1 + 3𝑦𝑚
2 )𝑦𝑚+1 =

2𝑦𝑚
3 + 2.1 cos(1.8𝑥). 

(21) 

Now after applying Bessel collocation method we get the 

solution of (20) which can be seen in Table 3 at different points. 

It is also compared with the solution obtained by other 

methods [12]. Since the exact solution of (20) is not available, 

the residual error is evaluated for error analysis. In Table 4 the 

residual error of the solution obtained for various combination 

of N and m is demonstrated. The reduction of residual error 

with increasing collocation point is also displayed by Figure 2. 

Figure 2. Reduction of residual error with increasing 

collocation points N for Example 2 

In Figure 2 it can be easily seen that as we take higher 

collocation points the residual error of Example 2 becomes 

lower. The error also reduces as we run higher iterations.  

Table 3. The comparison of numerical solution of Example-2 

x Present Method Laplace Method ITMM 

0 0.3 0.3 0.3 

0.1 0.08358453485 0.0835845348 0.08358453484 

0.2 -0.1050919158 -0.105091915 -0.1050919158

0.3 -0.2660203036 -0.266060303 -0.2660203036

0.4 -0.3999779482 -0.399977948 -0.3999779482

0.5 -0.5083148107 -0.508314810 -0.5083148107

0.6 -0.5928906891 -0.592890689 -0.5928906891

0.7 -0.6560655026 -0.656065502 -0.6560655028

0.8 -0.7006769398 -0.700676939 -0.7006769399

0.9 -0.7299708506 -0.729970850 -0.7299708508

1.0 -0.7474760770 -0.747476077 -0.7474760775

Example 3: Consider the damped duffing Equation [11]: 

𝑦"(𝑥) + 𝑘𝑦′ = −𝑦3(𝑥)
with the initial conditions 𝑦(0) = 𝛼, 𝑦′(0) = 𝛽 (22) 

Here we have considered the case of α=β=k=1. The 

linearized form of the Eq. (22) from quasilinearization 

technique is: 

𝑦𝑚+1"(𝑥) + 𝑦𝑚+1′(𝑥) + 3𝑦𝑚
2 𝑦𝑚+1 = 2𝑦𝑚

3 (23) 

The residual error of solution of Eq. (22) is shown in Table 

4 and is also compared with the results of ITM [11]. The 

results in Table 4 are taken for N=5 at 10th iterations. The error 

will be lesser for higher collocation points and number of 

iterations. The results are promising and in good agreement 

with that of ITM. 

Table 4. Comparison of absolute residual errors of the 

solution of Example 3 by current method and Improved 

Taylor matrix method at different x values 

x 
Current Approach ITM 

N=5 N=10 5th degree 8th degree 

0 0 0 0 0 

0.1 2.37E-3 9.06E-16 4.62E-3 5.08E-6 

0.2 6.56E-16 1.88E-17 0 6.72E-6 

0.3 7.05E-4 4.49E-17 4.54E-3 1.45E-6 

0.4 1.31E-15 7.89E-16 0 3.82E-6 

0.5 4.09E-4 1.27E-16 7.85E-3 0 

0.6 2.56E-15 8.68E-16 0 2.62E-5 

0.7 4.17E-4 5.019E-17 5.42E-2 3.01E-5 

0.8 1.19E-16 2.23E-17 1.94E-1 8.07E-4 

0.9 7.87E-4 1.50E-15 0.46E-1 5.68E-3 

1 4.15E-15 5.67E-17 0.93E-1 1.22E-2 

Figure 3. The reduction of residual error with higher number 

of iterations for Example 3 at 10 collocation points 

In Figure 3, it can be seen that as we keep on increasing 

number of iterations the residual error keeps getting reduced. 

This is claimed by many iterative methods but when we run 

higher iterations either the methods start getting very 

complicated or get stuck. The proposed method is very fast and 

does not get stuck at higher iterations which is a great 

advantage of the current method over many iterative methods 

for the solution of linear [22, 23] and nonlinear problems. 

5. CONCLUSIONS

In this paper, the coupled approach QBPCM which is a 

combination of quasilinearization and Bessel polynomial 

collocation method is successfully applied to nonlinear 

duffing equation. The results of QBPCM are also compared to 

that of other numerical methods to show its efficiency and 

accuracy. The advantage of this coupled approach is that it is 

highly accurate, robust and can be applicable to variety of 

problems. It can easily deal with the nonlinear problems with 

complicated terms and coefficients and does not take too much 

computational time and space. 

719



 

ACKNOWLEDGMENT 

 

Support from University of Petroleum & Energy Studies 

(UPES), Dehradun for providing access of MATLAB software 

to complete this work is gratefully acknowledged. The authors 

would like to say their sincere thanks to the anonymous 

reviewers for their valuable comments/suggestions to make 

this paper more effective. 

 

 

REFERENCES  

 

[1] Younesian, D., Askari, H., Saadatnia, Z., Yazdi, M.K. 

(2011). Periodic solutions for nonlinear oscillation of a 

centrifugal governor system using the He’s frequency-

amplitude formulation and He’s energy balance method. 

Nonlinear Science Letters A, 2(3): 143-148. 

[2] Ahmadian, M.T., Mojahedi, M., Moeinfard, H. (2009). 

Free vibration analysis of a nonlinear beam using 

homotopy and modified Lindstedt-Poincare methods. 

Journal of Solid Mechanics, 1(1): 29-36. 

[3] Bakhtiari-Nejad, F., Nazari, M. (2009). Nonlinear 

vibration analysis of isotropic cantilever plate with 

viscoelastic laminate. Nonlinear Dynamics, 56(4): 325-

356. http://dx.doi.org/10.1007/s11071-008-9401-z 

[4] Srinil, N., Zanganeh, H. (2012). Modelling of coupled 

cross-flow/in-line vortex-induced vibrations using 

double Duffing and van der Pol oscillators. Ocean 

Engineering, 53: 83-97. 

http://dx.doi.org/10.1016/j.oceaneng.2012.06.025 

[5] Guckenheimer, J., Holmes, P. (1983). Nonlinear 

Oscillations, Dynamical Systems, Springer-Verlag.  

[6] Pathak, M., Joshi, P. (2014). High order numerical 

solutionof a volterra integro-differential equation arising 

in oscillating magnetic fields using variational iteration 

method. International Journal of Advanced Science and 

Technology, 69: 47-56. 

http://dx.doi.org/10.14257/ijast.2014.69.05 

[7] Pathak, M., Joshi, P. (2015). A high order solution of 

three dimensional time dependent nonlinear convective-

diffusive problem using modified variational iteration 

method. Int. J. Sci. Eng, 8(1): 1-5. 

http://dx.doi.org/10.12777/ijse.8.1.1-5 

[8] He, J.H., Wu, G.C., Austin, F. (2009). The variational 

iteration method which should be followed. Nonlinear 

Science Letters A, 1: 1-30. 

[9] Tabatabaei, K., Gunerhan, E. (2014). Numerical solution 

of Duffing equation by the differential transform method. 

Appl. Math. Applied Mathematics & Information 

Sciences Letters, 2(1): 1-6. 

http://dx.doi.org/10.12785/amisl/020101 

[10] He, J.H. (1999). Homotopy perturbation technique. 

Computer Methods in Applied Mechanics and 

Engineering, 178(3-4): 257-262. 

http://dx.doi.org/10.1016/S0045-7825(99)00018-3 

[11] Bülbül, B., Sezer, M. (2013). Numerical solution of 

Duffing equation by using an improved Taylor matrix 

method. Journal of Applied Mathematics, 691614. 

http://dx.doi.org/10.1155/2013/691614 

[12] Yusufoğlu, E. (2006). Numerical solution of Duffing 

equation by the Laplace decomposition algorithm. 

Applied Mathematics and Computation, 177(2): 572-580. 

https://doi.org/10.1016/j.amc.2005.07.072 

[13] El-Naggar, A.M., Ismail, G.M. (2016). Analytical 

solution of strongly nonlinear Duffing oscillators. 

Alexandria Engineering Journal, 55(2): 1581-1585. 

http://dx.doi.org/10.1016/j.aej.2015.07.017 

[14] Joshi, P., Pathak, M. (2020). A coupled approach to solve 

the family of Kuramato-Sivashinsky equations. WSEAS 

Transactions on Mathematics, 19: 91-397. 

http://dx.doi.org/10.37394/23206.2020.19.40 

[15] Pathak, M., Joshi, P. (2018). Application of a coupled 

approach for the solution of nonlinear singular initial 

value problems of Lane–Emden type. Astrophysics and 

Space Science, 363(9): 1-10. 

http://dx.doi.org/10.1007/s10509-018-3415-x 

[16] Joshi, P., Pathak, M. (2019). A coupled approach for 

solving a class of singular initial value problems of 

Lane–Emden type arising in astrophysics. In Harmony 

Search and Nature Inspired Optimization Algorithms, pp. 

669-678. http://dx.doi.org/10.1007/s10509-018-3415-x 

[17] Pathak, M., Joshi, P. (2021). Modified iteration method 

for numerical solution of nonlinear differential equations 

arising in science and engineering. Asian-European 

Journal of Mathematics, 2050151. 

http://dx.doi.org/10.1142/S1793557121501515 

[18] Pathak, M., Joshi, P. (2021). Thermal analysis of some 

fin problems using improved iteration method. 

International Journal of Applied and Computational 

Mathematics, 7(2): 1-15. 

http://dx.doi.org/10.1007/s40819-021-00964-0 

[19] Bellman, R.E., Kalaba, R.E. (1965). Quasilinearization 

and Nonlinear Boundary-Value Problems. New York, 

NY, USA: American Elsevier Publishing.  

[20] Yüzbaşı, Ş., Şahı̇n, N., Sezer, M. (2011). Bessel 

polynomial solutions of high-order linear Volterra 

integro-differential equations. Computers & 

Mathematics with Applications, 62(4): 1940-1956. 

http://dx.doi.org/10.1016/j.camwa.2011.06.038  

[21] Gohareeb, F., Babolian, E. (2014). Modified variational 

iteration method for solving duffing equation. Indian 

Journal of Scientific Research, 6(1): 25-29. 

[22] Pathak, M., Joshi, P. (2019). High-order compact finite 

difference scheme for Euler–Bernoulli beam equation. In 

Harmony Search and Nature Inspired Optimization 

Algorithms, pp. 357-370. 

[23] Pathak, M., Joshi, P. (2018). Numerical solution of 

acoustic wave equation using method of lines. World 

Journal of Modelling and Simulation, 14(4): 243-256. 

 

720




