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In the present article, feed forward multilayer perceptron neural network (FFMLPNN) 

model has been used to predict the rise in temperature in closed loop oscillating heat pipe 

filled with three different fluid i.e., Acetone, methanol and ethanol respectively. 

Experimental test was carried out for the inner diameter of 1.7mm copper tube for all the 

combinations of filling ratio, heat input and time taken to evaluate the performance of the 

OHP. Totally 2000 data sets have been used for Acetone and Methanol, 1500 data sets is 

used for ethanol in the present NN model. ANN model with FFMLPNN using three input 

parameter (Filling ratio, heat input and time taken) and rise in temperature has output 

parameter respectively. Levenberg-Marquardt algorithm with a 4-10 neurons has been used 

for the determination of optimal model. The 3-8-1 combinations predict the rise in 

temperature for ethanol and acetone whereas for methanol 3-7-1 is the optimal 

combinations was achieved. For all the combinations RMSE values are 0.3414, 0.1285 and 

0.1237 (Training-70%), 0.3526, 0.1375, 0.1234 (testing-15%) and 0.3010, 0.1515, 0.1425 

(validation-15%). The values for coefficient of determinations are 0.9941, 0.9975 and 

0.9971 for methanol, acetone and ethanol was achieved. The results clearly indicated that 

the proposed MLPANN model can successfully predict the rise in temperature. 
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1. INTRODUCTION

In heat pipes, pulsating heat pipe was the promising device 

for the heat transportation in heat transfer unit. Therefore 

micro-grooved oscillating heat pipe (OHP) is one of the 

effective modes to evaluate the performance heat transfer of 

the system. This device would enhance the allowable input 

heat flux by condensate the backflow to the evaporator when 

the filling ratio ranging from 30% to 60% [1]. Due to increase 

in filling ratio, heat added to the evaporator section leads to 

increase in temperature and pressure during the flow process. 

Therefore filling ratio was the major part to increase the heat 

input for the oscillation motion of the working fluid [2]. To 

heat the oscillating pipe many methods was applied in the 

evaporator section. There was a pulsed supply with regulated 

current method was used to heat the system. This method 

generates a large amplitude oscillation to heat up for a short 

period of time [3]. Temperature distribution for the thermal 

management of the oscillating heat pipe with copper particles 

in the evaporator was investigated. At low filling ratio of 30% 

temperature distribution was good uniformity by neglecting 

the gravity action was achieved in this study [4]. In anti- 

gravity OHP system high temperature was exist in the exhaust 

to preheat. For this current 35 turns OHP with a filling ratio of 

70% gave a better bond number from 0.814 to 0.986 for the 

same geometry it exhibits a better heat transfer [5].  

The performance of the OHP using Al2O3 nano-particles 

with a particle size of 56nm by considering the filling ratio, 

mass fraction of the nano-particles and power inputs to 

determine the thermal resistance was carried out. For the mass 

fraction of 0.9% there was a decrease by 0.14℃/W was 

achieved compare to water filled OHP [6]. Different 

mathematical models were used to determine the internal 

motion of working fluid mechanism in the closed loop OHP. 

The simulation study shows that the heating period and heating 

interval factors are major concerned for the evaluation of the 

heat transfer enhancement in OHP [7]. Temperature 

distribution and heat transfer rate using iron oxide and 

kerosene as a nano fluid in copper OHP was studied. Addition 

of iron oxide gives a better performance with an increase in in 

heat transfer coefficient and difference temperature between 

the surface and the vapor was 3.1℃ and 2℃ respectively [8]. 

To increase the heat transfer mechanisms of oscillating pipe a 

mathematical model was developed by considering spring 

mass system to for an annular flow with a slug causing of 

penetrate liquid. This flow trains the liquid by disappearing the 

vapour bubbles by creating the pulsating effect of the liquid 

[9]. For the performance improvement of oscillating pipe 

mixing of self-rewetting fluids and nanofluids was developed. 

To determine the high performance of the OHP optimum 

concentration of the nanoparticles (16%) and self-rewetting 

(12%) was used [10].  

In case of hybrid flexile oscillating heat pipe at the adiabatic 

section at the heating and cooling side, a micro grooved copper 

tube was designed and fabricated. This structural design 

creates a deformation of adiabatic section and exhibits a spatial 
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flexibility to improve the heat transfer performance of the new 

design [11]. If the filling ratio was 40% to 80% in case of self-

rewetting fluid can ensure a higher heating load compare to 

water or ethanol as a working medium with a filling ratio of 

30% [12]. With the same combinations heat transfer 

coefficient was determined using iron oxide and kerosene as a 

nano fluids for a different inclination angle from 0° to 90° with 

10 to 90W heat input. For the critical angle of 75° heat transfer 

coefficient was increase due to increase in inclination angle 

[13]. Temperature was measured between internal fluid and 

external wall to determine the temperature gradient using T-

type thermocouple. Results revealed that the difference in 

temperature being smaller in the length wise of fluid columns 

compare to the wall due to strong advection effect in the OHP 

heat transfer [14]. Even effect of governing parameters also 

effect on the flow of nano-fluids in the OHP system and the 

optimization of the tube diameters also presented in this study 

[15]. In helical coiled OHP with a copper material using 

ethanol and methanol as a working fluid with a 60% volume 

filled ratio was carried out experimentally. The result shows 

that the heat flux was less than 70W for ethanol and 105W for 

methanol was achieved in the designed heat pipe [16]. 

Multilayer OHP was also employed for the measurement of 

heat transfer rate and it was effectively work for all the 

working fluids [17]. To determine the characteristics of the 

working fluids micro OHP was used with trapezoidal channels. 

Two different start-up behaviours were used and Comparison 

was made, it can be concluded that bubble nucleation at the 

start-up was better than that of without bubble nucleation [18]. 

To measure performance of the start-up mechanism filling 

ratio, heat input, working fluids are the major concern in 

evaluation process. Finally in case of acetone filled OHP had 

a higher thermal performance compare to the water filled OHP 

at 60 and 300W [19]. For the feasibility study radial basis 

function model was used to determine the heat transfer and 

also pressure drop for the water based with magnesium oxide 

nanoparticles. It’s clearly shows that the predicted value heat 

transfer coefficient with 0.99% and 0.995% accuracy with an 

optimum value of =0.125% [20]. 

In case of heat exchangers for oscillating flow of thermo 

acoustic devices new ANN approach was used to determine 

the heat transfer coefficient. An optimum value was achieved 

for two input parameters with ten neurons at one output give a 

better performance of heat transfer coefficient [21]. Different 

methods such as machine learning approach were used to 

measure the heat transfer in the heat pipe. For the better 

performance of the complex problems of the heat pipes some 

of the potential methods was included in the research [22]. 

Apart from ANN method genetic algorithm with a multi-

objectives optimization was used for the thermo-acoustic 

applications. For different parameters such as length of the 

stacks, center position of the stack and spacing of the plate. 

Optimum values were 4cm for length of the stack, 4cm center 

position and 0.36 cm for gap separation between the stacks 

was determined [23]. During the cutting of difficult materials, 

high heat will generate and its effects the thermal damage for 

both the tool and workpiece. ANN was used to predict the heat 

transfer coefficient during cutting process. The percentage 

error was 0.01% and 13.9% for training and testing was 

achieved [24]. To predict heat transfer for the roughened 

absorber plate using feed forward neural network was used. 

Levenberg-Marquardt algorithm with ten neurons for five 

input variables gives the satisfactory results [25]. It is due to 

the flow pattern change from slug/plug flow to annular flow, 

recent experimental and theoretical findings have indicated 

that the latter dominates the heat transfer mechanism in an 

OHP, especially at relatively high power inputs. Clearly, a low 

filling ratio (FR) is advantageous for the aforesaid flow pattern 

transition and the reduction in oscillating motion frictional 

resistance, which improves latent heat conduction. If the 

minimum temperature difference between the condenser and 

evaporator sections is assumed to be 10℃, and then the 

maximum uncertainty of the effective thermal conductivity is 

estimated to be minimum, if the heat dissipation is not 

considered [1-5]. 

Based on the about observations, different artificial neural 

network prediction methods were used for the measurement of 

heat transfer coefficient, thermal resistance and temperature 

between the condenser and evaporator in OHP. Comparative 

analysis by considering different input variables was not 

considered in the previous analysis. Hence in the present 

investigation three variables with one output variables 

(temperature rise) was considered for the different fluid 

conditions such as acetone, ethanol and methanol. Final results 

were compared for the optimum values for the minimum 

temperature rise was analysed. 

 

 

2. EXPERIMENTAL METHOD 

 

Experiments was conducted by using a fabricated four 

turned oscillating heat pipe setup consists of copper tubes, 

glass tube, silicon rubber tube, mica heater, condenser, K-type 

thermocouple, glass wool, data acquisition system, and heat 

control unit respectively. Acetone, ethanol and methanol was 

used to measure the temperature rise of the OHP system and 

there properties is shown in Table 1 and properties of working 

fluids is as in Table 1. To measure the temperature, filling ratio 

(50%, 60%, 70% and 80%), heat input (25 W, 30 W, 35 W and 

40 W) was considered for all the combinations considered for 

acetone and methanol whereas, ethanol filling ratio (50%, 60%, 

70% and 80%), heat input as (30 W, 35 W and 40 W) and time 

duration for the both the combinations considered as an input 

to the OHP. 

 

Table 1. Properties of working fluids 

 

Fluids 

Boiling 

Point 

(℃) 

Melting 

Point 

(For Solid 

State) 

(℃) 

Useful 

Temp. 

Range 

(℃) 

Specific 

Heat 

Cp  

(J/Kg K) 

Acetone 57 -95 0-120 2031 

Methanol 64.7 -97.6 0-200 2531 

Ethanol 78 -112 0-130 2470 

 

The procedure for conducting an experiment includes the 

initial check for any leakage in fluid circuit, connectivity and 

readout from thermocouples display in acquisition system. 

Subsequently, heat input to the mica heater plate is adjusted 

with a power controller to maintain the steady state 

temperature. The temperature reading for a particular heat 

input is recorded after the system reaches steady state. The 

heat sink ensures the heat removal at the copper pipes. The 

temperature is monitored through the data acquisition system. 

The experiment is repeated by varying the heating rates at the 

source and correspondingly at the sink. The overall oscillating 

heat pipe setup is shown in Figure 1. For acetone and methanol 

the heat input range considered were 25W, 30W, 35W and 
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40W. Heat input for ethanol were 30W, 35W and 40W. The 

reason for choosing different heating rates is, no fluctuation in 

temperature was observed between 25W to 30W. Therefore 

the change in temperature was shown from 30W onwards in 

the experimentation. 

 

 

3. RESULTS AND DISCUSSION 

 

Temperature rise of the OHP using acetone, ethanol and 

methanol was determined by considering filling ratio of 50%, 

60%, 70%, 80% and heat input of 25W, 30W, 35W and 40W 

(acetone and methanol) and for ethanol heat input was 

considered as 30W, 35W and 40W respectively. The 

difference in temperature of evaporator and condenser section 

temperatures with heat input is studied at steady state 

condition. The results were drawn based on the 

experimentation and the same data was used for the ANN 

model for the analysis. For the present analysis 2000 data sets 

was used for the obtained results indicated that higher filling 

ratio of working fluid shows the better results in terms of 

reduction in difference in temperature, increased heat transfer 

coefficient across the evaporator and condenser. Finally 

experimental result was validated by using ANN models. 

Based on uncertainty analysis, measured and predicted values 

were explained in details for the better understanding of the 

developed OHP. 

 

 
 

Figure 1. Oscillating heat pipe experimental setup 

 

3.1 Effect of heat input on temperature rise with different 

fluids 

 

For all the filling ratio of 50% to 80% by varying the heat 

input of 25 W to 40 W for acetone and methanol, heat input of 

30W to 40W for ethanol was noted down. The oscillations of 

temperature within the copper tube were determined. 

Oscillations depends on the thermal properties of the filled 

fluid and the heat input. At the heat input of 25 W to 40 W in 

for acetone and methanol 258 seconds was considered for all 

the combinations, whereas in case of ethanol 30 W, 35 W and 

40W with a filling ration of 50% to 80% 248s was considered. 

At the filling ratio of 50% to 80% with 25W to 40W heat input 

the temperature varies from 41.5℃ to 38.25℃ and 36.5℃ to 

34.25℃ for acetone and methanol, whereas, in ethanol filling 

ratio from 50% to 80% with 30 W to 40 W heat input 

temperature varies from 59.25℃ to 62℃ respectively. 

Therefore there was an minimum temperature different was 

measured for 80% filling ratio at 40 W heat input. The effect 

of heat input on average temperature rise (Te-Tc) with 

different filling ratio for acetone, methanol and ethanol is as in 

Figure 2. 

 

 
 

Figure 2. Effect of heat input on average temperature rise 

(Te-Tc) with different filling ratio for acetone, methanol and 

ethanol 

 

The proposed work used an MLPNN model is a feed 

forward-backward propagation artificial neural network to 

predict the temperature rise in the OHP for all the 

combinations considered. The structure of the model is 

developed in three different layers. By adjusting the weights 

of individual input parameters to the hidden layer Levenberg-

Marquardt (LM) algorithm was used by considering the 

different neurons to predict the output parameter. To minimize 

the mean square error LM algorithm with FFBPNN is used. 

For this algorithm different transfer function can be used for 

the better fit between the variables based on the trial and error 

method. 

In training process, the input parameters enters the FFNN is 

shown in Figure 3. Each product of input parameters (Mi) and 

a weight function (Wij) are summed into the junction and is 

summed with bias (bj) of the neurons as in Eq. (1). In the 

present investigation, the input variables such as filling ratio, 

time taken and heat input were used and the output parameter 

is the temperature rise is considered. 

 

 
 

Figure 3. Generalized structure of artificial neurons 
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𝑋 = (∑(𝑊ijMi)

𝑛

𝑖=1

) + 𝑏𝑗 (1) 

 

During the training and testing period the input and target 

data which enters into the network. The input data is trained 

by using learning algorithms. The most commonly used 

algorithm is Levenberg-Marquardt (LM) is faster than other 

learning algorithms. For artificial neural network analysis, Mat 

lab software was used. The widely used activity function is 

tanh function with values ranges from -1 to +1 is as in Eq. (2) 

and is written as: 

 

𝐹(𝑋) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + e−x
 (2) 

 

3.2 ANN models developed for temperature rise in OHP 

for acetone, ethanol and methanol 

 

In the present models, totally 2000 data sets for acetone and 

methanol, 1500 data sets for ethanol were used to develop 

models. The proposed MLPNN model is used to predict the 

temperature rise of all the combinations considered is shown 

in Figure 4. In the input layer, three input parameters were 

used such as filling ratio, time taken and heat input, the 

temperature rise has been taken at the output layer. 

 

 
 

Figure 4. ANN model for three inputs with one output 

parameter 

 

Table 2. Weight and bias values for acetone at 3-7-1 

performance results 

 

Weights between the input and 

hidden layer (W7*3) 

Weights to output 

layer (W7*1) 

1.2331 8.4616 

-0.88975, -2.4521, 0.14024; 1.3635 

-0.45611, -8.3633, -1.4089; 0.24642 

1.3607, -6.8306, 0.11702; -3.0516 

-2.3418, 9.7768, 0.05502; -1.7102 

0.7368, 0.17938, 0.30956; 0.05025 

-0.63829, -0.62903, 0.063767 -1.4921 

Bias in hidden layer (B1*7) Bias in output (B1*1) 

-1.6298; 2.3221; -1.0223;  

-0.60998; -0.67028; 1.6873; 3.6424 

2.23 

1.2331  

 

For acetone and methanol in 2000 data sets for each type of 

filling fluids, training consists of 1400 data sets whereas 

testing and validation consists of 300 data sets each. For 

ethanol in 1500 data sets for each type of filling ratio training 

consists of 1050 data sets whereas testing and validation 

consists of 225 data sets. Feed forward back propagation 

learning algorithm was applied for the present models. In this 

study LM back propagation algorithm was used for the 

training, testing and validation process. The trial and error 

method for the hidden layer was used to set the number of 

neurons before the weight functions of the input is considered. 

Using this technique, 4-10 neurons have been used with the 

single hidden layer. Tansig transfer function as a sigmoid 

function for the hidden layer was considered (Table 2, Table 3 

and Table 4). The detailed optimum values for MSE of acetone, 

ethanol and methanol shows in Figures 5, 6 and 7 respectively. 

Similarly the R2 for training, testing and validation are shown 

Figures 8, 9 and 10 respectively. 

 

Table 3. Weight and bias values for ethanol at 3-7-1 

performance results 

 
Weights between the input and 

hidden layer (W7*3) 

Weights to output 

layer (W7*1) 

-2.8114, -5.4684, 0.57911; 1.3967 

-5.1018, -6.4354, 0.93094; 2.3902 

-1.2805, -1.3569, -0.99675; -1.1175 

6.9133, 8.0273, 2.2808; -0.055317 

6.2072, -2.926, 0.76667; 7.4785 

-0.11764, 0.25041, -0.48527; 0.81309 

1.068, 1.3691, -0.18972; 2.4272 

Bias in hidden layer (B1*7) Bias in output (B1*1) 

4.7406; 3.8968; 0.75421; -0.46686; 

3.6221; -3.7781; 1.4843 

-2.1574 

 

Table 4. Weight and bias values for methanol at 3-8-1 

performance results 

 
Weights between the input and 

hidden layer (W8*3) 

Weights to output 

layer (W8*1) 

38.1868, 25.2111, 1.7168; 11.7388 

13.4225, 2.9127, 0.28645; -15.3289 

0.40287, -0.02495, 0.00520; -0.21043 

-0.17229, 0.00830, -0.00365; 0.29484 

7.6552, 32.0678, 1.45100; 26.6871 

25.8291, -1.7968, -0.03214 24.0228 

13.5412, -1.8541, -0.08759 11.7388 

Bias in hidden layer (B1*7) Bias in output (B1*1) 

4.7406; 3.8968; 0.75421; -0.46686; 

3.6221; -3.7781; 1.4843 

6.2038 

 

 
 

Figure 5. Optimum value for MSE of acetone for seven 

neurons
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Figure 6. Optimum value for MSE of ethanol for seven 

neurons 

 

 
 

Figure 7. Optimum value for MSE of methanol for eight 

neurons 

 

 
 

Figure 8. Regression analysis for training, testing and 

validation for acetone 

 
 

Figure 9. Regression analysis for training, testing and 

validation for ethanol 

 
 

Figure 10. Regression analysis for training, testing and 

validation for methanol 

 

3.3 Performance prediction models 

 

To evaluate the correlation coefficient between the 

measured values to the predicted values performance 

prediction is the good indicator to derive the model. To define 

the performance predictions VAF, RMSE and MAPE are the 

predictive capacity of the models was evaluated. Figures 11, 

12 and 13 shows the error values for acetone, ethanol and 

methanol for all the combinations of filling ratio, heat input 

and time taken. The following equations show the 

performance predictive is shown in Eq. (3), (4), (5) 

respectively. Training, testing and validation performance for 

OHP with methanol, ethanol and acetone are in Table 5-7. 
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of these models during training stage is 0.9945, 0.9975, and 

0.9941 respectively. During testing stage R2 is 0.9972, 0.9969, 

and 0.9932 and for validation R2 is 0.9972, 0.9968, and 0.9986 

respectively. 
 

VAF = 1 −
𝑣𝑎𝑟(𝑦 − 𝑦′)

𝑣𝑎𝑟(𝑦)
 × 100 (3) 

 

𝑅𝑀𝑆𝐸 = √
1

N
∑(y − y′)2

N

i=1

 (4) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
| × 100

𝑁

𝑖=1

 (5) 

 

 
 

Figure 11. Error values for acetone for all the combinations 

of filler ratio, heat input and time taken 

 
 

Figure 12. Error values for ethanol for all the combinations 

of filling ratio, heat input and time taken 
 

 
 

Figure 13. Error values for methanol for all the combinations 

of filling ratio, heat input and time taken 
 

Table 5. Training, testing and validation performance for OHP with methanol 
 

No. of Neurons Training Testing Validation 

RMSE R2 RMSE R2 RMSE R2 

4 1.3883 0.9737 1.2496 0.9734 1.4058 0.9752 

5 1.3740 0.9745 1.2148 0.9789 1.2612 0.9804 

6 0.8425 0.9854 0.7421 0.9871 0.8122 0.9891 

7 0.3719 0.9930 0.3821 0.9924 0.3079 0.9942 

8 0.3414 0.9941 0.3526 0.9932 0.3010 0.9986 

9 0.4161 0.9821 0.4615 0.9844 0.3912 0.9812 

10 0.4264 0.9811 0.4832 0.9802 0.4121 0.9804 
 

Table 6. Training, testing and validation performance for OHP with acetone 
 

No. of Neurons Training Testing Validation 

RMSE R2 RMSE R2 RMSE R2 

4 0.7317 0.9861 0.7276 0.9863 0.6272 0.9884 

5 0.3838 0.9927 0.4129 0.9922 0.4241 0.9823 

6 0.3528 0.9934 0.3123 0.9941 0.3752 0.9925 

7 0.1285 0.9975 0.1375 0.9973 0.1515 0.9972 

8 0.2359 0.9953 0.2344 0.9959 0.2663 0.9956 

9 0.1442 0.9891 0.1462 0.9846 0.1632 0.9811 

10 0.1529 0.9822 0.1633 0.9822 0.1648 0.9802 
 

Table 7. Training, testing and validation performance for OHP with ethanol 
 

No. of Neurons Training Testing Validation 

RMSE R2 RMSE R2 RMSE R2 

4 0.4246 0.9906 0.4118 0.9903 0.3343 0.9926 

5 0.2184 0.9950 0.2360 0.9941 0.2274 0.9948 

6 0.1656 0.9962 0.1751 0.9955 0.1958 0.9959 

7 0.1093 0.9975 0.1331 0.9969 0.1216 0.9968 

8 0.1237 0.9971 0.1234 0.9970 0.1425 0.9967 

9 0.1164 0.9914 0.1841 0.9902 0.1487 0.9914 

10 0.1322 0.9908 0.1862 0.9894 0.1566 0.9863 
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4. CONCLUSIONS 

 

A new modelling approach for the oscillating heat pipe 

based on artificial neural network technique had been 

presented in this work. A three layered FFBPNN with a 

configuration of three inputs with one output was adopted in 

the present paper. For all the three different forms of filling 

ratio of acetone, ethanol and methanol 4 to 10 neurons were 

selected to perform the models. For all the combinations 

temperature rise was analysed to evaluate the performance of 

the OHP. In this models LM algorithm with tansig transfer 

function was used to determine the performance indices such 

as VAF, RMSE and MAPE. For different filling ratio, heat 

input and time taken minimum RMSE was achieved for 

acetone of 0.1285, ethanol of 0.1093 and methanol of 0.3414 

with a coefficient of determination of 0.9975, 0.9974, and 

0.9941 respectively. Therefore the developed models with 

tansig transfer function for LM algorithm predict the 

temperature rise in the OHP for the different filling ratio, heat 

input and time taken. 
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