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Since the high daily power consumption, electric taxis require frequently recharging. 

Affected by the step tariff and shifting of duty, congestion often occurs during peak hours 

at charging stations, which seriously affects the normal operation of the traffic and 

electricity grid. This paper proposes a joint management architecture that integrates the 

service operation of e-taxis and charging networks. Aiming at minimizing drivers' 

charging overhead, a scheduling scheme that combines taxi service operation scheduling 

with charging planning is designed based on reinforcement learning method. The low 

battery e-taxi is arranged to pick up the passenger whose destination is close to an 

appropriate charging station. Simulation results show that the proposed scheme can 

effectively reduce drivers' charging overhead by shortening deadhead kilometers and 

waiting time at charging station. 
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1. INTRODUCTION

In order to cope with the environmental pollution and 

energy crisis, electric vehicles (EVs), which are considered as 

a paradigm of green transportation, have been deployed on a 

large scale with local governments’ support and incentives. 

The ever-growing application of EVs calls for appropriate 

management of EVs’ recharging. The massive disorderly 

recharging behaviors not only leads to charging stations' 

congestion but also impacts the power grid and transportation 

networks. Furthermore, drivers usually have to waste lots of 

time at charging stations, and the terrible experience may 

affect the popularization of EVs. 

For the sake of improving the recharging experience of 

drivers, charging scheduling has become a hot spot in current 

research. The relatively mainstream research idea focuses on 

static scheduling strategies based on prior knowledge about 

drivers’ travel plans [1, 2], which apply to private EVs since 

their regular routine. On the other hand, dynamic scheduling 

strategies have a wider application range, and AI-based 

algorithms and game theory are considered as powerful 

approaches to solve complicated decision-making problems 

[3-6]. The previous works designed real-time EV charging 

scheduling strategies through dynamic tariffs and queuing 

control and might not have considered the difference in travel 

characteristics of EVs [7-9]. In recent years, there are 

numerous papers dedicated to the scheduling of EV charging, 

while few works specifically targeted at e-taxis. However, e-

taxis require more frequently recharging than other types of 

EVs due to their longer daily travel distances and more energy 

consumption. Moreover, each charge takes scores of minutes 

to hours, including the time of waiting and recharging, which 

seriously affects the driver’s income. According to the high 

mobility of e-taxis, some papers proposed partial charging 

scheduling strategies which allow e-taxis to get frequent 

partial recharged in the idle time of different charging stations 

[10, 11]. This kind of approach can avoid e-taxis’ batteries 

running too low, and each charge takes a short time, so the 

driver doesn’t need to worry about missing the peak hour for 

passenger transport. In reference [12], a model is developed to 

estimate the optimal charging stations distribution and siting, 

and the e-taxis’ service cost can be effectively reduced. 

Different from private EVs, the traffic paths of e-taxis 

depend on the passengers’ demands. The passenger’s travel 

route largely determines whether the e-taxi can reach a 

charging station convenient or not. According to this travel 

characteristic, we propose a joint management architecture 

that integrates e-taxis' service operation and charging 

networks. A novel joint scheduling strategy is designed based 

on reinforcement learning. Through reasonable service 

operation scheduling, the low battery e-taxi is arranged to pick 

up the passenger whose destination is close to an appropriate 

charging station, and the deadhead kilometers and drivers’ 

waiting time at charging stations are both reduced. The 

simulation results show the proposed solution is effective in 

minimizing the total cost of the e-taxi’s recharging. 

2. NETWORK ARCHITECTURE

This paper proposes a joint management architecture that 

integrates e-taxis' service operation and charging scheduling, 

as shown in Figure 1. This architecture includes the charging 

management platform and the service operation management 

platform. The joint scheduling center belongs to two platforms. 

It is in charge of integrating information from two platforms, 

generating charging demands of e-taxis at the beginning of 

each scheduling cycle (e.g., every 15 minutes), implementing 

charging scheduling algorithm and making charging plans. 
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Figure 1. An overview of the joint management architecture 

 

The charging management platform includes the charging 

station management center and the joint scheduling center, 

which is responsible for daily operation management of all 

charging stations, information exchanging and making 

charging plans.  

The service operation management platform consists of the 

service management center, the vehicle information 

management center, and the joint scheduling center. The 

vehicle information management center exchanges 

information with e-taxis through the roadside units (RSUs). 

Each e-taxi regularly reports its travel information, e.g., state 

of charge (SOC), location, speed to the nearest RSU. RSUs 

collect information reported and transfer it to the vehicle 

information management center. At the end of each scheduling 

cycle, the vehicle management center integrates and sends the 

information including SOC, location, speed about all e-taxis to 

the joint scheduling center. The business management center 

receives passengers’ orders online through taxi-haling apps, 

and the orders during the scheduling cycle will be pushed to 

nearby e-taxis. In a short period of time (e.g., several minutes) 

before the end of each scheduling cycle, the business 

management center stops dispatching orders and reports all the 

order information during the cycle to the joint scheduling 

center. Among them, the orders that have not yet been 

arranged will be input into the charging scheduling algorithm 

for joint scheduling. The input of the charging scheduling 

algorithm also includes charging station operation information 

and e-taxis travel information. The output of the algorithm is 

a charging plan and an order plan. The charging plan is sent to 

every charging station through the charging management 

platform. According to the plan, charging stations reserve 

plug-in chargers and time slots for corresponding e-taxis. The 

business management center sends orders to e-taxis according 

to the order plan. If there are still some orders that have not 

been arranged, they will be pushed to the available nearby e-

taxis. The vehicle information management center sends the 

charging plan to the RSU that the e-taxi last passed by and the 

RSU which it will visit based on its order route. When the e-

taxi accesses the RSU, it will get the charging plan and the 

navigation.  

The joint management architecture is the basis of the 

charging scheduling algorithm, which ensures the orderly 

charging of e-taxis through reasonable charging scheduling 

and business arrangement. Compared with the charging 

scheduling only structure, the joint management architecture 

allows the e-taxi to pick up the passenger and choose an 

appropriate charging station close to the passenger’s 

destination instead of waiting in vain at peak period of 

recharging. Based on this structure, the total cost of recharging 

is reduced by shortening idle traveling time and waiting time. 

 

 

3. SYSTEM MODEL 
 

The time horizon is discretized into 𝑖  time slot. Let 𝑵 =
{1,2, … , 𝑛} be the set of e-taxis that require to be charged in 

moment 𝑖 , and 𝑲 = {1,2, … , 𝑘}  be the set of passengers 

waiting for scheduling. Let 𝑴 = {1,2, … ,𝑚} denotes the set of 

charging stations. 

The cost of charging can be separated into parts shown 

below: 

(1) The Cost of Payment 𝑃𝑛 

Let 𝑇𝑚𝑛
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 (hour) denotes the charging time, which can 

be expressed as  

 

𝑇𝑚𝑛
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

=
(𝐸𝑛 − 𝐸𝑖′𝑛) ∙ 𝐵𝑛

𝜌
 (1) 

 

where, 𝑖’  is the moment that e-taxis arrive at the target 

charging station, and 𝐸𝑖′𝑛 denotes the battery SOC of e-taxi 𝑛 

at moment 𝑖’, and 𝐸𝑛 is the expected battery SOC of e-taxi n 

after charging completion, and the battery capacity of e-taxi n 

is denoted by 𝐵𝑛(kWh). In addition, we assume that the output 

power of plug-in chargers is fixed and denoted by 𝜌 (kW). 

According to the TOU power price, 𝑝𝑝, 𝑝𝑓 and 𝑝𝑣 denotes 

the electricity price in peak, flat and valley period respectively, 

and the unit is ¥/kWh. The charging service fee is denoted by 

𝑝𝑠 (¥/kWh). Therefore, the payment cost can be expressed as 

 

𝑃𝑛 = {

(𝑝𝑝 + 𝑝𝑠) ∙ (𝐸𝑛 − 𝐸𝑖′𝑛) ∙ 𝐵𝑛 , 𝑖
′ ∈ peak   

(𝑝𝑓 + 𝑝𝑠) ∙ (𝐸𝑛 − 𝐸𝑖′𝑛) ∙ 𝐵𝑛, 𝑖
′ ∈ flat      

(𝑝𝑣 + 𝑝𝑠) ∙ (𝐸𝑛 − 𝐸𝑖′𝑛) ∙ 𝐵𝑛 , 𝑖
′ ∈ valley 

 (2) 

 

(2) The Cost of Charging Time 𝐿𝑛 

Assume the expected income per hour of the e-taxis is 

�̃� (¥/h), and the revenue loss from charging time can be 

expressed as  

 

𝐿𝑛 = 𝑇𝑚𝑛
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

∙ �̃� (3) 
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(3) The Cost of Waiting Time 𝑊𝑛 

𝑇𝑚𝑛
𝑤𝑎𝑖𝑡 (hour) denotes the waiting time after e-taxi 𝑛 arrives 

at the charging station m. The information about the 

occupation of the plug-in chargers and the expected earliest 

available time for charging can be estimated and provided by 

the charging station management center. The revenue loss 

from waiting time can be expressed as 

 

𝑊𝑛 = 𝑇𝑚𝑛
𝑤𝑎𝑖𝑡 ∙ �̃� (4) 

 

(4) The Cost of Idle Traveling Time 𝑉𝑛 

Assume e-taxi n take 𝑇𝑚𝑛
𝑡𝑟𝑎𝑣𝑒𝑙  hours to travel to the target 

charging station m, and the speed of e-taxi is fixed and denoted 

by v (km/h). As shown in Figure 2, 𝐷𝑘,𝑘′  (km) denotes the 

minimum traveling distance of passenger k. 𝐷0 (km) denotes 

the deadhead distance of e-taxi n, and is consist of two parts: 

the distance between the location of e-taxi n and the starting 

point of passenger k, and the distance between the destination 

of passenger k and the location of the target charging station 

m, which yields 𝑇𝑚𝑛
𝑡𝑟𝑎𝑣𝑒𝑙 = (𝐷𝑘,𝑘′ + 𝐷0) 𝑣⁄ . The minimum 

distance between the location of e-taxi n and the target 

charging station 𝑚 is denoted by 𝐷𝑚,𝑛 (km). If the e-taxi does 

not pick up any passengers on the way to the target charging 

station, 𝑇𝑚𝑛
𝑡𝑟𝑎𝑣𝑒𝑙 = 𝐷0 𝑣⁄ = 𝐷𝑚,𝑛 𝑣⁄  in this circumstance. 

According to the order plan made by the joint scheduling 

center, e-taxis benefit from transporting passengers. The gain 

of service scheduling can be expressed as 

 

𝐺𝑛 =
𝐷𝑚,𝑛 − 𝐷0

𝑣
∙ �̃� (5) 

 

𝐺𝑛 is the expected revenue of the shortened idle traveling 

distance, and it is unrelated to the service revenue. It could be 

positive, negative or zero. For example, an e-taxi is 10 km 

from the charging station and a passenger’s destination is 

10km in the opposite direction, which means the e-taxi needs 

to travel 20 km to the target charging station after transporting 

the passenger. In this circumstance, 𝐺𝑛  is negative. 

Consequently, the e-taxi also has the option of going straight 

to the target charging station instead and, in this case, 𝐺𝑛 = 0. 

The cost of idle traveling time can be expressed as  

 

𝑉𝑛 = 𝑇𝑚𝑛
𝑡𝑟𝑎𝑣𝑒𝑙 ∙ �̃� − 𝐺𝑛 = �̃� ∙

𝐷𝑘,𝑘′ + 2𝐷0 − 𝐷𝑚,𝑛

𝑣
 (6) 

 

 
 

Figure 2. The illustration of 𝐷𝑘,𝑘′, 𝐷0 and 𝐷𝑚,𝑛 

 

(5) Objective Function 

Our objective is to find an optimal charging scheduling 

policy 𝜋∗ , which specifies the e-taxi n the target charging 

station 𝑚 and arranges it to transport the passenger k on the 

way, with the minimum total overhead, that is, 

 

𝜋∗(𝑛,𝑚, 𝑘) = argmin[𝑃𝑛 + 𝐿𝑛 + 𝑉𝑛 +𝑊𝑛] (7) 

 

Furthermore, to avoid the e-taxi which should be charged, 

chooses to continuously transport passengers and lead to 

breakdown or a very low 𝐸𝑖′𝑛, the constraint is added: Each e-

taxi is only allowed to pick up one passenger during a charging 

event. 

 

 

4. CHARGING SCHEDULING SCHEME BASED ON 

REINFORCING LEARNING 

 

4.1 Preparation 

 

The joint charging scheduling center regularly receives 

information from the vehicle information management center, 

including the current location of all e-taxis, the battery SOC, 

the traffic information, the service information, the destination 

location of all e-taxis, the estimated time of arrival. When the 

battery SOC ≤ 40%, the joint charging scheduling center will 

flag the e-taxi needs recharging. 

After generating the set N of the e-taxis that need recharging, 

the joint charging scheduling center interactively forms the 

charging scheduling scheme based on reinforcing learning. As 

shown in Figure 1, the input parameters related to the charging 

system are provided by the charging station management 

center, such as the location of charging station, the occupation 

of charging stations and the expected earliest available time 

(used to estimate 𝑇𝑚𝑛
𝑤𝑎𝑖𝑡). The travel information (the e-taxi’s 

SOC, location, speed) and service information (the 

passenger’s location and destination) is provided by the 

vehicle information management center and the business 

management center respectively. Finally, the output scheme is 

delivery to the related charging station and e-taxis via each 

management center. 

 

4.2 The reinforcing learning based method 

 

The state, action and reward of reinforcing learning are 

described as follows. 

1) State: S is denoted the system state space, and it is 

consisted of a group of vectors 𝑠𝑡 at each time slot t. The state 

is concerned with vehicles, charging stations and passengers, 

and denoted as 𝑠𝑡 = (𝐸𝑡𝑛 , 𝐶𝑉𝑡𝑛, 𝐶𝑉𝑚, 𝐶𝑉𝑘, 𝐶𝑉𝑘′) , where 𝐸𝑡𝑛 

denotes the SOC of e-taxi 𝑛  at time slot 𝑡 , 𝐶𝑉𝑡𝑛  is the 

coordinates of e-taxi 𝑛 at time slot 𝑡, 𝐶𝑉𝑚 is the coordinates of 

the target charging station 𝑚 , 𝐶𝑉𝑘  and 𝐶𝑉𝑘′  represent the 

starting and ending coordinates of passenger k. Besides, 𝑠0 

represents the initial state, and when the e-taxi arrives at the 

target station it eventually reaches its end state. If the e-taxi 

heads for the target charging station directly without carrying 

any passenger, 𝐶𝑉𝑘 and 𝐶𝑉𝑘′ are both set to (−1, −1). 
2) Action: 𝑨 denotes the action space. For each state 𝑠𝑡 ∈ 𝑺, 

the action of e-taxi 𝑛  is represented as 𝑎𝑡
𝑛 = (𝑚, 𝑘), which 

means e-taxi 𝑛  will pick up passenger 𝑘  on the way to its 

target charging station 𝑚. If a passenger’s route is fit to several 

e-taxis, the passenger will be allocated to the nearest e-taxi. 

Besides, if the e-taxi does not pick up passengers, 𝑘 = 0. 

3) Reward: 𝑹 is the immediate reward when state transits 

from 𝑠𝑡  to 𝑠𝑡+1  over action 𝑎𝑡 . The reward function can be 

expressed as follows: 
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𝑅𝑡(𝑠𝑡, 𝑎𝑡
𝑛, 𝑠𝑡+1)

=

{
  
 

  
 

1

60 ∙ (𝑇𝑚𝑛
𝑤𝑎𝑖𝑡 +𝐷𝑚,𝑛 𝑣⁄ )

, if 𝑛 selects charging station 𝑚

𝐷𝑚,𝑛 − 𝐷0
𝐷𝑚,𝑛

,                                    if 𝑛 selects passenger 𝑘

0,                              if 𝑛 does not pick up any passenger
10,                        if 𝑛 arrives the target charging station

 
(8) 

 

At first, the e-taxi chooses a charging station as target. Then, 

it chooses a passenger. The immediate reward is concerned 

with the waiting time, distance, passengers’ starting and 

ending coordinates. If picking up the passenger will result in 

an increase of idle traveling time, the immediate reward will 

be negative. 

4) The action-value function: the cumulative discounted 

reward can be expressed as 𝐺𝑡 = ∑ 𝛾𝑇−1𝑅𝑡+𝑇
𝑇
𝑡=1 , where 𝛾 ∈

(0,1] is the discount rate and denotes the reward decaying with 

the time. T is the terminal moment of one procedure. 

The action-value function expresses the expectation of the 

cumulative reward in state 𝑠𝑡  over action 𝑎𝑡  on policy 𝜋 , 

which yields 
 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡] (9) 
 

This paper uses Q-learning to find an optimal policy to 

maximize the action-value function, 
 

𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎) (10) 

 

The iterative process can be expressed as 
 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) 

+𝛼 [𝑅𝑡 + 𝛾max
𝑎𝑡

𝑄(𝑆𝑡+1, 𝑎𝑡) − 𝑄(𝑆𝑡, 𝐴𝑡)] 
(11) 

 

where, 𝛼 ∈ (0,1) denotes the learning rate. When 𝑡 → ∞, if 

𝛼 →0, the action-value function converges to the optimal 

𝑄∗(𝑠, 𝑎). 
To avoid the algorithm falls into locally optimal solution, 

the new actions are explored via 𝜀-greedy method [13]. The 

proposed method is shown in Algorithm 1. 
 

Algorithm 1 

Input: initial state space S, action space A, original state 𝑠0, 

discount rate 𝛾, exploration rate 𝜀, learning rate 𝛼 

1: 𝑄(𝑠, 𝑎) = 0,𝜋(𝑠, 𝑎) =
1

|𝑨(𝑠)|
 

2: 𝑠 = 𝑠0 

3: For 𝑡 = 1,⋯ , 𝑇 do 

4: if rand() < 𝜀 then 

5: Randomly select E-taxi’s action 𝑎𝑡 
6: else  

7: 𝑎𝑡 = argmax
𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) 

8: end if 

9: calculate the immediate reward 𝑅𝑡 and the next state 𝑠𝑡+1 

10: update the Q-value 

11: take the new state 𝑠 = 𝑠𝑡+1 

12: end For 

Output: policy 𝜋 
 

 

5. SIMULATION RESULT AND PERFORMANCE 

ANALYSIS 
 

The simulation setting refers to the ref. [7], considering a 

grid map, and each edge indicates 1 km. To abundantly 

illustrate the performance of the proposed strategy, there are 3 

sizes of the map, and respectively are 5×5, 10×10, 20×20 grid. 

Figure 3 provides a sample in a 10×10 grid model. The 

charging station, e-taxis and passengers are generated 

randomly on the intersection point of the grid. The simulation 

parameters of the e-taxi are referred to BYD E6 operating in 

Shenzhen city. The details of parameters setting are shown in 

Table 1. 

 

 
 

Figure 3. A sample in a 10×10 grid model 

 

Table 1. Simulation parameters 

 
Parameter Value 

number of Charging station/ number of chargers 

per station 

1/3 (5×5 size) 

4/2 (10×10 

size) 

4/4 (20×20 

size) 

number of e-taxis 

5 (5×5 size) 

10 (10×10 

size) 

20 (20×20 

size) 

number of passengers 

4 (5×5 size) 

9 (10×10 

size) 

18 (20×20 

size) 

electricity price in peak period 𝑝𝑝 

(8:00-11:00, 18:00-23:00) 
0.9799 ¥/kWh 

electricity price in flat period 𝑝𝑓 

(0:00-7:00/11:00-18:00) 
0.6274 ¥/kWh 

electricity price in valley period 𝑝𝑣(23:00-7:00) 0.2034 ¥/kWh 

charging service fee 𝑝𝑠 0.8 ¥/kWh 

speed of e-taxi 𝑣 40 km/h 

expected income of e-taxis per hour �̃� 50 ¥/h 

expected battery SOC 𝐸𝑛 90% 

battery capacity 𝐵 82 kWh 

output power of chargers 𝜌 60 kWh 

learning rate 𝛼 0.01 

exploration rate 𝜀 0.5 

discount rate 𝛾 0.9 

 

The cost of each aspect in the proposed strategy is shown in 

Figure 4 and compared with the charging scheduling only 

strategy in a 10×10 grid model. The theoretical minimum cost 

is provided as a base, which means the e-taxi is just nearby a 

charging station available when it needs to be charged, and the 
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minimum cost consists of payment and the cost of charging 

time only. The simulation result shows the joint scheduling 

strategy decreases the cost of idle traveling time and waiting 

time by transporting passengers on the e-taxi’s way to the 

charging station. Meanwhile, the travel distance extends and 

the cost of payment and charging time increases. The amount 

of imported energy increases by an average of 2.11 kwh per e-

taxi. On the whole, the overall cost of recharging is reduced by 

taking the proposed strategy. 

The performance of the proposed strategy in different map 

sizes is shown in Figure 5. The comparison shows that in the 

20×20 grid model, the joint scheduling leads to the most 

efficient effect of reducing the recharging cost, while its effect 

is not distinct in the 5×5 grid model. Due to the increased map 

size and number of e-taxis, the cost of idle traveling time and 

waiting time rises faster and has a greater impact on the total 

cost. While the growth of the cost of payment and charging 

time are basically flat in different map sizes. 

 

 
 

Figure 4. The comparison of joint scheduling strategy with charging scheduling only strategy in a 10×10 grid model 

 

 
 

Figure 5. The comparison of average cost of recharging in different map sizes 

 

 

6. CONCLUSION 

 

In this paper, we design a joint management architecture of 

recharging and taxi service operation. Based on the 

architecture, a joint scheduling strategy of e-taxi hailing and 

recharging is proposed to reduce the total cost of recharging. 

The low battery e-taxi is arranged to pick up the passenger 

whose destination is close to an appropriate charging station. 

According to simulation results, the strategy is effective in 

lowering the e-taxi’s idle travelling time and waiting time at 

the charging station and leads to a reduction in total cost. 

Therefore, the proposed solution is helpful in eliminating the 

inconvenience of charging electric vehicles. 
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