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Adhesion control system is an essential component for a freight train, which aims to 

optimize its performance of traction, the design of the adhesion control system remains a 

significant challenge. One of the main challenges is the optimal creep-speed is difficult to 

acquire in real-time, the other one is the parameters of resistance were not available in 

advance. Meanwhile, adhesion is a nonlinear dynamical process. In this paper, an 

improved sliding mode extremum seeking virtual sensors is proposed for the issue of 

acquiring the optimal creep-speed in real-time; a particle swarm algorithm (PSO)-based 

estimation method is proposed for the issue of uncertain resistance parameters; and finally, 

an adhesion controller is designed based on the barrier Lyapunov concept. 
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1. INTRODUCTION

Adhesion control systems play an important role in 

improving the traction performance of freight trains [1]. 

Numerous studies have shown that the adhesion coefficient 

between wheels and rails is related to the creep speed, and it is 

practical to improve the adhesion performance of a railroad 

vehicle by the creep speed control [2]. Creep speed is generally 

defined as the difference between the wheel speed and the 

vehicle speed, when the creep speed is optimally matched with 

the current rail surface conditions, the vehicle can obtain the 

maximum traction [3]. Under the premise that the creep speed 

is known, some scholars have carried out a series of adhesion 

control studies. However, the maximum creep speed is varied, 

when the train travels on different track surfaces [4], the 

artificially given creep speed does not match the actual 

working conditions of railroad vehicles [5]. The extremum 

seeking algorithm is usually used to acquire the optimal creep 

speed, the commonly used extremum seeking methods are 

sliding mode extremum seeking (SMEs) and single parameter 

perturbation extremum seeking (SPEs), among which SMEs 

has been introduced into the adhesion control field due to its 

simple parameter structure and high robustness. 

For example, Zhao et al. [6] used a state observer to estimate 

the current rail adhesion coefficient and then introduced SMEs 

to acquire the optimal creep speed, but severe oscillation 

appeared in the output of the observer, due to the obvious 

nonlinear phenomenon of adhesion. Zhao et al. [6] designed 

an adhesion control strategy combining a full-dimensional 

state observer and SMEs. However, the oscillation of the 

search results is obvious because the parameters of the SMEs 

cannot be dynamically adjusted. He and Yuan [7] considered 

the oscillation problem of the adhesion coefficient observer. A 

SMEs was first performed for the optimal creep speed, and 

then a fractional order controller was designed to reduce the 

oscillation of the output torque. STMC uses lower-order 

differentiation to eliminate oscillation to some extent, but 

oscillation in SMEs is inherently present. Usually, the 

adhesion control based on the extremum seeking algorithm is 

to construct an observer to estimate the real-time adhesion 

coefficient first, and then use the optimal creep speed obtained 

from the extremum seeking as the tracking index, and use the 

output of the traction motor as the control quantity, but the 

high-frequency oscillation generated during the observation of 

the adhesion coefficient and the extremum seek stage will 

eventually lead to a large oscillation of the control torque, 

which will have a relatively negative impact on the safety and 

comfort of driving.  

To improve the oscillation problem in SMEs, a series of 

researches have been carried out. For example, B Viola et al. 

[8] proposed an FO-SMESC algorithm using the fractional-

order method, which achieved oscillation weakening but the

algorithm itself was too complicated. Lamzouri et al. [9]

proposed a SMES based on particle swarm algorithm

optimization, but greatly increased the complexity of the

algorithm, while not considering the effect of uncertain

parameters. The SMEs algorithm was originally designed to

achieve system control with simple parameters and high

robustness, existing improvement methods generally

introduce an algorithm of higher complexity for minor defects

in the original SMEs. In this paper, we dissect the principle of

SMEs, and an improved method based on threshold switching

is proposed, which not only does not increase the complexity

of the original algorithm but also can eliminate the steady-state

oscillation. The PSO algorithm is introduced to estimate the

parameters of train running resistance, providing a new

optimal design method for freight train adhesion control.

This paper is organized as follows: according to the 
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dynamics model of a freight train is introduced in Section 2. A 

control strategy based on improved SMEs is designed to 

ensure the optimal creep speed can be locked (without steady-

state oscillation) and effective adhesion control, which is 

discussed in Section 3. Comparative simulations and analyses 

are illustrated in Section 4. Finally, this paper’s conclusion is 

given in Section 5. 

 

 

2. DYNAMICS MODEL OF FREIGHT TRAIN 

 

2.1 Freight train model with unknown parameters 

 

The equations of motion of the freight train and the wheel 

dynamic model are described as follows: 

 

t a zMv F F= −  (1) 

 

m m LJ T T = −  (2) 

 

dv r=  (3) 

 

In the above equation, M is the mass of the car body, 𝜔𝑚 is 

the rotation speed of traction motor, 𝑣𝑡  is the train body 

forward speed, 𝑣𝑑 is the linear speed of the wheels, 𝜔 is the 

angular speed of the wheels; r is the radius of the wheels, 𝑇𝑚 

is the driving torque of the traction motor, 𝑇𝐿  is the load torque 

of the freight train; 𝐹𝑎 is the adhesive force of the vehicle, 𝐹𝑧 

is the driving resistance of the vehicle, the driving resistance 

can be expressed as follows [10]: 

 
2

1 2 3z t tF a a v a v= + +  (4) 

 

In the above equation, is the number greater than zero, 

different driving environment parameters take different values 

and cannot be directly given [11], this paper will be driving 

resistance parameters as the amount to be identified, the use of 

particle swarm algorithm for its estimation. 

The expression of adhesion force and load torque can be 

shown as follows: 

 

aF Wg=  (5) 

 

a

L

g

F r
T

R
=  (6) 

 

The adhesion force is not only related to the adhesion 

coefficient μ, but also highly related to the axial weight W, in 

which g is the acceleration of gravity, 𝑅𝑔 is the gear ratio; in 

addition, the adhesion coefficient also has a highly non-linear 

relationship with the creep speed 𝑣𝑠, and the expression of the 

relationship between the two is generally as follows [12]: 

 

( )s sav bv
c e e − −

= −  (7) 

 

s d tv v v= −  (8) 

 

where, a, b, c are track surface parameters, different track 

surface conditions, and their parameters are shown in Table 1. 

2.2 Description of the adhesion constraint 

 

The adhesion process of freight trains has high nonlinear 

characteristics, taking the dry rail surface as an example (see 

Figure 1), the changing law of the adhesion characteristics 

curve of the rest of the rail surface is similar. In the adhesion 

zone, the adhesion coefficient increases gradually with the 

increase of creep speed; in the slipping zone, the adhesion 

coefficient decreases rapidly with the increase of creep speed. 

The constraint problem of adhesion control is to constrain the 

adhesion point as much as possible to a small neighborhood of 

the peak of the adhesion characteristic curve. In other words, 

by controlling the creep speed within a small neighborhood of 

the optimal creep speed, wheel spin or slip can be avoided. 

 

Table 1. Different track surface adhesion parameters 

 
Type Parameters Optimal adhesion coefficient 

 a b c  

dry 0.54 1.0 1.2 0.286 

wet 0.54 0.72 0.206 0.206 

 

The union of (1), (2), (4), and (5) yields: 

 
2

2

1 2 3 2

1
( )s a t t m a

g g

r r
v F a a v a v T F

M JR JR
 = − + + − + 

 (9) 

 

 
 

Figure 1. Dry rail surface adhesion characteristics curve 

 

The adhesion control constraint in this paper can be 

expressed as: 

 

s soptv v  (10) 

 

In the above equation 𝑣𝑠𝑜𝑝𝑡  is the optimal creep speed of the 

driving track surface. If the control law is designed to satisfy 

the Eq. (10), the train can be guaranteed to travel under better 

adhesion conditions and thus maximize tractive force. 

 

 

3. CONTROL STRATEGY BASED ON IMPROVED 

SMES 

 

The adhesion control framework proposed in this paper is 

to first design an observer to estimate the adhesion coefficient, 

and then design the PSO to estimate the parameters of the 

resistance force. Then the improved SMES strategy is 

designed, in which, when the SMEs algorithm converges to 
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the target value, the output of the observer is switched into an 

extremum seeking algorithm (ESA)without steady oscillations 

to lock the optimal creep speed; finally, the controller is 

designed to achieve the vehicle adhesion control through the 

optimal creep speed tracking.  

 

3.1 Adhesion coefficient observer 

 

In Eq. (2), the motor rotation speed 𝜔𝑚 is measurable and 

the load torque 𝑇𝐿  is unknown, taking the rotation speed as the 

state variable, a full-dimensional state observer of the load 

torque is designed as follows [13]: 

 

ˆ ˆ ˆ)

ˆ ˆ

x Ax Bu L y y

y Cx

 = + + −


=

（
 (11) 

 

in which, 𝐴 = [
0 −

1

𝐽𝑚

0 0
], 𝐵 = [

1

𝐽𝑚

0
], C=[1 0], 𝐿 = [𝐿1 𝐿2], 

𝑢 = 𝑇𝑚, 𝑥 = [𝜔𝑚 𝑇𝐿]𝑇, 𝑦 = 𝜔𝑚, L is the observer gain matrix, 

𝐿1 and 𝐿2 are gain parameters of the observer to be designed 

the value of L (shown in Table 2). �̂�𝐿  is the observed value of 

load torque (𝑇𝐿), �̂� and �̂� are observed values of x and y, �̂� is 

the observed value of adhesion coefficient, the observation of 

𝑇𝐿  can be obtained using the pole placement method. 

 

2
ˆ ˆ( )L m mT L dt = −  (12) 

 

Once we have the observed value of 𝑇𝐿 , the observed value 

of the adhesion coefficient μ can be obtained by Eq. (5). 

 

ˆˆ
g

L

R
T

rWg
 =  (13) 

 

3.2 Resistance parameter identification with PSO 

 

There are two forces in the dynamic equations of freight 

trains that cannot be measured directly, one is the adhesion 

between the wheels and rails [14] and the other is the driving 

resistance [15]. From Eq. (5), it can be seen that the adhesion 

force is linearly related to the adhesion coefficient under 

certain axle weight, and the estimated value of the adhesion 

force can be deduced from the observation of the adhesion 

coefficient. While there is no way to directly measure the 

driving resistance, Eq. (4) is an empirical formula for the 

resistance under statistical significance, but the resistance 

parameters in it cannot be obtained in advance, and the PSO 

algorithm [16] is introduced in this subsection to estimate the 

resistance parameters. 

Selecting the train speed and wheel angular velocity as state 

variables, rewrite Eqns. (1)-(4) as follows: 

 
2

1 2 3t a t t

m L

Mv F a a v a v

J T T

 = − − −


= −
 (14) 

 

Let 𝑥1 = 𝑣𝑡 , 𝑥2 = 𝜔, 𝑢 = 𝑇𝑚, then 

 
2

1 1 2 1 3 1

2 3

3

/ (1/ ) (1/ ) (1/ )

(1/ ) (1/ )

a

L

x F M M a M a x M a x

x x

x J u J T

 = −  − −


=
 = −

 (15) 

Rewrite Eq. (15) as follows: 

 

Y =  (16) 

 
1 1 1 1

2 3 1  1   0

0       0      0   T     0     J

aM M M M

L

a a a F


 
=  
 

 (17) 

 

2

1 1 1 3   1 1 Y x x x x  = − 
 (18) 

 

0

u


 
=  
 

 (19) 

 

The parameters to be identified in the travel resistance are 

a1, a2, a3, according to the principle of least squares, we get: 

 
1( )T TY Y Y  −=  (20) 

 

The index of the discrimination error is designed as: 

 

2

1

1
ˆ( )

2

N

i i

i

J  
=

= −  (21) 

 

N is the dimensionality of the input signal, 𝜏𝑖 is the input of 

the ith sample of the model. 

In addition, dynamic weighting method 

2

max min max min( ) (( ) / 2 )exp[ ( ) ]
i

w i w w w w
G

= − − −  and 

unbalanced learning factor (c1=0.4,c2=0.1) strategy are used in 

this paper to improve the local optimum of the algorithm, w(i) 

is the weight of the ith iteration, G is the maximum number of 

iterations, 
min max0.1, 0.8w w= = . 

 

3.3 Improved SMEs algorithm 

 

One of the difficulties in the adhesion control of freight 

trains is how to lock the best creep speed of the current track 

surface [17], and it is known from Section 1.2 that the adhesion 

characteristic curve has obvious polar characteristics, with the 

real-time adhesion coefficient of the vehicle as input and the 

best creep speed of the current track surface as the output, the 

commonly used creep speed SMEs structure is shown in 

Figure 2. 

 

 
 

Figure 2. Creep speed SMEs structure 

 

The mathematical representation of the SMEs structure 

represented in Figure 2 can be shown as follows: 

 

* ( )

( ) ( ) ( )

sgn(sin( ))

s

t

sopt

t v g t

v k
 



 = −


=

 (22) 
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In Figure 2, g(t) is the auxiliary function of the extreme 

value search, and its first-order derivative is ρ. The sliding 

mode function is δ(t)=μ-g(t). k is the gain of the SMEs. From 

the principle of SMEs [18] and trigonometric formula, we 

have: 

 
* ( )

sin( ) 2sin( ( ) / 2 )cos( ( ) / 2 )
t

t t
 


   =  (23) 

 

Define the replacement function as follows: 

 

1 02sin( / 2 )s  =  (24) 

 

2 0cos( / 2 )s  =  (25) 

 

The corresponding sliding modes are: 

 

1

2

2 , 0( )
, 0, 1, 2...

2 1, 0

n rt
n

n r





=
= =  

+ =
 (26) 

 

From Eq. (24-25), we have: 

 

1

1 1

cos( ( ) / 2 ) ( )
2

( ) ( )
sin( )[ sgn(sin ) ]

4 s

d
s t t

dt

t d t
s s k

dv


  



   


  


=



 = −


 (27) 

 

2

2 2

sin( ( ) / 2 ) ( )
2

( ) ( )
sin( )[ sgn(sin ) ]

4 s

d
s t t

dt

t d t
s s k

dv


  



   


  


=



 = − −


 (28) 

 

Obviously, when 2n<δ(0)<2n+1, 𝑠1�̇�1 ≤ 0  if 
𝑑𝜇

𝑑𝑣𝑠
<

𝜌

𝑘
. At 

this time, 𝑠1 → 0 , 𝛿(𝑡) → 2𝑛𝛽 ; when (2𝑛 + 1)𝛽 < 𝛿(0) <

(2𝑛 + 2)𝛽 , 𝑠1�̇�1 ≤ 0  if 
𝑑𝜇

𝑑𝑣𝑠
< −

𝜌

𝑘
, at this time, 𝑠1 → 0 , 

𝛿(𝑡) → (2𝑛 + 2)𝛽; when 2𝑛𝛽 < 𝛿(0) < (2𝑛 + 1)𝛽, 𝑠2�̇�2 ≤

0  if 
𝑑𝜇

𝑑𝑣𝑠
>

𝜌

𝑘
, at this time 𝑠 → 0 𝛿(𝑡) → (2𝑛 + 1)𝛽 ; when 

(2𝑛 + 1)𝛽 < 𝛿(0) < (2𝑛 + 2)𝛽 , 𝑠2�̇�2 < 0  if 
𝑑𝜇

𝑑𝑣𝑠
> −

𝜌

𝑘
, 

δ(t)→(2n+1)β. From the above analysis, it is clear that as long 

as |
𝑑𝜇

𝑑𝑣𝑠
| >

𝜌

𝑘
 is satisfied, SMEs will converge in finite time, and 

oscillations of amplitude (-k,k) are generated in the steady-

state phase. The design idea of this subsection is to switch the 

input to ESA without steady-state oscillation. However, since 

the extremum cannot be known in advance, it is not 

appropriate to use |
𝑑𝜇

𝑑𝑣𝑠
| <

𝜌

𝑘
 directly as the switching threshold. 

The new switching thresholds are designed as follows. 

As shown in Figure 2, at the initial moment: 

 

0 0 =  (29) 

 

f0 refers to the initial value, in this case 𝑔0 = 0, so the above 

equation can be rewritten as: 

 

0 0 

 
=  (30) 

The derivative expression of the estimated creep-slip 

velocity is: 

 

0
ˆ sgn(sin( / ))sv k  =  (31) 

 

According to the trigonometric formula, we have: 

 

0 0 0sin( / ) 2sin( / 2 )cos( / 2 )     =  (32) 

 

Define the replacement function as follows: 

 

1 02sin( / 2 )  =  (33) 

 

2 0cos( / 2 )  =  (34) 

 

The corresponding sliding modes are: 

 

10

2

2 , 0

2 1, 0

n r

n r





=
= 

+ =
 (35) 

 

When the initial value 𝜇0  converges to the sliding mode 

plane [𝜇0/𝛽] or [𝜇0/𝛽] ± 𝛽, the seeking output is close to the 

maximum value of μ. Considering the possible misjudgment 

caused by oscillation, this paper selects [𝜇0/𝛽] − 3𝛽  as the 

threshold. The improved SMEs framework is shown in Figure 

3. 

 

 
 

Figure 3. Improved SMEs framework 

 

In the lower part of Figure 3, the dashed box shows the ESA 

without oscillation. sin ω t is the excitation signal, 𝑘1 is the 

integral gain, and 𝜔ℎ,  𝜔𝑙  is the cutoff corner frequency of the 

high-pass/low-pass filter, respectively. r is the constant gain. 

The threshold switching is performed when the SMEs is 

judged to be close to the extreme value, which is equivalent to 

an ESA with the initial value near the extreme value point. 

 

3.3.1 Stability analysis 

For the convenience of expression, note 𝛩(𝑣𝑠) = 𝑑𝜇/𝑑𝑣𝑠, 

and define the optimal creeping slip velocity as 𝑣𝑠
∗. From the 

principle of SMEs, it follows that for any given parameter 

ρ/k>0, there exists a positive constant β such that the steady-

state value of 𝛩(𝑣𝑠) satisfies |𝛩(𝑣𝑠)| ≤ 𝜌/𝑘. The following 

setting is given. 

 
1 1 * 1

1 2( / ), ( / ), (0)s s sv k v k v − − −=  = − =   (36) 

 

 *

* *

1 2max ,
s

s s s sv
e v v v v= − −  (37) 
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𝑒𝑣𝑠
∗ is the extremum-seeking error of the SMEs under the 

condition |𝛩(𝑣𝑠)| ≤ 𝜌/𝑘. From Eq. (30), it can be seen that 

for a given positive constant e, there is a corresponding ρ/k 

such that 𝑒𝑣𝑠
∗ ≤ 𝑒  holds, where e is the error of the ESA 

without oscillation. Then, the 𝑣𝑠 after threshold switching lies 

in the convergence domain of the ESA without oscillation. 

 

3.4 Controller design 

 

Adhesion control is an atypical output-constrained problem, 

specifically, the control process aims to restrict the wheel-

track adhesion state within the optimal area domain. In this 

paper, after achieving the optimal creep speed, we design the 

adhesion controller based on the barrier Lyapunov function 

with the locked 𝑣𝑠
∗ as the tracking target to achieve the active 

control of optimal creep tracking. Define the tracking error of 

creep speed as 𝑒𝑠 and its derivative expression as follows: 

 
*( ) ( )s m se f x g x T v= − −  (38) 

 
2

2

1 1
( ) ( ) a z

g

r
f x F F

M MJR
= + −  (39) 

 

( )
g

r
g x

JR
=  (40) 

 

In the above equation, Fa can be calculated indirectly by the 

adhesion coefficient observer, the resistance parameters have 

been designed PSO algorithm for identification, and 𝑣𝑠
∗  are 

locked by the extreme value search module. For the 

convergence of the tracking error, the barrier Lyapunov 

function [19] is designed as follows. 

 
2

2 2

2

2 2

1
(1 sgn( )) log

4

1
    (1 sgn( )) log

4

a

s

a s

s

s

s s

k
V e

k e

k
e

k e

= −
−

+ +
−

 (41) 

 

The definition domain of the above equation is divided into 

two parts: 𝐷1 = {𝑒 ∈ 𝑅: −𝑘𝑎 < 𝑒𝑠 < 𝑘𝑎} , 𝐷2 = {𝑒 ∈
𝑅: −𝑘𝑠 < 𝑒𝑠 < 𝑘𝑠}, where 𝐷1 is used to delineate the overall 

obstacle boundary so that the value of 𝑘𝑎 is greater than the 

maximum creep speed, Construct the constraint using 𝐷2 

when 𝑣𝑠 exceeds 𝑣𝑠
∗, its schematic diagram is shown in Figure 

4. 

 

 
 

Figure 4. Schematic diagram of the barrier Lyapunov 

For the tracking problem of the optimal creep speed, the 

output torque of the traction motor is chosen as the control 

quantity and the following control law is designed. 

 

* 2 2

1

2 2

2

1
( ( ) (1 sgn( ))( )

( )

    (1 sgn( )) ( ))

s s s a s

s s s s

u f x v k e e k e
g x

e k e k e

= − + − − −

− + −

 (42) 

 

For the proposed control law, stability proofs are carried out 

as follows: 

Case1: when 𝑒𝑠 < 0, 𝑠𝑔𝑛( 𝑒𝑠) = −1, the barrier Lyapunov 

becomes the following form: 

 
2

1 2 2

1
(1 sgn( )) log

4

a

s

a s

k
V e

k e
= −

−
 (43) 

 

The control law at this point becomes: 

 

* 2 2

1 1

1
( ( ) (1 sgn( )) ( ))

( )
s s s a su f x v e k e k e

g x
= − + − − −  (44) 

 

Taking Eq. (38) into Eq. (37) gives 

 

*

1 12 2 2 2

2

1

( ( ) ( ) )

   2 0

s s s

s

a s a s

s

e e e
V f x g x u v

k e k e

k e

= = + −
− −

= − 

 (45) 

 

Case2: when 𝑒𝑠 > 0, 𝑠𝑔𝑛( 𝑒𝑠) = 1, the barrier Lyapunov 

becomes the following form: 

 
2

2 2 2

1
(1 sgn( )) log

4

s

s

s s

k
V e

k e
= +

−
 (46) 

 

The control law at this point becomes: 

 

* 2 2

2 2

1
( ( ) (1 sgn( )) ( ))

( )
s s s su f x v e k e k e

g x
= − + − + −  (47) 

 

Taking Eq. (41) into Eq. (40), we get: 

 

*

2 22 2 2 2

2

2

( ( ) ( ) )

   2 0

s

s s

ee e
V f x g x u v

k e k e

k e

= = − −
− −

= − 

 (48) 

 

Case3: when e=0, from Eq. (39) and Eq. (42) it can be 

deduced that �̇�1 = �̇�2 = 0. Stability proof finished. 

 

 

4. SIMULATION AND ANALYSIS 

 

Table 2. Simulation model parameters 

 
parameters Value 

quality of freight train 6000t 

single axle weight 30t 

wheel diameter 0.625m 

gear ratio 6.294 

gain parameters for observer 𝐿1 = 𝐿2 = −40 

resistance 𝐹𝑧 = 0.5 + 0.04𝑣 + 0.0026𝑣2 
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To verify the effectiveness of the adhesion control strategy 

of the freight train proposed in this paper, computer simulation 

is used to verify. The model parameters are shown in Table 2. 

 

4.1 Simulation of resistance parameter identification 

 

When the closed-loop system was constructed, the adhesion 

force can be deduced using the adhesion coefficient estimated 

by the observer, but the travel resistance parameters cannot be 

measured directly. In this paper, a parameter estimation 

algorithm based on PSO is designed, the specific algorithm 

parameters are shown in Table 3, its simulation results are 

shown in Figure 5, and its convergence process is shown in 

Figure 6. 

 

 
 

Figure 5. PSO parameter identification results 

 

 
 

Figure 6. PSO convergence process 

 

Table 3. PSO algorithm parameters 

 
parameters value 

The velocity of particle motion [-0.001,0.001] 

Population size 60 

Learning Factors 𝑐1 = 0.4, 𝑐2 = 0.1 

Inertia weights [0.1,0.8] 

Maximum number of iterations 300 

 

To verify the parameter identification capability of the PSO 

algorithm, the actual values of the drag parameters set in this 

section are shown in Table 2. From Figure 5, it can be seen 

that the final convergence values of the algorithm are about 

𝑎1 = 0.505, 𝑎2 = 0.05, 𝑎3 = 0.003. The PSO algorithm can 

identify the freight train running resistance parameters 

properly. 

 

4.2 Comparison of extremum seeking 

 

A sudden change of rail surface simulation is designed to 

verify the optimal creep speed search of the rail surface. 1-10s 

the vehicle travels on a dry rail surface; at the 10th second, the 

rail surface jumps from dry to wet; and then at the 15th second, 

the vehicle travels back to a dry rail surface. The parameters 

of the improved extremum search algorithm designed in this 

paper are as follows.  

𝑘 = 1, 𝛽 = 0.1, 𝜌 = 1, 𝜔𝑙 = 0.7, 𝜔ℎ = 0.9 , constant gain 

is1. The improved SMEs simulation adhesion coefficient 

seeking results are shown in Figure 7, which shows that the 

final locked maximum adhesion coefficient of dry rail surface 

is 0.2855, which is very close to the actual optimal value of 

0.286; the locked maximum adhesion coefficient of wet rail 

surface is 0.206, which is the same as the actual optimal value. 

Under the same conditions, the results of the conventional 

SMEs simulation are shown in Figure 8, the results of ESA 

simulation are shown in Figure 9. 

 

 
 

Figure 7. Improved SMEs result 

 

 
 

Figure 8. SMEs result 
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From the comparison of Figures 7, 8 and 9, it can be seen 

that the improved SMEs has smoothly locked the optimal 

value at the 8th moment, and the traditional SMEs did not fully 

converge to the extreme value in the dry section until the 

moment of rail surface switching, the search curve is still an 

incremental trend. It can be seen from the local enlarged figure 

that it finally converges to the region where the adhesion 

coefficient is 0.28 and produces oscillation; while the 

conventional SMEs algorithm in the wet phase converges to 

the extreme value point though. However, there are still 

oscillations with a smaller amplitude and higher frequency, 

and such high-frequency oscillations bring certain hindrances 

to the driving safety and smoothness. As Figure 9 shows that 

the ESA did not converge to the extreme point in the dry 

section, then the rail surface is switched, the performance at 

the switching moments is not as smooth as SMEs. 

 

 
 

Figure 9. ESA result 

 

The control torque based on the traditional SMEs is shown 

in Figure 10, the control torque based on the improved SMEs 

is shown in Figure 11, and the control torque based on the ESA 

is shown in Figure 12. In the control law, 𝑘𝑎 = 𝑘𝑏 +
𝑣𝑠𝑜𝑝𝑡 , 𝑘𝑏 = 0.02, 𝑘1 = 𝑘2 = 1200. 

 

 
 

Figure 10. SMEs control torque 

 

The comparison between Figure 10 and Figure 11 shows 

that the adhesion control torque applying the improved SMEs 

remains smooth after the algorithm converges, while the 

adhesion control based on the conventional SMEs converges 

more slowly and is accompanied by high-frequency 

oscillations throughout. Therefore, the improved SMEs-based 

adhesion control not only has a shorter convergence time but 

also has better dynamic performance and improves the 

smoothness of the control torque output. 

From the comparison between Figure 11 and Figure 12, it 

can be seen that the control torque value based on SMEs can 

reach more than 8300 in the dry stage, while the ESA-based 

one can only reach about 8250, with similar results in the rest 

of the stages. This is because the SMEs-based method utilizes 

the SME algorithm in the initial stage, and as can be seen in 

the figure, the SMEs-based image is a convex function, while 

the ESA is a concave function in the initial stage, precisely 

because of the introduction of the ESA. Therefore, after the 

threshold switch, the initial value of the coefficient of adhesion 

based on the SMEs is closer to the true extreme value, and thus 

the optimal creep-slip speed searched is closer to the actual 

available maximum value, and thus the output torque of the 

traction motor can be more fully utilized. 

 

 
 

Figure 11. Improved SMEs control torque 

 

 
 

Figure 12. ESA control torque 

 

 

5. CONCLUSION 

 

To address the problem that the real-time optimal adhesion 

point is difficult to obtain stably and quickly and the travel 

resistance parameters cannot be measured, this paper proposes 

a new optimal creep speed seek strategy of improved SMEs 

combined with PSO algorithm, and finally, the adhesion 

control law is proposed using the barrier Lyapunov function. 
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Through the simulation and experimental comparison, the 

following conclusions are drawn. 

(1) The parameter identification model based on PSO is 

estimated for the unknown parameters in the driving resistance, 

which effectively ensures the accuracy of parameter 

identification. 

(2) Accurate locking of real-time optimal creep speed using 

improved SMEs, improves the convergence speed of optimal 

creep slip seek, and also improves the control accuracy and 

torque smoothness of traction motor output torque, due to no 

steady-state oscillations. 

(3) The proposed adhesion control law based on the barrier 

Lyapunov not only guarantees the smooth control of a single 

rail surface but also maintains the high-precision tracking 

control of the optimal creep speed under the transient 

conditions of adhesion, which improves the robustness and 

dynamic performance of the adhesion control system. 
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