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With the rapid changes in Earth climates, coral bleaching has been spreading worldwide 

and getting much severe. It is considered an imminent threat to marine animals as well 

as causing adverse impacts on fisheries and tourisms. Environmental agencies in affected 

regions have been made aware of the problem and hence starting to contain coral 

bleaching. Thus far, they often rely on conventional site survey to determine suitable sites 

to intervene and commence coral reef reviving process. With the recent advances in 

remote sensing technology, sea surface temperature (SST), acquired by satellites, has 

become a viable delegate to coral bleaching. Predicting coral bleaching based solely on 

SST is limited, as it is only one of many determinants. In addition, areas with different 

SST levels also exhibit different bleaching characteristics. Hence, area specific models 

are important for appropriately monitoring the events. Thus far, forecasting the bleaching 

based on SST alone has limited accuracy, because other disregarded factors are found 

equally influential. These are turbidity, salinity, and wind speed. Taken into account these 

geospatial factors, this paper evaluates different machine learning (ML) algorithms, on 

forecasting coral bleaching levels. Compared with official survey data, it was found that 

random forest (RF) gave the most accurate results, with accuracy and Kappa of 88.24% 

and 0.83, respectively. To further assist involved agencies in making data driven 

solutions to this problem, mapping forecasted by RF were visualized on a web 

application, implemented with Python and the most recent web frameworks and database 

systems. The proposed scheme could be extended to modelling coral bleaching in other 

areas, hence greatly reducing delayed in data acquisition and survey costs. 
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1. INTRODUCTION

Coral is a creature that greatly contribute to the ecosystem, 

because they are habitations of plants and animals, underwater 

attractions, important sources of medical research, and key 

elements in reducing oceanic wave violence. Coral bleaching 

has adverse impacts not only on coral ecosystem, but also on 

fishes and other marine animals, inhabiting along coral reefs. 

As a consequence, it also undermines livelihoods of fisherman 

and the local community [1-3]. Moreover, coral bleaching also 

rapidly deteriorates seaside exuberance, inevitably affecting 

local tourisms [4-6], and the benefits of otherwise undamaged 

marine ecosystem, such as retarding tidal wave and preventing 

coastal erosion [7-9]. Thus, detecting coral bleaching plays a 

major part in its monitoring, reviving, and devising preventive 

measures against bleached coral reefs. 

One of the most common problems affecting a large number 

of corals is coral bleaching. It is defined as a phenomenon that 

corals become white or paler due to the loss of Zooxanthellae, 

which in turn is resulted from too unsuitable states for seaweed 

to survive. According to the related studies, it was revealed 

that, on one hand, the factors causing coral bleaching include 

exceedingly high sea temperatures [10-16], salinity [17-19], 

turbidity [20-22], and human doings, e.g., releasing wastes 

into seas, littering on beaches, and discharging wastewater. On 

the other hand, the factor that reduces sea temperatures, and 

hence helping corals to recover from bleaching and then to 

survive is wind speed [23-25]. 

The south of Thailand is not only attracting tourists 

worldwide, but also a location, maintaining abundant marine 

resources. Unfortunately, there are a number of areas in the 

region, which is currently affected by coral bleaching. Besides, 

environmental agencies have no means nor any technology to 

efficiently monitor coral bleaching. There are several most 

recent studies on the contributing factors of coral bleaching, 

that suggest applying remote sensing (RS) to acquire in situ 

these elementary factors, i.e., sea surface temperature (SST), 

salinity, turbidity, and wind speed. This is mainly because 

surveys and records from satellites are generally available over 

periods of time and can be utilized as inputs to coral bleaching, 

forecasting and monitoring. It has been shown elsewhere that 
a popular and highly accurate technique for similar tasks is 

machine learning (ML) [26-29]. Therefore, this paper presents 

a novel ML based method for forecasting coral bleaching by 

using RS. Its main objective was focused on monitoring the 

events. It will be later elucidated in this paper by experiments 

that, with the proposed method, manpower and onsite visit, 

required by conventional scheme, can be effectively reduced. 

As such, delayed data acquisition, and unnecessarily high 

survey cost, in each particular area can be effectively avoided. 
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2. LITERATURE REVIEW 
 

Extensive works have been carried out in an attempt to 

forecast and monitor corals bleaching. Their analyses were 

mainly based on Geographical Information System (GIS) and 

or RS. The existing works can be categorized by factors being 

considered into two main groups. The former consists of those 

that take solely SST [10-16] into account, while those in the 

latter combine it with other factors (e.g., wind speed and water 

turbidity, etc.) in their analyses [30, 31]. However, based on 

the approach taken, these groups can be further divided into 

those detecting and monitoring corals bleaching by using 

satellite image processing [32, 33], by statistical analyses of 

SST, recorded in the photos archived in the National Oceanic 

and Atmospheric Administration (NOAA) repository [12-16], 

and by different ML algorithms, namely, random forest [30] 

and Bayesian [16]. Critical discussion and detailed insights 

into these methods are given as follow. 

Investigations by Brown et al. and Van Hooidonk revealed 

the correlations between coral bleaching and SST levels, 

obtained from NOAA. Based on these correlations they could 

forecast and monitor the events in specific areas [12, 13]. By 

taking a similar approach, Pernice and Hughes developed a 

global-wide coral bleaching monitoring and warning system 

[14]. With this system, degree heating week (DHW) was 

analysed from NOAA and then used to monitor coral 

bleaching in real-time. Conventionally, DeCarlo presented the 

result of coral bleaching correlated to only higher SST. 

Therefore, a framework based on advanced statistical 

approach was proposed to improve the accuracy of forecast 

[15]. However, detailed quantitative evaluation on its accuracy 

was not presented. Other studies tackled the issue by using ML 

algorithms. Based on SST accumulation within 4-8 weeks 

period, Lachs et al. generated a Bayesian hierarchical model 

that was able to forecast coral bleaching at specified areas, 

with 7.9% higher accuracy than the traditional methods [16]. 

Motivated by this improvement, it is believed that ML based 

methods could well overcome conventional statistics. These 

methods, however, did not consider any other factors apart 

from SST. 

By taking into account other determinants, Knudby et al. 

presented the methodology for mapping coral reef resilience 

indicators using field and remotely sensed data [30]. Therein, 

indicators related to both coral bleaching coral reef resilience 

were analysed by using remote sensing imagery at very high 

resolution, i.e., IKONOS and QUICKBIRD. Beside SST, 

those indicative factors were stress-tolerant taxa, coral generic 

diversity, fish herbivore biomass, fish herbivore functional 

group richness, live coral, and crustose, and coralline algae. 

An ML algorithm called random forest (RF) and Gaussian 

process regression (Kriging interpolation) were compared. It 

was found that, mapping of coral bleaching and reef resilience 

were clearly presented at higher resolution, thanks to that of 

satellite base images. Additionally, Aslam et al. presented the 

methodology for mapping of coral bleaching susceptibility 

was also studied [31], by using multi-criteria analysis (MCA) 

and GIS. In their work, other factors, i.e., wind velocity, 

photosynthetic active radiation (PAR), aragonite saturation 

state, bathymetry, and reef slope, were considered with SST. 

Based on these factors, locations on susceptibility mapping 

were classified into 3 levels, i.e., low, moderate, and high risks. 

Their experiments demonstrated that MCA and GIS played 

important parts in highly efficient data analyses and hence 

enhancing the mapping accuracy. Like their many preceding 

works, however, numerical accuracy assessment was not 

presented. 

Image processing was found a viable tool for detecting and 

monitoring coral bleaching in many studies. For example, Xu 

et al. presented the method for examining Sentinel-2 satellite 

images at different durations. The images were analysed by 

using Pseudo invariant features (PIFs) and depth invariant 

indices (DII) methods. Subsequently, the processed pixels 

were classified by support vector machine (SVM). Their 

experiments indicated that coral bleaching could be examined 

at a particular area with 88.9% accuracy on average [32]. 

Last but not least, GIS is considered a driving technology in 

various fields, e.g., geoscience, environment, and public health. 

Levine and Feinholz presented the method to inspect coral reef 

management. It was used for displaying the coastal and 

oceanic data in Hawaii on graphical maps for coral reef 

management [33]. The system was able to present relevant 

spatial information to government agencies and thus assisted 

them to make data-driven managerial decisions. 

From the above review on coral bleaching forecast and 

monitoring schemes, it could be drawn that there remain some 

areas that need improving and issues need to be addressed, 

especially, the accuracies of detecting and predicting coral 

bleaching. The above studies have come to a similar 

conclusion that using SST alone was inadequate. However, 

there were only a few studies that attempts to combine it with 

other factors in their analyses. Moreover, not only that the 

combinations were not explicitly standardized, but also that 

accuracy assessments were not reported. Nonetheless, the 

results obtained by applying ML algorithms on remotely 

sensed data were very promising, despite some limitations. To 

address these issues, this paper presents a method for making 

coral bleaching forecast, based on satellite image processing 

and ML algorithms. Its merit was elucidated by demonstrating 

a web application for monitoring coral bleaching events at 

targeted areas. 

 

 

3. MATERIALS AND METHODS 
 

The design and development of the proposed system were 

divided into 3 key processes as illustrated in Figure 1. They 

were spatial data query, coral bleaching forecast by using ML, 

and visualization of forecast data. The description of each 

process is given in detailed in the subsections to follow. The 

subsequent experiments were carried out on 2 study areas, 

which were Chumphon and Surat Thani provinces. In these 

areas, there were various extents of coral bleaching, including 

non-existent. With these as the reference, the constructed 

forecasting model was assessed by its accuracy on anticipating 

the extents of coral bleaching. 

 

3.1 Spatial data query 

 

This process queried surveyed data recorded by satellites. 

They were stored on the Google cloud repository, called Earth 

Engine Data catalogue. From this platform, a range of 

remotely sensed data, such as satellite images, terrains, and 

climate and weather information acquired by meteorological 

satellites, could be accessed via trivial Python scripts. In this 

study, the data involved were SST, turbidity, salinity, and wind 

speed, whose characteristics and sources are provided in Table 

1. Shown in Figure 2a is an example of SST mapping, where 

different levels of temperature are represented in standard 
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false colors. Specifically, high, moderate, and low 

temperatures within a given range, were shown in various 

shades of red to purple, green, and blue, respectively. Figure 

2b illustrated an example of turbidity ranging between –0.5 

and 0.0. Likewise, each pixel is false colored, with respect to 

its relative levels. Locations with high turbidity close to 0.0, 

for examples, were plotted in purple, whilst those on the other 

end were in blue. Based on this representation, the lower the 

values, the clearer the water in that area. An example of wind 

speed is displayed in Figure 2c. Unlike previous mapping 

schemes, its false color palette is discrete, ranging from blue 

at the lower end speed, to green, orange, and red at the other. 

All these spatial data were then fed into the forecast process 

by using ML algorithms. 

The RS data considered in this study contained factors with 

different spatial resolution, depending on their availability. To 

normalize the resolution of all relevant layers to 30 meters, 

Kriging algorithm was employed to interpolate the data, prior 

to feature extraction. The features considered in this study 

were selected from those suggested in related works, and those 

reportedly causing coral bleaching at the study area in the past. 

These factors were also validated against the created model. 

 

 
 

Figure 1. Conceptual diagram of the proposed system 

 

 
 

Figure 2. Examples of sea surface temperature (a), water turbidity (b), and wind speed (c) 

 

Table 1. Detailed characteristics of spatial data and their sources 

 
Data Type Source Period 

Sea Surface Temperature (SST) Spatial GEE (MODIS and NOAA) Summer, 2020 

Water-Turbidity Spatial GEE (Landsat 8) Summer, 2020 

Salinity Spatial GEE (HYCOM: Hybrid Coordinate Ocean Model) Summer, 2020 

Wind Speed Spatial GEE (NOAA CDR) Summer, 2020 
Note: GEE stands for Google Earth Engine data catalogue. 

 

3.2 Coral bleaching forecast by using ML 

 

This subsection explains the construction of forecasting 

model. The model received inputs from GEE repository via 

spatial queries, and was trained by onsite survey data, explored, 

and recorded by the Department of Marine and Coastal 

Resources (DMCR), Thailand. These data were fetched and 

stored in the local geospatial database, for training and testing 
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purposes. In this study, four ML algorithms were developed 

and benchmarked. They were multi-layer perceptron (MLP) 

artificial neural network (ANN), random forest (RF), decision 

tree (DT), and radial basis function (RBF) ANN. On 

constructing an ML model 149 records were learned. Each 

resultant model was then assessed by means of 10-fold cross 

validation. Another set of 51 unseen records was used for 

testing, to ensure that the model was not overfitted by training 

data. The model that gave the highest accuracy would then be 

chosen for producing the forecast maps in the study areas, 

which were also stored in the local database.  

On accessing forecasting accuracy, standard metrics were 

calculated for each model. They were overall accuracy, root 

mean squared error (RMSE), and Kappa. The validation was 

made against the ground truths, i.e., survey data, obtained from 

DMCR. 

During the ML process, thematic features were extracted 

from a number of instances from the geospatial database and 

tagged with their geolocations (latitude and longitude) and 

acquisition time. Each model was trained with identical set of 

data in turns, using their default configurations, and the one 

that yielded the best accuracy was chosen. The results were 

visualized in two modes, i.e., per location and as an image of 

the region of interest, showing the bleaching levels. 
 

3.3 Visualization of forecast results 

 

The forecasts made by the best performing model were 

visualized on an interactive map embedded on an inhouse web 

application. The application was mainly written in Python and 

involved various software libraries and database operating 

systems, i.e., Google Earth Engine (GEE), QGIS, QGIS2Web, 

PostgreSQL, and PostGIS. With this application, forecast map 

depicts a selected area on a web canvas, whose pixels were 

colour-coded by bleaching level at that location. Accordingly, 

users could access this information online and rely on the 

forecasts to monitor coral bleaching, and to make informed 

decision or to support administrative actions on resolving 

environmental issues, related to coral bleaching at a particular 

area. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results 

 

The experimental results are divided into 3 parts, i.e., the 

ground truth data of coral bleaching obtained DMCR, 

numerical assessments, and bleaching forecasts made by the 

best performing ML. The reference maps of study areas are 

depicted in Figure 3a. The coloured star shape markers 

represent different levels of bleaching. Dark green stars 

indicates that the area has perfect corals with no bleaching. 

Light green, yellow, orange, and red stars, indicate those with 

low, medium-low, medium-high, and high levels of coral 

bleaching, respectively. The rest depicts the maps of four 

selected islands, namely, Kho Samui (3b), Koh Phangan (3c), 

and Kho Mae Ko and Kho Wua Ta Lap (3d). 

 

Table 2. 10-fold cross validation results, obtained by 

different ML models 

 
Machine Learning Accuracy RMSE Kappa 

ANN (MLP) 88.07 0.21 0.85 

Random Forest 97.25 0.08 0.96 

Decision Tree 94.49 0.14 0.93 

ANN (RBF) 90.83 0.18 0.88 

 

 

 
 

Figure 3. Reference coral bleaching data obtained from DMCR, showing the entire study area (a) and four selected islands (b), 

(c) and (d) 
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Once training was completed, forecasts made by each 

model were evaluated by 10-fold cross validation. The ML 

models considered in this study were ANN (MLP), RF, DT, 

and ANN (RBF). The assessment results, i.e., accuracy, 

RMSE, and Kappa, are lists in Table 2 and plotted in Figure 4. 

According to these results, it was revealed that RF performed 

best in terms of accuracy at 97.25%. It was followed by DT, 

ANN (RBF), and ANN (MLP), whose accuracies were 

94.49%, 90.83%, and 88.07%, respectively. This finding was 

also confirmed by measuring the RMSE and Kappa. In these 

aspects, RF also gave the least RMSE (0.08) and the highest 

Kappa (0.96), compared to its counterparts. Figures 4(a), 4(b), 

and 4(c) graphically compare these ML algorithms with 

respect to each metric, i.e., overall accuracy, RMSE, and 

Kappa, respectively.  

Among these model candidates, RF yielded the highest 

accuracy, with respect to 10-folds cross validation. Its forecast 

would thus be preferred for the subsequent process. However, 

to ensure that it was not overfitted, another validation was 

performed on RF model, based on 51 unseen locations. In this 

experiment, it could forecast the bleaching levels at 88.24% 

accuracy, with Kappa = 0.83 and RMSE = 0.25. Therefore, it 

is safe to conclude that the RF model maintained its high 

performance, and hence was the most suitable predictor for 

coral bleaching. 

Coral bleaching levels predicted by RF at a selected site, 

based on the factors listed in the Table 1 is illustrated in Figure 

5. Its dense map was produced by Kriging interpolation. In this 

map, red brown, brown, and light-yellow pixels, represent 

locations with high, medium high, low levels of coral 

bleaching. While green ones represent those with perfect 

corals or those without bleaching. By visual inspection, 

comparing the forecasted bleaching levels (false color pixels) 

with against onsite surveys by DMCR (colored stars), it was 

found that they were highly correlate. For example, the 

northern part of the study is Koh Ngam Yai, Chumphon 

province. The forecast in this area appeared in red brown, 

indicating high level of bleaching. This conformed to that 

marked by survey data as red star-shaped markers. Another 

example is Koh Samui, located in Surat Thani province. This 

area had varying levels of bleaching, from low (green) to 

medium-low (light yellow). By slight difference, it was 

marked by green star-shaped markers. 

A more localized forecast mapping at two selected islands 

is shown in Figures 6 and 7. The former depicts the results at 

Koh Wua Ta Lap, while the latter does at Koh Mae Ko. In 

these figures, stripped pattern indicates targeted coral reefs (a), 

which are also overlaid on the map rendered with their 

bleaching levels (b). It is apparent in Figure 6 that most of Koh 

Wua Ta Lap areas had medium-high to high levels of 

bleaching. However, the north and the northeast of the island 

exhibited perfect coral to low coral bleaching. With similar 

observation, Figure 7 shows that Koh Mae Ko had the extent 

of medium-high to high bleaching were approximately the 

same as that of none to low bleaching. Specifically, the former 

laid on the west, the north, the northeast and the southwest, 

while the latter did on the east, the northeast, and the southeast 

of the island. 

 

 
 

Figure 4. Comparison between different ML algorithms with respect to overall accuracy (a), RMSE (b), and Kappa (c) 
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Figure 5. A selected example of forecasted coral bleaching map 

 

 
 

Figure 6. Localized forecasted coral bleaching levels at Koh Wua Ta Lap, showing the targeted coral reefs (a) overlaid on the 

forecast map (b) 

 

 
Figure 7. Localized forecasted coral bleaching levels at Koh Mae Ko, showing the targeted coral reefs (a) overlaid on the 

forecast map (b) 

 

Closer inspections on SST data, acquired between 2011 – 

2021, also revealed that an area with coral bleaching generally 

had higher SST than that without. For instance, in May 2020, 

the former had SST than the latter by 2–3℃. When used as a 

casual factor in previous studies, however, it is not so 

discriminative as those combined in this study. 

Finally, the forecasted coral bleaching, made the by RF 

algorithm, could be visualized on an interactive map, by using 

the developed web application, as illustrated in Figure 8. All 

main functions discussed above were implemented and built 

in. With this web application, an involved party, could make 

online spatial queries on coral bleaching at an area of interest, 

to monitor bleaching and also to prepare appropriate actions to 

resolve environmental related issues in the area. 
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Figure 8. The starting page of the prototype web-based map visualization application. The insets depict the main built-in 

functions for coral bleaching forecast 

 

4.2 Discussion 

 

Unlike a few related works that addressed similar issues, the 

present study compared state-of-the-art ML algorithms, and 

discovered that, based on remotely sensed data, i.e., SST, 

turbidity, salinity, and wind speed, the RF algorithm 

performed best. Specifically, it could forecast coral bleaching 

at 97.25% and 88.24% accuracy, based on 10-fold cross 

validation and that on a set of unseen data, respectively. 

Compared with previous studies that typically relied only on 

SST [12-16], the present results also took into account other 

remotely sensed factors, resulting in much accurate forecasts. 

Although there were a few studies that analysed multiple 

factors [30, 31, 34], neither accuracy on coral bleaching 

analysis nor monitoring were reported. Furthermore, we also 

developed a web-based application that was able to make 

spatial queries to remotely sensed cloud repository, hosted by 

GEE, by using well-known Python language and the most 

recent web frameworks. It was demonstrated that users could 

visualize forecasted map of coral bleaching at specific areas, 

interactively, without the need for onsite surveys. 

 

 

5. CONCLUSIONS 

 

This paper presents a novel ML based method for 

forecasting coral bleaching levels, based on SST, turbidity, 

salinity, and wind speed. These geospatial factors were 

queried from GEE data catalogue by using Python scripts and 

peripheral web frameworks. Herein, experimental results 

indicated that RF could forecast coral bleaching in the study 

area most accurately, compared to other ML algorithms. The 

resultant forecasts were stored in local geospatial database. As 

such, they were accessible via a web application. Information 

interactively presented on this application is valuable to 

involved agencies in making data-driven managerial decisions 

and devising appropriate solutions to coral bleaching problems. 

Thus far, RS remains limited, since it is unable to acquire 

human activities, such as littering and discharging wastewater 

into the ocean, both from industrial plants and households. The 

solution to these shortcomings has not been addressed in the 

present study. However, a dedicated geospatial platform could 

be implemented and employed to gather these activities, so as 

to be included in forecasting model, making it more accurate. 

Future directions worth explored include using Internet of 

Things (IoT), equipped with sensors to acquire more localized 

and up-to-date data, e.g., SST and turbidity. It is believed that 

with more sensors being installed, the precision of a forecast 

map can be improved, both spatially and temporally. 
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