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The physical phenomenon of thermodiffusion is the transfer mechanism that occurs 

when a thermal gradient is applied to a mixture. It is known as “the Soret |Effect”, of 

which much experimental and theoretical work has been done to interpret it 

scientifically. This article briefly presents a one-dimensional theoretical and numerical 

approach, based on the first law of thermodynamics, of the concentration distribution of 

the NaCl in a salinity-gradient solar pond. The theoretical developments aim to frame its 

fluido-thermodynamic factors. 
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1. INTRODUCTION

At the turn of the last century, the solar pond was discovered 

as a “natural phenomenon” in the Transylvanian Medve Lake, 

in Hungary, where temperatures reaching 70°C were recorded 

at a depth of 1.32 m, at the end of the summer season; while 

the minimum temperature was 26°C in early spring. The 

bottom of this lake containing NaCl salt had a concentration 

of 26% [1]. This same phenomenon has been observed and 

reported by others as well [2-7]. Then solar ponds were 

artificially constructed as large-scale collectors of solar energy, 

absorbing solar radiation and storing it as thermal energy for 

long periods of time [8]. 

In 1948, Block suggested the adoption of a density gradient 

in the solar pond, to eliminate the convection currents that 

normally develop in the presence of hot water below cold 

water. So, a strong density gradient from bottom to top is 

achieved by using a high concentration of suitable salts at the 

bottom of the basin and a negligible concentration at the top. 

Suitable salt should verify the following characteristics: high 

solubility value to ensure high solution densities, temperature 

insensitive solubility, sufficiently transparent solution to solar 

radiation, environmentally friendly salt, safe to handle and 

available in abundance near the site [9]. The thermal 

conductivity of saline solution decreases with increasing 

salinity, and thus acts as an insulating layer. This type of pond 

is called a “salinity-gradient solar pond SGSP” [1]. The 

method of generating the salt concentration gradient in the 

pond can be chosen according to local requirements [10], so it 

can be done by: natural diffusion, stacking, redistribution or 

falling. 

SGSPs, generally 1 to 2 m deep with an isolated base, are 

made up of three thermally distinct layers [8, 9, 11] (Figure 1): 

i) The upper surface layer (0.1-0.4 m) or upper

convective zone, whose temperature and salinity are constant, 

is an area of cooler, less salty water as it forms due to upward 

transport of salt, surface heating and cooling, and wave action; 

it supports, therefore, all environmental influences. 

ii) The second layer or non-convective zone has

temperature and salinity gradients and acts as a critical 

insulator for the lower zone (where heat will be stored). Its 

thickness varies from 0.6 to 1.0 m and depends on the desired 

temperature, solar transmission properties and thermal 

conductance of water. 

iii) The bottom layer, known as lower convective zone or

heat-storage zone, is a layer of high salinity brine where 

temperatures are highest in order to store solar thermal energy 

efficiently. Useful heat is usually extracted from this layer. Its 

thickness depends on the temperature and the amount of 

thermal energy to be stored. 

Figure 1. Schematic of salinity-gradient solar pond 

2. THERMODIFFUSION OR SORET EFFECT

In an isotropic fluid system of an enclosed medium with no 

external forces, concentration gradient builds up due to the 

driving force of applied temperature gradient until system 

reaches into the steady state condition [12]. This phenomenon 
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is called “Thermodiffusion or Soret effect”. Because of its 

popularity, remarkable attention has been focused on the 

experiments with optical techniques and theoretical models 

based on non-equilibrium thermodynamics [12]. 

Thermodiffusion can be studied in a solar pond as a type of 

top-heated convectionless diffusion medium. The first surface 

centimeter of the brine absorbs long wavelength radiation (1.2 

µm) which forms 22.4% of incoming solar radiation, leading 

to a sharp increase in the temperature and creating a hot zone 

in the UCZ. The remaining 77.6% will be distributed to the 

rest of the pond [13]. The hot zone begins to descend slowly 

towards the NCZ until it finally reaches the LCZ, as the 

temperature increases and the pond approaches the pseudo-

stationary state. So, the LCZ does not act as the hottest area of 

the pond from the start. Maintaining the UCZ at a sinusoidal 

temperature inferior to the temperature of the LCZ eliminates 

the instabilities, because the density increases in the direction 

of the gravity field and the fluid will be kept at rest. 

 

 

3. HEAT DIFFUSION PROBLEM 

 

3.1 Theoretical approach 

 

Determining the temperature distribution T(z,t) in the pond 

allows us to find a theoretical approach to understand the 

phenomenon of thermodiffusion in terms of scientific 

interpretation. To do this, we use a differential equation whose 

solution, for prescribed boundary conditions, provides the 

temperature distribution in the pond. 

The one-dimensional partial differential equation 

describing the distribution of heat is given by [14]: 
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0  z  L, t  0. 

In Eq. (1), the temperature T is a function of position z and 

time t, and: 
PC

k


 = is called thermal diffusivity measured in 

m2/s; where k,  and CP are
 
thermal conductivity, density, and 

specific heat capacity, respectively. 

The initial and boundary conditions are, respectively: 

 

( ) ( )zTtzT init== 0,  
(2) 

 

( ) ( )tTtzT 0,0 ==  
(3) 

 

( ) ( )tTtLzT L== ,  
(4) 

 

Suppose no loss of heat from the solar pond surfaces, and 

the boundary conditions (3) and (4) are, respectively: 

 

( ) ( )tTTtT av sin,00 +=  (5) 

 

( ) LL TtT =  
(6) 

 

then, let: 
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3.1.1 Ends kept at zero temperature and initial temperature f(z) 
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0  z  L, t  0. 

The initial and boundary conditions are, respectively: 

 

( ) ( )zftzu == 0,  
(9) 

 

( ) ( ) 0,,0 ==== tLzutzu  
(10) 

 

Carslaw and Jaeger [15] presented a simple form of solution 

of the heat equation, for steady-state temperature oscillations. 

If the initial temperature is: 
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where, A is the rate of heat production per unit time per 

volume and n the eigenvalue, then: 
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will satisfy the conditions (9) and (10) of the problem. 

The initial condition (9), supposed as a bounded function 

satisfying Dirichlet’s conditions, can be expanded in the sine 

series: 
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So, consider: 
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Continuous function of the two variables z and t, in the 

regions 0 ≤ z ≤ L and t > 0. 
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are also uniformly 

convergent in the intervals of z and t, respectively. So, the Eq. 

(8) is satisfied at any point of the studied physical system, 

when t > 0, by the function (16). The initial and boundary 

conditions, (9) and (10), are also satisfied.
 In our physical problem, the initial condition is: 
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The function (16) becomes: 
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This series converges slowly for small values of (t/L2), say: 
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3.1.2 Ends at variable temperatures and zero initial 

temperature 
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0  z  L, t  0. 

The initial and boundary conditions are, respectively: 
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(22) 
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Duhamel's theorem states that if: 
 

( )tzFw ,,=  
(24) 

 

represents the temperature, at position z and time t, of a system 

with zero initial temperature and surface temperature TS(z,); 

then the solution of the problem, in which the initial 

temperature is zero and the surface temperature is TS(z,t), will 

be given by: 
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Then if: 
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(26) 

 

represents the temperature, at position z and time t, of a system 

with zero initial temperature and a surface maintained at unit 

temperature; then the solution of the problem, when the 

surface is kept at the temperature TS(t), will be given by: 
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Thus, when the surface temperatures are T0(t) and TL(t), we 

get: 
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and: 
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By plugging the conditions (5) and (6) in the equation (28), 

we obtain: 
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3.1.3 Temperature distribution 

Finally, by inserting (18) and (31) in Eq. (7), we obtain: 
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3.2 Approximate form 

 

Carslaw and Jaeger [15] considered the problem of the 

system 0 < z < L, at zero initial temperature and surfaces z =0 

and z = L maintained at T0 = 0 and TL = sin(t+ε), respectively. 

The temperature distribution is given by: 
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The first term of the temperature function (33) is the steady 

state periodic solution and the second term is the transient one. 

The quantities A and Ø are the amplitude and phase of the 

steady temperature oscillation, at the point z, respectively.  
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where, 
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2
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Then, for the system 0 < z < L, at initial temperature 
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and surfaces z = 0 and z = L held 

at T0 = T0,av + ΔTsin(t) and TL, respectively, an 

approximation is made by assuming that the depth of influence 

is less than L. 

Note that the depth of influence is given by: 
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The approximation of the temperature distribution (33) is 

then: 
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where, Aa, the limit of A, if ψ tends to zero, is supposed to be: 

 
kz

a ezA −=)(  (39) 

 

and φa, the linear approximation of φ so that A does not vanish, 

is: 
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The solution (38) does not contain any series. It will be valid 

if t is greater than the period of oscillation: t  (1/), and 

applicable for long-term average mass flux. It should work 

well if L > 10 ψ. For a thermal diffusivity of water  = 10-7 

m2/s and a pulsation  = 7.27×10-5 Hz (for a period T of 24 

hours), the depth of influence ψ = 0.05 m. Hence, the 

approximation is valid for a depth L > 0.5 m, let L = 1 m in 

our problem. 

 

3.3 ‘Mathematica’ form 

 

For the initial and boundary conditions (17), (5) and (6), 

respectively, the temperature distribution is given by 

‘Mathematica’ as follow: 
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4. THERMODIFFUSION PROBLEM 

 

Diffusion of matter is the transfer, by random molecular 

motions, of mass resulting from concentration differences of 

one or more constituents of a mixture, without convective 

movement. Consequently, we can only have diffusion if at 

least two distinct species are present. The constituents of an 

initially uniform mixture are liable to separate – on the 

molecular level – when this mixture is subjected to a 

temperature gradient [16]. The analogy between the heat 

diffusion – which is also due to random molecular motions – 

and the diffusion of matter, first recognized by Fick, in 1855, 

led him to put the diffusion of matter on a quantitative basis 

using the heat diffusion mathematical equation of Fourier, in 

1822 [17]. Then, the mathematical theory of mass diffusion in 

isotropic substances is:  
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where F is the rate of transfer per unit area of section. 

The fundamental differential equation of diffusion in an 

isotropic medium is derived from the equation (42): 
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Due to the mass conservation, there is only one independent 

component of a binary mixture [16]. The mass fraction of the 

independent component, which is the solute, is denoted as c. 

So, the mass fraction of the dependent component, which is 

the solvent, will be 1 – c.  

In presence of temperature gradient, the expression of the 

mass flow of the independent component is given by: 
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Thermodiffusion processes are quantified by mass and 

thermodiffuison coefficients, D and DT, respectively. The 

thermodiffusion coefficient can be written as: 

 

DT = D  ST (45) 

 

where, ST is the Soret coefficient. 

With no flow and in a transient mode, the problem will be 

one-dimensional and the concentration gradient expressed in 

the following form: 
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0  z  L, t  0. 

where, 
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Let the concentration c at the end z = L, in other words at 

the lower convective zone: 
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c(z = L, t) = cL = 0.25 (48) 

 

At z = 0, in the upper convective zone where water is less 

salty, the concentration is much lower than cL. Then: 

 

c(z = 0, t) = c0 ≈ 0 (49) 

 

The initial condition is thus: 
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For this nonhomogeneous problem, suppose that: 

 

z
L

c
tzctzv L−= ),(),(  (51) 

 

The problem becomes: 
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0  z  L, t  0 

with initial and boundary conditions, respectively: 

 

v(z, 0) = 0 (53) 

 

v(0, t) = v(L, t) = 0 (54) 

 

4.1 Using the temperature distribution (32) 
 

Relation (47) can be expressed as follow: 
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and v(z, t) expressed as follow: 
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Then, by plugging the expressions (55) and (57) in the 

equation (52), we obtain: 
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where Gn will be expressed as: 
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By plugging the expression (32) of the temperature in the 

Eq. (56), we obtain: 
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4.2 Using the approximate temperature (38) 

 

The approximate solution (38) of the temperature leads us 

to a thermodiffusion equation having series of solutions which 

converge slowly, thus requiring no less than 100 summation 

terms (N ≥ 100) for stable results. Using ‘Mathematica’, we 

get the following approximate expression: 
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And as mentioned in equation (37): 
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4.3 Using the ‘Mathematica’ temperature (41) 
 

By plugging the expression (41) of the temperature in the 

Eq. (56), we obtain: 
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5. GRAPHICAL REPRESENTATIONS 
 

5.1 Temperature distribution 
 

We present here a collection of graphical representation of 

the temperature distribution in function of time, for different 

positions in the solar pond. Let the pulsation  = 7.27×10-5 Hz, 

water thermal diffusivity  = 10-7 m2/s, pond’s depth L = 1 m, 

temperature of the bottom (z = L) TL = 60°C, T0,av = 20°C and 

difference between daily and night temperature ΔT = 10°C. 
 

5.1.1 Theoretical approach, equation (32) 
 

 
Figure 2. Temperature variation in function of time at a 

depth z = 0.2 m (UCZ) 
 

 
Figure 3. Temperature variation in function of time at a 

depth z = 0.5 m (NCZ) 

 
Figure 4. Temperature variation in function of time at a 

depth z = 0.8 m (LCZ) 

 

 
Figure 5. Temperature variation in function of time at 

different positions z of a 1 m depth solar pond 

 

5.1.2 Approximate form, equation (38) 

 

 
 

Figure 6. Temperature variation in function of time at z = 0.2 

m 

 
 

Figure 7. Temperature variation in function of time at z = 0.5 

m 
 

 
 

Figure 8. Temperature variation in function of time at z = 0.8 

m 
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Figure 9. Temperature variation in function of time at 

different positions z of a 1 m depth solar pond 
 

5.1.3 ‘Mathematica’ form, equation (41) 
 

 
 

Figure 10. Temperature variation in function of time at z = 

0.2 m 
 

 
 

Figure 11. Temperature variation in function of time at z = 

0.5 m 

 
 

Figure 12. Temperature variation in function of time at z = 

0.8 m 
 

 
 

Figure 13. Temperature variation in function of time at 

different positions z of a 1 m depth solar pond 

5.2 Mass fraction distribution 

 

We present here a collection of graphical representation of 

the mass fraction distribution in function of time, for different 

positions in the solar pond. Let the diffusion coefficient of 

NaCl in water D = 10-9 m2/s, thermodiffusion coefficient DT = 

10-11 m2/s and mass fraction of the bottom cL = 0.25. 

 

5.2.1 Based on the theoretical approach, equation (60) 

 

 
 

Figure 14. Mass fraction variation in function of time at z = 

0.2 m 

 

 
 

Figure 15. Mass fraction variation in function of time at z = 

0.5 m 

 
 

Figure 16. Mass fraction variation in function of time at z = 

0.8 m 
 

 
 

Figure 17. Mass fraction variation in function of time at 

different positions z of a 1 m depth solar pond 
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5.2.2 Based on the approximate temperature, equation (63) 
 

 
Figure 18. Mass fraction variation in function of time at z = 

0.2 m 
 

 
Figure 19. Mass fraction variation in function of time at z = 

0.5 m 
 

 
 

Figure 20. Mass fraction variation in function of time at z = 

0.8 m 
 

 
 

Figure 21. Mass fraction variation in function of time at 

different positions z of a 1 m depth solar pond 
 

5.2.3 Based on ‘Mathematica’ form, equation (67) 
 

 
Figure 22. Mass fraction variation in function of time at z = 

0.2 m 
 

 
 

Figure 23. Mass fraction variation in function of time at z = 

0.5 m 
 

 
 

Figure 24. Mass fraction variation in function of time at z = 

0.8 m 
 

 
 

Figure 25. Mass fraction variation in function of time at 

different positions z of a 1 m depth solar pond 

 

 

6. CONCLUSION 

 

In this work, we derived one-dimensional analytical forms 

describing the variation over time of the mass fraction of the 

solute, NaCl, along the 3 layers of a salinity gradient solar 

pond. A small pond of 1 m depth was considered. The model 

involved two initial conditions and four boundary conditions, 

for the temperature and the mass fraction, where the surface 

temperature was sinusoidal in function of time. The computed 

results show that the boundary sinusoidal temperature leads to 

a sinusoidal variation of the mass fraction in function of time 

all along the pond. These results should be compared with 

experimental data taken from a pond which we aim to build in 

Lebanon to verify our analytical forms and match parameters 

and factors. 
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NOMENCLATURE 

 

A Rate of heat production per unit time per 

volume 

c mass fraction of NaCl 

c0 

cinit 

mass fraction at the surface of the pond 

mass fraction at t = 0 

cL mass fraction at the bottom of the pond 

Cp specific heat capacity, J.kg-1.°C-1 

D diffusion coefficient of NaCl in water, m2/s 

DT thermodiffusion coefficient, m2/s 

F rate of transfer per unit area 

J mass flow of the NaCl, kg/s 

k  thermal conductivity, W.m-1.°C-1 

L solar pond height measured from the top, m 

n summation terms 

S salinity, % 

ST Soret coefficient, dimensionless 

t time, s 

T temperature, °C 

T0 temperature of the surface z = 0, °C 

Tinit initial temperature, at t = 0, °C 

TL temperature of the bottom z = L, °C 

ΔT difference between daily and night 

temperatures, °C 

 

Greek symbols 

 

 thermal diffusivity, m2. s-1 

n eigenvalue 

 density, kg.m-3 

 depth of influence, m 

 pulsation, Hz 

 

Subscripts 

 

av average 

LCZ lower convective zone 

NCZ non-convective zone 

SGSP salinity-gradient solar pond 

UCZ upper convective zone  
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