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In this paper, a non-linear tri-stable piezoelectric cantilever energy harvester with a novel-

type dynamic magnifier was proposed to achieve more effective broadband energy 

harvesting under low-level ambient excitations. According to the generalized Hamilton 

principle, a mathematical distributed parameter model of the piezoelectric energy harvester 

was proposed. The novel-type dynamic magnifier is a system consisting of two spring 

masses, one placed between the fixed end of the piezoelectric beam and the L-shaped 

frame, and the other, between the L-shaped frame and the base. The harmonic balance 

method was adopted to work out the analytical expressions of the steady-state 

displacement, steady-state output voltage and power amplitude of the energy harvester 

system. The effects of the distance between the magnets, the spring stiffness of the dynamic 

magnifier, and the load resistance on the performance of the system were also investigated. 

The results show that different from that of the conventional tri-stable piezoelectric energy 

harvester, the frequency response curve of the proposed novel-type energy harvester 

system with a two-spring-mass dynamic magnifier exhibits two peaks as a result of the 

interactions of the coupled elastic system, where the left peak stands for the resonant value 

of the tri-stable piezoelectric energy harvester, while the right one the resonant value of the 

dynamic magnifier. It is able to achieve higher output power over a broader frequency band 

under low-level environmental excitations, and the harvested power can be significantly 

strengthened if the mass and stiffness of the dynamic magnifier are selected properly.  
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1. INTRODUCTION

In recent years, with the wide use of wireless sensor 

networks in such fields as architectural structures and health 

surveillance, powering wireless sensor networks with energy 

harvested from the surrounding environment has become quite 

promising. Piezoelectric energy harvesters (PEHs) are able to 

collect vibrational energy from the ambient environment and 

transform it into long-lasting and clean electrical energy. What 

is more, PEHs have simple and compact structures that are 

easy to integrate and have great potential for self-powering 

wireless sensor nodes [1, 2]. In the early days, scholars tended 

to focus on the research of linear PEHs. However, the 

operating frequency band of conventional linear PEHs is very 

narrow, and high energy capture efficiency can be realized 

only when the external excitation frequency is close to the 

intrinsic frequency of the system [3-6]. The non-linear effect 

enables piezoelectric energy harvesting over a wider 

frequency band. Since the operating bandwidth is increased, 

non-linear PEHs show lower sensitivity to variations in 

external excitation frequencies than linear ones and are more 

applicable in the acquisition of energy from environmental 

vibrations in actual practice. Bi-stable, tri-stable and multi-

stable energy harvesters with magnetic interactions are all 

commonly used non-linear PEHs [7, 8]. A non-linear bi-stable 

piezoelectric energy harvester (BPEH) can oscillate between 

two potential wells and produce high output power under 

sufficient external excitation. Stanton et al. [9, 10] built an 

analysis model for BPEH composed of permanent magnets 

and a piezoelectric cantilever beam, and studied the dynamic 

features of the system by numerical simulation and 

experimental methods. Tang et al. [11] studied the voltage 

output of a bi-stable piezoelectric cantilever energy harvester 

system when the excitations are different, and discussed the 

effect of magnet spacing on the response of the system. 

Compared with those of the linear PEH, the operating 

bandwidth and output power of the non-linear BPEH have 

been significantly increased after entering the inter-well 

motion. However, the BPEH cannot break through the 

potential barrier under weak ambient vibration, which greatly 

reduces the output performance of the system [12-15].  

In order to increase the efficiency of energy harvesting by 

PEHs in a weak excitation environment, Zhou et al. [16] 

established a non-linear tri-stable piezoelectric energy 

harvester (TPEH) on the basis of the magnetic bi-stable 

piezoelectric cantilever model. Under the circumstance where 

there is an appropriate distance and angle between two fixed 

magnets, the system’s potential energy function will exhibit 

three stable states and the potential wells will be shallower and 

wider than that for BPEH. Kim and Seok [17] and Kim et al. 

[18] investigated a TPEH that has rotatable magnets, and

proved the energy capture advantage of this TPEH in a wide

operating frequency band. Li et al. [19] demonstrated the

outstanding energy capture performance of a TPEH for
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random excitations through numerical simulation and tests. 

Zhou and Zuo [20] and Ma et al. [21] designed an asymmetric 

TPEH which can enter the inter-well motion easily and output 

higher power under low-level excitations, and they also 

discovered that, compared with system parameters, the 

harvester is more sensitive to external excitations. In the above 

studies, BPEH and TPEH were fixed on rigid bases. If the 

environmental excitations are at a very low level, the rigid base 

directly excited by these environment excitations will not be 

able to produce sufficient kinetic energy to make TPEH break 

through the potential barriers. 

In light of the above problems of BPEHs and TPEHs, Wang 

et al. [22, 23] proposed a configuration that includes an elastic 

amplifier for amplifying the basel excitations so that it will 

produce enough kinetic energy to break through the potential 

well barriers and enter the large amplitude bi-stable inter-well 

motion, thus leading to higher power generation. In this paper, 

a novel-type TPEH with two dynamic magnifiers (TDM) was 

proposed. In light of the size effect of the tip magnet, the 

distributed parameter electro-mechanical coupling equation of 

the TPEH with two dynamic magnifiers (TPEH+TDM) was 

constructed according to the generalized Hamilton principle, 

and the analytical solution of the energy harvester system was 

derived with the harmonic balance method. The influences of 

the distance between the magnets, the mass and eccentricity of 

the tip magnet, the load resistance, the stiffness of the dynamic 

magnifier on the dynamic performances of the energy 

harvester system were also investigated.   

 

 

2. MATHEMATICAL MODEL OF TPEH+TDM 

 

The diagram of the TPEH+TDM proposed in this paper is 

shown in Figure 1. The piezoelectric energy harvester system 

consists of a TPEH with two dynamic magnifiers. The TPEH 

contains a piezoelectric cantilever beam with a tip magnet 

(represented by A) and two external magnets (represented by 

B and C) fixed at the right wall of the L-shaped frame. The 

cantilever beam has a substrate layer, whose two surfaces are 

covered by two identical thin piezoelectric layers (PZTs). The 

two PZTs have opposite polarities in the thickness direction 

and are connected electrically in series with an equivalent load 

resistance (represented by R). The TDM comprises two 

dynamic magnifiers (denoted as DM1 and DM2), where DM1 

consists of a spring kb and a L-shaped mass block, which are 

mechanically connected in series, while DM2 is basically a 

spring (kf)-mass (Mf ) system located between the fixed end of 

the cantilever beam and the bottom of the L-shaped mass block. 

The horizontal gap between the tip magnet and the external 

magnet is dh, and the vertical one from the tip magnet to 

magnet B is dv. l and b represent the length and width of the 

cantilever beam, respectively; hs and tp are the thickness of the 

substrate layer and the PZTs, respectively; e denotes the 

eccentricity of the tip magnet. 

vm(t) and vb(t) denote the vibration displacement of DM1 

and the base, respectively; s stands for the coordinate along the 

neutral axis of the cantilever beam; and v(s, t) denote the 

displacement of the cantilever beam at position s relative to its 

fixed end. The constitutive equations of the piezoelectric 

cantilever beam are given as follows: 
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where, Y is Young’s modulus; subscript/superscript p and s 

stand for the PZTs and the substrate layer; S1 and T1 denote the 

strain and the stress of the cantilever beam, respectively; D3 

represents the electric displacement; d31 and 𝜀33
𝑇  are the 

piezoelectric constant and dielectric constant, respectively; 

and 𝐸3 = −𝑉(𝑡)/(2𝑡𝑃)  is the electric field, where V(t) 

represents the voltage. The strain produced in the piezoelectric 

cantilever beam can be written as 𝑆1
𝑠 = 𝑆1

𝑝
= −𝑦𝑣″. 

 

 
 

Figure 1. Diagram of the proposed TPEH+TDM 
 

The generalized Hamilton’s principle of the TPEH+TDM 

system is described as follows: 
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where, Tk, We, Ue, Um, Ud and W stand for the kinetic energy, 

electrical energy, strain energy, magnetic potential energy and 

elastic potential of the dynamic magnifiers and the external 

work, respectively. Tk, We, Ue and Ud can be defined as:  
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where, 𝑚 = 2𝜌𝑝𝑡𝑝𝑏 + 𝜌𝑠ℎ𝑠𝑏 , in which ρp and ρs are the 

density of the PZTs and the substrate layer, respectively; Mt 

and J denote the mass and the rotary inertia of the tip magnet; 

𝜀33
𝑠 is the permittivity. ℎ =

ℎ𝑠

2
, 𝑌𝐼 =

2

3
[𝑌𝑠𝑏ℎ

3 + 𝑌𝑝𝑏(3ℎ
2𝑡𝑝 +

3ℎ𝑡𝑝
2 + 𝑡𝑝

3)].  

According to our published work [24] and taking into 

account the eccentricity of the tip magnet, Um can be expressed 

as follows: 
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(7) 

 

where, 𝜇0 = 4𝜋 × 10−7𝐻 ⋅ 𝑚−1 is the magnetic permeability 

constant; MA (MB or MC) and VA (VB or VC) are the 

magnetization intensity and volume of the magnet A (B or C), 

respectively. 

Using the Galerkin approach, v(s, t) is assumed as: 

 

)()(),( tstsv rr =  (8) 

 

where, 𝜑𝑟(𝑠)  and 𝜂𝑟(𝑡)  represent respectively the R-order 

mode function and the generalized mode coordinates of the 

beam. 

The mode function meets the orthogonal relations as below: 
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(9) 
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where, δrs represents the Kronecker delta. For the r-th mode, 

the resonance frequency is defined as 𝜔𝑟 = 𝜆𝑟
2√𝑌𝐼/(𝑚𝑙4). 

The calculation process of the eigenvalue λr is described in 

literature [6]. 

Substitute Eq. (8) into Eq. (7), and then there is the Taylor's 

expansion of Um at η(t)=0, which is expressed as: 
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2𝑞6 +
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2𝑞3

2 −
6.56𝑞2

3 − 938.44𝑞2𝑞3
4+938.44𝑞3
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𝑞4(1.875𝑞11 − 17.5𝑞3𝑞6+8.75𝑞2𝑞7 −

78.75𝑞3
2𝑞7 + 39.38𝑞2

2𝑞3 − 288.75𝑞2𝑞3
2 +

375.375𝑞3
5) + 𝑞5(−2.5𝑞6 − 17.5𝑞3𝑞7 +

4.375𝑞2
2 − 78.75𝑞2𝑞3

2144.375𝑞3
4) +

𝑞8(−2.5𝑞7 − 17.5𝑞2𝑞3 + 52.5𝑞3
3) + 𝑞9(−2.5𝑞2 +

17.5𝑞3
2) + 5𝑞3𝑞12 + 𝑞13], 

 

 

For the expressions of the coefficients κ and qi=1…13, please 

see the appendix.  

The external virtual work can be written as: 
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With Eq. (8) substituted into Eq. (2), considering only the 

first order mode, Lagrange’s equation for the TPEH+TDM 

system is expressed as follows:  
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(13) 

 

where, 𝐹(𝑡) = −2𝜉1𝜔1�̇�1(𝑡)  is the generalized dissipative 

force; ξ1 is the damping ratio; 𝑄(𝑡) = 𝑉(𝑡)/𝑅  is the 

generalized output charge. 

The electro-mechanical coupling equations of the 

TPEH+TDM system can be derived from Eq. (13): 

 

{
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𝑙

0
(𝑠)𝑑𝑠, and 𝐶𝑝 = 𝑏𝑙𝜀33

𝑠 /2𝑡𝑝. 

The excitation acceleration is defined as �̈�𝑏(𝑡) =
�̄�𝑏cos(𝜔𝑒𝑡) , where �̄�𝑏  is the excitation amplitude, 𝜔𝑒  the 

circular frequency, and Cp the capacitance. With the 

dimensionless parameters 𝑥 = 𝜂1/𝑙 , 𝑉𝑚 = 𝑣𝑚/𝑙 , 𝑉𝑏 = 𝑣𝑏/𝑙 , 

�̄� =
𝑉𝐶𝑝

𝑙𝜃1
 and 𝜏 = 𝜔1𝑡 introduced, Eq. (14) can be rewritten as 

Eq. (15) in the dimensionless form.  
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where, 𝐾𝑏 =
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2 , 𝐾1 =
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3. HARMONIC BALANCE ANALYSIS 

 

The solution to Eq. (15) is assumed as:  
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where, A, B, C and D are undetermined coefficients, so the 

displacement amplitude of the cantilever beam can be 

represented as 𝑎 = √𝐴2 + 𝐵2 , and the output voltage 

amplitude can be expressed as 𝑢 = √𝐶2 + 𝐷2. 

Substitute Eq. (16) into (15) and let the constant terms on 

both sides of the equation and the coefficients of 𝑠𝑖𝑛(𝜔𝜏) and 

𝑐𝑜𝑠(𝜔𝜏)  be consistent. With higher harmonic terms and 

partial zero terms, the following equations are obtained:  

 

( ) 022 43211 =++++− CZAZBZABAZ  
 

(17.1) 

 

( )1 1 3

2 4

2 2

0

Z B A B Z B

Z A Z D F

 − + +

− + − =
 (17.2) 

 

0=−++− BACDC  
 (17.3) 

 

0=++++ ABDCD  
 (17.4) 

 

where, 

 

b

b11
1

K

KMK
Z

+
=

 




1

3

b

11
2 2

2
−=

K

M
Z

, 

 

 

𝑍3 =
𝑀1−𝑀0

2

𝐾𝑏
𝜔4 −

(1−𝐾1)𝑀1+𝐾𝑏

𝐾𝑏
𝜔2  + 1 − 𝐾1 +

3

4
𝐾2𝑎

2 +
5

8
𝐾3𝑎

4 −
3

4

𝐾2𝑀1

𝐾𝑏
𝜔2𝑎2 −

5

8

𝐾3𝑀1

𝐾𝑏
𝜔4𝑎4, 

−


= 2

b

1
4 

K

M
Z

 

 

 

It is assumed that all the time derivatives of Eq. (17) are zero 

in the steady-state dynamics. Therefore, the displacement 

amplitude and the voltage amplitude can be calculated as 

follows: 
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Use Eq. (18) to calculate the steady-state displacement 

response amplitude a. Then, the steady-state output voltage 

amplitude and output power amplitude can be expressed as 

below: 
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4. RESULTS AND DISCUSSION 

 

This section investigates the effects of the magnet spacing, 

the mass and eccentricity of the tip magnet, the load resistance 

and the base dynamic magnifier on the dynamic features of the 

BPEH+TDM system. The geometric and material attributes 

are as follows:  
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Figure 2. (a) Displacement amplitude, and (b) output power 

frequency response curve when e=0 

Figures 2, 3 and 4 display the displacement and output 

power frequency response curves with different eccentricities 

of the tip magnet when dv=8mm, dh=21mm, kf=15000, 

kb=12000, Mt=10g and Mf=16.5g. It can be seen that there are 

two peaks in the frequency response curve, as a result of the 

interactions of the coupled elastic system, of which, the left 

peak stands for the resonant value of the TPEH, while the right 

one the resonant value of the dynamic magnifier. When e is 0 

and 2.5 mm respectively, the corresponding displacement and 

power amplitude are very close. When e is set as 5mm, the 

system produces large inter-well motion, and the displacement 

and power in the left peak area increase significantly. The 

“right peak” area moves to the high frequency band with the 

increase of e.  

 

 
(a) 

 
(b) 

 

Figure 3. (a) Displacement amplitude and (b) output power 

frequency response curve when e=2.5mm 

 

 
(a) 
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(b) 

Figure 4. (a) Displacement amplitude and (b) output power 

frequency response curve when e=5mm 

 

Figure 5 shows the variations in displacement and output 

power versus excited frequency with different values of dh 

when dv=8mm, kf=15000, kb=12000, e=0.0050, Mt=10g, 

Mf=16.5g. Figure 5 shows, as dh increases, the peak 

displacement, peak power and band width in the “left peak” 

area of the system change very little, while those in the “right 

peak” area increase significantly. In addition, the “right peak” 

area shifts to the lower frequency band as dh increases. 

 

 
(a) 

 
(b) 

 

Figure 5. (a) Displacement amplitude and (b) output power 

frequency response curve with different values of dh 

 

The displacement and power frequency response curves 

with different values of Mt when dv=8mm, dh=21mm, 

kf=15000, kb=12000, e=0.0050, Mt=10g and Mf=16.5g are 

given in Figures 6. It shows that with the increase of Mt, the 

peak displacement and peak output power in the “left peak” 

area increase significantly, while those in the “right peak” area 

change very little. However, the bandwidth of the system is 

not sensitive to the increase of Mt.  

 

 
(a) 

 
(b) 

 

Figure 6. (a) Displacement amplitude and (b) output power 

frequency response curve with different values of Mt 

 

Figure 7 shows the displacement and output power 

frequency response curves with different values of Kb when 

dv=8mm, dh=20mm, kf=15000, kb=12000, e=0.0050, Mt=10g, 

and Mf=16.5g. Figure 4 shows that reducing Kb can greatly 

improve the peak displacement and peak power in the “left 

peak” area, while the interwell motion displacement amplitude 

and output power amplitude change little in the “right peak” 

area. It can also be found that the “right peak” area shifts to the 

higher frequency band as Kb increases.  

 

 
(a) 
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(b) 

 

Figure 7. (a) Displacement amplitude and (b) output power 

frequency response curve with different values of kb 

 

Figure 8 shows the peak power variation curve with load 

resistance R for the system with different values of kb when 

dv=8mm, dh=20mm, kf=70000, e=0.0050, Mt=10g and 

Mf=16.5g. The results show that for a certain kb, with the 

increase of R, the peak power of the system increases 

significantly (and reaches the first maximum value of peak 

power, corresponding to the local optimal load resistance of 

Ropt1), then decreases to a slight extent. After that, it increases 

again (and reaches the second maximum value of peak power, 

corresponding to the local optimal load resistance of Ropt2), and 

starts to gradually decrease.  

 

 
 

Figure 8. Peak power curves along with resistance changes 

under different values of kb 

 

 

5. CONCLUSIONS 

 

This paper presented a theoretical framework for analysis 

and prediction of the dynamic responses of a TPEH+TDM 

system for the purpose of optimizing and improving the energy 

harvesting performance under low-level excitations. It also 

investigated the influences of magnet spacing, the stiffness of 

the base dynamic magnifier, the load resistance and the mass 

and eccentricity of the tip magnet on the TPEH+TDM system, 

with the following conclusions drawn.   

(1) There are two peaks in the frequency response curve of 

the TPEH+TDM system as a result of the interactions of the 

coupled elastic system, where the left peak stands for the 

resonant value of the TPEH, while the right one, the resonant 

value of the dynamic magnifier.  

(2)  Increasing dh can increase the displacement and output 

power in the “right peak” area. and the “right peak” area moves 

towards the lower frequency band as dh increases.  

(3)  Reducing the stiffness of the base dynamic magnifier or 

increasing the mass of the tip magnet can significantly increase 

the peak displacement and peak power in the “left peak” area.  

 There are two local optimal resistances to make the peak 

output power of the system maximized, and the local optimal 

resistance increases as Kb increases, and at the same time, the 

corresponding peak output power also increases. 
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