
Combinatorial Test Case Generation Using Q-Value Based Particle Swarm Optimization

Subhash Tatale*, Vudatha Chandra Prakash

Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 520013, AP, India

Corresponding Author Email: subhashtatale@gmail.com

https://doi.org/10.18280/ria.360217 ABSTRACT

Received: 15 January 2022

Accepted: 4 April 2022

Combinatorial testing is an effective method for generating test cases. Pairwise testing is a

combinatorial approach that evaluates the interactions between the input test parameters

while reducing test case size by selecting a broader search area. Most combinatorial testing

research focuses on developing novel approaches for generating an optimal number of test

cases that cover pairwise combinations of input test parameters. Using existing test case

generation techniques, optimal or near-optimal combinatorial test cases are generated in

polynomial time. The authors presented the Q-value-based Particle Swarm Optimization

(Q-PSO) technique for efficiently and effectively generating an optimal number of test

cases. The primary goals of the proposed technique are to generate test cases using a Q-

value based PSO, which is easier to build and has fewer parameters to define than other

meta-heuristic search methodologies and to put the proposed technique into practice and

report on an empirical study that examines and verifies the significant impact factors in the

proposed approach. Q-value is used to evaluate the particles (referred to as test cases) in the

Q-PSO. The reward is totalled in the Q-value, which serves as the fitness function for PSO

evolution. The Q-value of each particle determines its performance and indicates how

quickly the particle can lead the system's state to the set of objective states. The authors

used the Q-PSO technique to validate the efficiency and efficacy of the proposed approach.

The Q-PSO technique's results are compared to existing metaheuristics and computation-

based techniques. In most inputs based on the development environment, meta-heuristic

search techniques take significantly longer than other greedy techniques. For some inputs,

the proposed Q-PSO technique outperforms existing meta-heuristics techniques. Q-PSO

results are also compared to IPOG, ITCH, Jenny, TConfig, TVG, and other well-known

computational-based techniques. The goal of the comparison is to examine how the size of

the test cases generated has grown over time.

Keywords:

combinatorial testing, pairwise testing,

particle swarm optimization, test case

generation

1. INTRODUCTION

Unexpected interactions between software and system

elements become increasingly prevalent as the complexity of

a software project grows. These undesired encounters

sometimes lead unwanted and difficult issues to detect.

Regression testing, test case generation, test oracle problem,

test coverage criterion design, and fault localization problem

are the new research focus areas of software testing domain.

The researchers presently recognized that the test case

generation as a promising and attentive research area. The test

case generation is considered as a promising and attentive

research area by researchers nowadays. In this paper, the

authors are giving more emphasis on generating combinatorial

test cases. In the section, combinatorial testing and

mathematical background of the proposed approach is

summarized.

1.1 Overview of combinatorial testing

Combinatorial Testing (CT) is a specification-based test

case generation technique and develops test cases depending

on the artefacts being evaluated, which are based on functional

requirements or complete development specifications. It is a

helpful technique for discovering hardware or software

systems issues based on the combinations of input or output

system parameters. The input or output parameters of

graphical user interfaces, entire software product and web

forms have been tested using this technique.

Pairwise testing is one of the most extensively used

combinatorial testing strategies. Because it examines all

possible combinations of all input parameters, it is a valuable

testing technique that considers all discrete possibilities of

each pair of system input parameters. Exhaustive testing takes

more time than pairwise testing, since the common of software

problems are occurred by a single or two input parameters.

Let us consider an e-commerce configurable software

system as a model to explain pairwise testing. In this case,

there are four parameters in the system. The user can make

payments through different smart phones using different

payment modes made available by the system. Different web

servers and database servers are the other system

configurations of the e-commerce software system.

Table 1 shows the system configurations, which have four

parameters combined with three values for each parameter.

Although multiple testing methodologies for this software

system may be helpful, unanticipated interactions between

parameters are a general problem of failure of the software’s.

If the number of parameters and values rises, the software is

more likely to fail. Manufacturers may need to analyze all

Revue d'Intelligence Artificielle
Vol. 36, No. 2, April, 2022, pp. 319-326

Journal homepage: http://iieta.org/journals/ria

319

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360217&domain=pdf

potential combinations of parameters to limit this danger and

ensure the quality of such software. It is known as exhaustive

testing, and it necessitates 81 test cases (i.e., 3x3x3x3). The

pairs are nothing more than interactions between parameter

values, and they are determined using the formula below.

The total number of pairs generated = (Par - 1 + Par – 2 +...+

Par - n) * (Val2), where Par denotes the number of parameters

and Val denotes the number of values of those parameters.

Total (3+2+1) * 32 = 54 pairs (two-way) are formed in the

given case. However, as shown in Table 2, only nine test cases

can be used to investigate all these pairwise interactions of

system characteristics.

Table 1. Configurations of E-commerce software system

Configurations / Parameters Smart Phone Payment Mode Web Server Database Server

Values IPhone Paypal Tomcat SQL

Android Google pay Glassfish MongoDB

Amazon Fire Phone Phone pay WebSphere Access

Table 2. Pairwise test cases for the system configurations in Table 1

Test Case No. Smart Phone Payment Mode Web Server Database Server

1 Amazon Fire Phone Phone pay Tomcat Access

2 Amazon Fire Phone Google pay WebSphere MongoDB

3 Android Phone pay WebSphere SQL

4 Android Google pay Glassfish Access

5 IPhone Phone pay Glassfish MongoDB

6 Android Paypal Tomcat MongoDB

7 IPhone Google pay Tomcat SQL

8 IPhone Paypal WebSphere Access

9 Amazon Fire Phone Paypal Glassfish SQL

This reduces the number of test instances (9 from 81) while

covering all pairwise possibilities (54 pairs). The reduction in

test case size from 81 to 9 in the example above may not

appear to be substantial. It is, nevertheless, appealing for more

complex inputs, such as ten parameters with ten values each.

A total of 1010 test cases will be generated if exhaustive

testing is performed. If pairwise testing is used, the proposed

approach will only yield 172 test cases. Different

mathematical notations have been employed to express such

combinations as the importance of combinatorial testing has

grown. In the next section, mathematical background in the

view of combinatorial testing is discussed.

1.2 Mathematical background

Combinatorial test cases are generated using algebraic and

computational mathematical methodologies. The extensions

of mathematical functions are commonly used in algebraic

procedures for generating Orthogonal Arrays (OA). The basis

for describing combinatorial testing is an OA represented as

OA (N; t; k; v) of size N, and strength t is N x k array in which

there are t-interaction elements that appear exactly N/vt times

for every N x t sub-array. The limitations of an orthogonal

array are that it requires homogeneous parameters and values,

and it is not available for all input parameter combinations. In

general, the computations required by algebraic techniques are

minor. However, algebraic methodologies regularly force

limitations on the framework boundaries and qualities to

which they can be applied [1].

The computational technique, in contrast to the algebraic

approach, typically relies on producing all feasible

combinations. It takes a lot of searching in the combinatorial

space to find all the possible combinations. In the

computational method, One Parameter at Time (OPAT) and

One Test at Time (OTAT) techniques are used for building test

cases. The OTAT technique creates a single test case and uses

a variety of elements to assess its coverage. This approach

iteratively analyses the needed interaction, producing a

complete test case for each iteration. The technique greedily

examines that the generated test case covers the most

unexplored interactions and should be included in the final test

suite at the end of each cycle. In the case of OPAT, a specific

approach builds a final test case in a sequential way, one

parameter at a time. This method builds the test case in stages,

horizontally extending it till it is complete. If necessary,

vertical extension is used to cover any remaining uncovered

interactions [2]. The CA notation is a collection of standard

mathematical notations for defining and constructing

parameter and value combinations. A CA (N; t; k; v) depicts a

N x k array containing v values, where each N x t sub-array

contains all ordered subsets from v values of size t at least k

times [3]. For example, the notation CA (9; 2, 33) represent a

test suite of system with three parameters each with three

values, to cover pairwise interactions. N = 9 indicates nine test

cases are generated using pairwise testing. In some testing

circumstances, parameters may have a variable number of

values. In these cases, the Mixed Covering Array (MCA) is

used. An MCA (N; t; k; (v1, v2, ..., vn)) is a N x k array in

which each column i (1 ≤ i ≤ k) contains only levels from the

set Vi and the rows of each N t sub-array at least once cover

all t-sets from the t columns. For example, a test suite with the

notation MCA (21; 2, 513822) represents N=21 (i.e., twenty-

one test cases) for a system with eleven parameters where one

parameter is having five values, eight parameters are having

three values each and two parameters are having two values

each to cover the two-way (pairwise) interactions.

2. SIGNIFICANCE OF THE WORK

Combinatorial explosion is a well-known issue of hardware

as well as software systems because of the interactions of

many systems configurations. This issue frequently has

significant testing and quality assurance implications [4]. Due

to time and budget restrictions, thorough testing is nearly

impossible. Combinatorial test case generation is an NP-hard

320

problem, which means that as the parameter size grows, the

computational time and degree of problem complexity expand

exponentially [5]. As a result, determining the optimal number

of test cases is challenging. To address this NP-hard problem,

many artificial intelligence-based algorithms have been

designed to find optimal solutions in polynomial time. To

tackle these challenges, a sampling approach is used which

selects a subset of inputs as test data from essentially infinite

search space. Combinatorial test case generation is an NP-hard

problem, which means that the computational time and degree

of problem complexity grow exponentially as the parameter

size grows. As a result, discovering the optimized number of

test cases is a challenging task. According to current research,

artificial intelligence-based testing strategies have shown

success in achieving a solution that is close to ideal, because

of which the size of test cases is smaller than existing strategies.

The authors of this paper suggested Q-value based PSO, a

meta-heuristics-based algorithm for generating an optimal

number of combinatorial test cases. The primary goals of this

research work are listed below:

1. To generate test cases using a Q-value based PSO, which

is simpler to build and has less parameter to define than other

meta-heuristic search methodologies.

2. To put the proposed strategy into practice and report on

an empirical study that examines the significant impact factors

in the proposed approach and verifies its efficacy and

efficiency.

3. REVIEW OF RELATED WORK

In this section, the authors discussed related work into two

parts: meta-heuristics and computational based search

techniques employed to develop combinatorial test cases.

3.1 Meta-heuristic-based techniques

The use of meta-heuristics as a computational approach for

generating combinatorial test cases has recently gotten a lot of

interest. Meta-heuristic-based algorithms appear to

outperform other computational techniques, according to the

literature. Meta-heuristic algorithms, in general, start with a

random number of solutions. To improve these solutions, they

are exposed to a series of adjustments. The appropriate

candidates are chosen at each iteration until all the required

combinations have been covered. Early attempts to produce

combinatorial test cases using meta-heuristic algorithms

included Ant Colony Optimization (ACO), Genetic

Algorithms (GA), and Simulated Annealing (SA). Cohen et al.

[6] employed the SA approach, which uses a vast random

search space and transformation equations which are based on

probability to generate combinatorial test cases. Shiba et al. [7]

introduced a GA algorithm for generating combinatorial test

cases. It all starts with chromosomes, which are randomly

created test instances. On these chromosomes, mutation and

crossover occur until and unless a termination condition is

satisfied. The final test suite is generated by selecting best

chromosomes at each cycle. ACOs, unlike GAs, search for

food in the same way that ants do. The complexity of GA and

ACO algorithms, as well as their potential for consuming

computational resources, has been questioned. SA is prone to

early convergence due to its sensitivity to its initial beginning

point in the search space. As a result of these qualities, these

algorithms are confined to low contact strengths. PSO

algorithm is used to solve an extensive variety of

combinatorial optimization applications. Ahmed et al.

suggested many Particle Swarm Optimization (PSO)

algorithms that simulate bird’s swarm behavior [8-13].

Internally, PSO variant algorithms execute iterative global and

local searches to discover the solution that will be added to the

final suite until all the combination pairs are covered. Prakash

et al. [14] completed a comprehensive review on

combinatorial test case generation using different PSO

algorithms. The performance of the various PSO variant

algorithms was critically discussed. Bewoor et al. evaluated

the performance of PSO with Tabu Search (TS) and GA [15,

16]. It is found that PSO outperforms the other meta-heuristics

for random inputs. Bewoor et al. presented the Hybrid PSO

solution for solving the combinatorial optimization problem of

No Wait Flow Shop Scheduling, indicating that PSO

outperforms other meta-heuristics algorithms [17]. Bangare et

al. have worked in the software testing metrics and provided

the research directions in their software quality work [18-22].

Tatale et al. [23-26] applied meta-heuristics techniques like

SA, PSO to generate combinatorial test cases from UML

sequence and activity diagrams.

3.2 Computational based techniques

A lot of contribution is made by many researchers into

development of computational-based strategies for generating

combinatorial test cases with a wide range of input

configurations. Cohen et al. [27] introduced the Automatic

Efficient Test Generator (AETG) tool based on the OTAT

technique. After building all the required combinations, AETG

builds a test case. For each iteration, AETG produces several

test cases. The test case is carefully selected to cover the most

unexplored combinations among these test cases. Lei and Tai

[28] proposed the In-Parameter-Order (IPO) technique, which

is based on the OPAT strategy. IPO creates a pairwise test set

for the first two parameters, then expands it by creating a pair

for the following three parameters, and so on, until all the

system parameters are covered. If necessary, a vertical growth

is made to cover the uncovered combinations. This tool

performs poorly in terms of test size due to its unpredictable

behavior. The developed Test Vector Generator (TVG) [29] is

tool that produces test cases. The graphical user interface is

designed to generate combinatorial test cases which are based

on the input-output relationship of the system parameters. This

strategy covers n-way combinations of the parameters. By

creating test cases that cover the 1-way interaction, the OTAT

technique [30] was applied. The test cases were then expanded

to include pairwise combinations, and the process was

repeated until all n-way interactions had been covered. the

Eclipse Java plug-in tools Intelligent Test Case Handler

(ITCH) [31] was created to produce test cases for n-way

coverage. This strategy takes a long time and delivers

unfavorable results due to the comprehensive search. Pande et

al. [32-34] have presented a comprehensive review on capsule

networks and applied it for IR which could be further applied

in PSO.

4. PROPOSED WORK

The proposed Q-PSO algorithm is described in this section.

The algorithm is separated into two sections, one for the Q-

value and one for the PSO operation. Section 4.1 describes the

321

creation of particle Q-values, whereas section 4.2 describes the

PSO operation and the Q-PSO flowchart.

4.1 Q-value generation

In the existing PSO algorithm, the test cases are considered

as particles. Each particle consists of pairs of parameters and

values of system configurations. Once the particle is generated,

it calculates the number of pairs generated. These particles are

made up of repeating and unique pairs that other particle in

earlier iterations have covered because of repeating pairs in the

particles, the size of the test suite increases. This is problem of

fitness function of the existing PSO algorithm. To overcome

this problem in the fitness function of the existing PSO

algorithm, the authors of this research article proposed Q-

value based PSO. The Q-value of each particle is calculated

based on the number of pairs generated. When a particle is

chosen, the Q-value of the chosen particle is calculated based

on the reward and penalty of the pairs generated by the particle.

The following is a description of the particle Q-value

generating strategy.

These generated pairs are used to calculate the particle's Q-

values. The penalty and reward are given to the pairs generated

from the selected particles. Unique pairs receive rewards, but

repetitive pairs that other particle in a prior iteration have

already covered receive penalties. The Q-value of the particle

is determined using these penalty and reward operators. The

Q-value is generated based on the below formula.

()
1 1

i *() *()
m m

Value

j j

q UP DP 
= =

= +  (1)

α is the reward operator, which carries positive values, and

β is the penalty operator, which carries negative values. UP is

unique pairs generated by the particle, and DP is duplicate

pairs generated by the particle. k is the number of parameters

of the system configuration, m is maximum pairs generated by

the selected particle, which is calculated using (k x (k-1))/2. If

n particles are in the swarm, the Q-PSO algorithm takes n trials

in one generation. An operator selects a particle based on its

Q-value and operates on the system environment in each trial.

The advantage of this Q-value generation is that it only

considers unique pairs generated; because of this, the size of

the test suite is minimum, and it gives maximum coverage.

4.2 Q-PSO operation

Initialization of the swarm and PSO evolution are two main

steps in the PSO operation in Q-PSO. The Q-values of each

particle in equation (1) create the fitness values for PSO

evolution. The Q-value of each particle affects how well it

manages the system. In the proposed Q-PSO, each particle's

Q-value specifies how rapidly it may move the system's state

to the set of objective states.

Poli et al. [34] proposed the PSO algorithm in 2007. It is a

population-based algorithm that simulates the swarm

behaviour of flocks of birds. PSO consists of sections for local

and global searches that simultaneously manipulate a set

number of potential solutions. The population is considered as

swarm, and each proposed solution is considered as particle.

Each particle keeps track of important information about its

journey in the search space to find a better solution to the

problem. This data is for the randomly selected ith particle

which contains the velocity (vi), position (xi), global best

(gbesti) and personal best (pbesti).

The PSO method generates a random number of particles in

random positions, then modifies their velocity rates to move

them towards pbesti and gbesti respectively. Each particle

moves through the search space by updating its position

according to predefined rules. The velocity and position of the

ith particle for the dth dimension search space are updated as

follows:

Eq. (2) updates the velocity of the particle.

, ,

, ,

, ,

() (-1)

1 ((-1) - (-1))

2 2((-1) - (-1))

i d i d

i d i d

i d i d

Vel n wVel n

c rl gbest n Pos n

c r pbest n Pos n

=

+

+

(2)

Eq. (3) updates the position of the particle.

, , ,- (-1) ()i d i d i dPos X Pos n Vel n= + (3)

where d is the dimension, i is particle index and n are the

number of iterations, the inertia weight factor is w. r1, r2 are

random numbers and c1, c2 are acceleration coefficients which

are used to modify the weight distribution of the particles.

The following section outlines the flowchart and algorithm

of Q-PSO. The flowchart of how each particle evolves by the

end of each trial is shown in Figure 1.

The below is the pseudo code of the proposed Q-PSO

method. The parameters and values of the system

configuration are passed to the Q-PSO algorithm as the first

two arguments.

1. Let Ps be set of all the combinations of parameters and

values

2. Generate pairs Ps

3. Let Ts is a set of candidate tests

4. While particles do not cover all pairs

5. Randomly select particles from the search space

6. Evaluate particles for pairwise interactions with Ps

7. If particle covers unique pairs from Ps

8. Calculate rewards for unique pairs

9. Otherwise calculate penalty for duplicate pairs

10. Calculate Q-value of the particle based on reward and

penalty

11. If Q-value is greater

12. Select particle into solution set Ts

13. End once all the pairs are covered

A combination list, Ps, containing pairwise interactions of

parameters is constructed using combination generator logic

(Line 1 and 2). After then, the programme generates a set of

random parameter values for each particle (Line 5). A

candidate particle (or a candidate test case) enters a check

weight function while attempting to evaluate its coverage in

the search space (Line 6). The check weight function returns

the number of pairs covered after converting a given test case

to its base pairs; for example, a weight of six indicates that the

candidate test case can cover six pairs. Each candidate test case

covers a maximum of (k x (k-1))/2 pairs, where k is the number

of parameters. Indexing is required in this circumstance to

speed up the process of discovering the covered pairings.

The candidate test case is made up of all unique pairs,

duplicate pairs, or a combination of unique and duplicate pairs

that a previously generated test case has already covered in an

earlier iteration. The candidate test case's Q-value is calculated

using the reward and penalty operator (Step 7 to 9). Equation

(1) is used to calculate the Q-value (Line 10). The approach

322

modifies the particle's position in the next iteration using the

update rule (Eqns. (2) and (3)), considering. After changing

the position of the particles, the programme re-evaluates them

and looks for a better Q-value. The algorithm adds particles to

Ts of the output test cases if a better Q-value is found (Line

12). Until Ps is empty, the process is repeated.

Figure 1. Flowchart of the proposed work

5. EXPERIMENTAL RESULTS

The results of the proposed Q-PSO algorithm are discussed

in this section. The proposed Q-PSO algorithm is written in

Python and operates on a Lenovo ThinkPad T400 laptop with

the Windows 10 operating system. The proposed Q-PSO

algorithm is tested using inputs that have been frequently used

in the literature to compare the efficacy of various approaches.

Some inputs have the same number of parameters as others,

and others have a different number of parameters. The authors

of this research article divided the experiments into two parts.

The first section focuses on analyzing and comparing Q-PSO

to previously reported meta-heuristic search results. The

evaluation and comparison of Q-PSO with other

computational-based techniques are discussed in the second

part.

5.1 Result comparison of Q-PSO with existing meta-

heuristic search techniques

The results of Q-PSO directly compared to the results of

some meta-heuristics methods reported by Chen et al. [36].

Furthermore, because both GA and ACA outcomes are

obtained from AETG, the AETG results are compared. The

NA value in the cells shows that the results of those inputs are

Not Available in the published literatures. In all inputs, SA

always generated a minimum size of test cases. However, the

SA strategy was time-consuming because of the large number

of computational resources required. When the input was more

complicated, the current PSO-based technique still produced

promising outcomes. By comparing programming language,

execution time and platform of various techniques, the

efficiency and effectiveness of the PSO technique were proven.

According to the authors, meta-heuristic search approaches

take significantly longer than other greedy methods in most

inputs based on this environment. The results generated in

terms of test case size by each technique are shown in Table 3.

There are usually two phases or stages to these meta-heuristics.

Random test cases with fixed sizes are generated in the first

stage. The second stage uses the meta-heuristic search

techniques to select test cases which cover a wide range of

conceivable combinations. When compared to previous meta-

heuristics methods, the proposed Q-PSO algorithm

outperforms them for some inputs. The proposed Q-PSO

algorithm generates optimized number of test cases than

existing PSTG algorithm for the mixed covering array input

configuration i.e., System S6 to S13.

The Figure 2 represents the comparison of the results

generated using Q-PSO algorithm and existing meta heuristic

search techniques. The results show the number of test cases

generated by each strategy.

Figure 2. Result comparison of Q-PSO with existing meta-

heuristic search techniques

5.2 Result comparison of Q-PSO with existing

computation-based search techniques

The findings of Q-PSO are compared to those of IPOG,

ITCH, Jenny, TConfig, TVG, and other well-known

computational-based techniques. The purpose of the

comparison is to look at how the size of the test cases

generated has grown over time. The number of parameters and

323

values can be fixed (i.e., a covering array) or variable (i.e.,

mixed covering array). Many strategies have been developed

to create covering arrays, and each algorithm is designed to

solve a specific set of issues.

IPO technique is based on the OPAT strategy which

generates pairwise test set for the first two parameters, then

expands it by creating a pair for the following parameters, and

so on, until all the system parameters are covered. If necessary,

a vertical growth is made to cover the uncovered combinations.

This tool performs poorly in terms of test size due to its

unpredictable behavior. TVG technique generates

combinatorial test cases which are based on the input-output

relationship of the system parameters. Jenny technique is

dependent on OTAT strategy. ITCH technique takes a long

time and delivers unfavorable results due to the

comprehensive search.

In the majority of the inputs, Q-PSO beats other techniques,

as seen in Table 4. Though the result Q-PSO algorithm is not

the best for some input configurations, the number of test cases

is within an acceptable range.

The Figure 3 represents the comparison of the results

generated using Q-PSO algorithm and computation-based

techniques. The results show the number of test cases

generated by each strategy.

Figure 3. Result comparison of Q-PSO with existing

computation-based techniques

Table 3. Result comparison in test case size of Q-PSO with existing meta-heuristic search techniques

System System Configuration AETG SA GA ACA PSTG Q-PSO

S1 33 NA NA NA NA 9 9

S2 34 9 9 9 9 9 9

S3 313 15 16 17 17 18 17

S4 1010 NA NA 157 159 170 169

S5 1020 198 183 227 225 213 219

S6 513822 20 15 15 16 21 21

S7 6151463823 34 30 33 32 39 37

S8 716151453823 45 42 42 42 49 42

S9 1019181716151413121 NA NA NA NA 97 86

S10 101624331 NA NA 12 13 65 60

S11 514431125 30 21 26 25 27 27

S12 415317229 37 30 37 37 38 36

S13 41339235 27 21 27 27 27 27

Table 4. Result comparison in test case size of Q-PSO with existing computation-based search techniques

System System Configuration IPO ITCH Jenny TConfig TVG Q-PSO

S1 22 8 6 8 7 7 4

S2 23 17 15 16 15 15 4

S3 24 28 28 28 28 27 6

S4 25 42 45 37 42 42 6

S5 35 14 15 14 14 13 15

S6 36 15 15 15 15 15 15

S7 37 17 15 16 15 15 15

S8 38 17 15 17 17 15 15

S9 39 17 15 18 17 15 15

S10 310 20 15 19 17 16 15

S11 311 20 15 17 20 16 17

S12 312 20 15 19 20 16 17

S13 510 50 45 45 48 50 44

S14 2233 11 15 12 12 10 12

S15 21345 20 28 26 29 27 25

S16 273241102 100 120 106 109 100 87

6. CONCLUSIONS

By keeping the capacity to detect large errors, combinatorial

testing can significantly lower the software testing cost.

Generating optimal number of combinatorial test cases, on the

other hand, is an NP-hard problem that has yet to be solved.

The authors of this research work proposed and evaluated

pairwise testing technique for software test case generation

using Q-value based PSO. The authors were encouraged by the

Q-PSO results, which showed that for most of the system input

324

sizes studied, they were able to get the optimal number of test

cases. Q-PSO outperforms existing meta-heuristics and

computational-based search techniques in the great majority of

cases.

REFERENCES

[1] Cheng, C.S. (1980). Orthogonal arrays with variable

numbers of symbols. The Annals of Statistics, 8(2): 447-

453. http://dx.doi.org/10.1214/aos/1176344964

[2] Hartman, A., Raskin, L. (2004). Problems and algorithms

for covering arrays. Discrete Mathematics, 284(1-3):

149-156. http://dx.doi.org/10.1016/j.disc.2003.11.029

[3] Ronneseth, A.H., Colbourn, C.J. (2009). Merging

covering arrays and compressing multiple sequence

alignments. Discrete Applied Mathematics, 157(9):

2177-2190.

[4] Tatale, S.B., Prakash, V.C. (2020): Enhancing

acceptance test driven development model with

combinatorial logic. International Journal of Advanced

Computer Science and Applications (IJACSA), 11(10):

268-278.

http://dx.doi.org/10.14569/IJACSA.2020.0111036

[5] Kuhn, R., Lei, Y., Kacker, R. (2008). Practical

combinatorial testing: Beyond pairwise. IT Professional,

10(3): 19-23. http://dx.doi.org/10.1109/MITP.2008.54

[6] Cohen, M.B., Colbourn, C.J., Ling, A.C. (2003).

Augmenting simulated annealing to build interaction test

suites. In 14th International Symposium on Software

Reliability Engineering, 2003. ISSRE 2003, Denver, CO,

USA, pp. 394-405.

http://dx.doi.org/10.1109/ISSRE.2003.1251061

[7] Shiba, T., Tsuchiya, T., Kikuno, T. (2004). Using

artificial life techniques to generate test cases for

combinatorial testing. In Proceedings of the 28th Annual

International Computer Software and Applications

Conference, Hong Kong, China, pp. 72-77.

https://doi.org/10.1109/CMPSAC.2004.1342808

[8] Ahmed, B.S., Zamli, K.Z. (2010). PSTG: A t-way

strategy adopting particle swarm optimization. In 2010

Fourth Asia International Conference on

Mathematical/Analytical Modelling and Computer

Simulation, Kota Kinabalu, Malaysia, pp. 1-5.

http://dx.doi.org/10.1109/AMS.2010.14

[9] Ahmed, B.S., Zamli, K.Z. (2011). A variable strength

interaction test suites generation strategy using particle

swarm optimization. Journal of Systems and Software,

84(12): 2171-2185.

http://dx.doi.org/10.1016/j.jss.2011.06.004

[10] Ahmed, B.S., Gambardella, L.M., Afzal, W., Zamli, K.Z.

(2017). Handling constraints in combinatorial interaction

testing in the presence of multi objective particle swarm

and multithreading. Information and software

Technology, 86: 20-36.

http://dx.doi.org/10.1016/j.infsof.2017.02.004

[11] Ahmed, B.S., Sahib, M.A., Potrus, M.Y. (2014).

Generating combinatorial test cases using Simplified

Swarm Optimization (SSO) algorithm for automated

GUI functional testing. Engineering Science and

Technology, an International Journal, 17(4): 218-226.

http://dx.doi.org/10.1016/j.jestch.2014.06.001

[12] Ahmed, B.S., Zamli, K.Z., Lim, C. (2011). The

development of a particle swarm based optimization

strategy for pairwise testing. Journal of Artificial

Intelligence, 4(2): 156-165.

http://dx.doi.org/10.3923/jai.2011.156.165

[13] Ahmed, B.S., Zamli, K.Z., Lim, C.P. (2012). Application

of particle swarm optimization to uniform and variable

strength covering array construction. Applied Soft

Computing, 12(4): 1330-1347.

https://doi.org/10.1016/j.asoc.2011.11.029

[14] Prakash, V., Tatale, S., Kondhalkar, V., Bewoor, L.

(2018). A critical review on automated test case

generation for conducting combinatorial testing using

particle swarm optimization. International Journal of

Engineering and Technology (UAE), 7(3.8): 22-28.

[15] Bewoor, L.A., Chandra Prakash, V., Sapkal, S.U. (2017).

Evolutionary hybrid particle swarm optimization

algorithm for solving NP-hard no-wait flow shop

scheduling problems. Algorithms, 10(4): 121.

http://dx.doi.org/10.3390/a10040121

[16] Bewoor, L.A., Chandraprakash, V., Sapkal, S. (2019).

Evolutionary hybrid particle swarm optimization

algorithm to minimize makespan to schedule a flow shop

with no wait. Journal of Engineering Science and

Technology, 14(2): 609-628.

https://doi.org/10.3390/a10040121

[17] Bewoor, L.A., Prakash, V.C., Sapkal, S.U. (2018).

Production scheduling optimization in foundry using

hybrid Particle Swarm Optimization algorithm. Procedia

Manufacturing, 22: 57-64.

http://dx.doi.org/10.1016/j.promfg.2018.03.010

[18] Bangare, S.L., Bangare, P.S. (2012). Automated testing

in development phase. International Journal of

Engineering Science and Technology, 4(2): 677-680.

[19] Bangare, S.L., Bangare, P.S., Borse, S., Nandedkar, S.

(2012). Automated API testing approach. International

Journal of Engineering Science and Technology, 4(2):

673-676.

[20] Bangare, S.L., Khare, A.R., Bangare, P.S. (2010). Code

parser for object oriented software modularization.

International Journal of Engineering Science and

Technology, 2(12): 7262-7265.

[21] Bangare, S.L., Khare, A.R., Bangare, P.S. (2011).

Quality measurement of modularized object oriented

software using metrics. ICWET '11: International

Conference & Workshop on Emerging Trends in

Technology Mumbai Maharashtra India, pp. 771-774

https://doi.org/10.1145/1980022.1980190

[22] Bangare, S.L., Khare, A.R., Bangare, P.S. (2011).

Measuring the quality of object oriented software

Modularization: Defining metrics and algorithm.

International Journal on Computer Science and

Engineering, 3(1): 445-450.

[23] Tatale, S.B., Prakash, V.C. (2021). A survey on test case

generation using UML diagrams and feasibility study to

generate combinatorial logic oriented test cases.

International Journal of Next-Generation Computing,

12(2): 254-269.

https://doi.org/10.47164/ijngc.v12i2.193

[24] Tatale, S., Prakash, V.C. (2021). Generation of

combinatorial logic oriented test cases from UML

sequence diagram. Journal of Theoretical and Applied

Information Technology, 99(21): 5201-5216.

[25] Tatale, S., Chandra Prakash, V. (2022). Combinatorial

test case generation from sequence diagram using

optimization algorithms. International Journal of System

325

Assurance Engineering and Management, 13: 642-657.

http://dx.doi.org/10.1007/s13198-021-01579-w

[26] Tatale, S., Prakash, V.C. (2022). Automatic generation

and optimization of combinatorial test cases from UML

activity diagram using particle swarm optimization.

Ingénierie des Systèmes d’Information, 27(1): 49-59.

https://doi.org/10.18280/isi.270106

[27] Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.

(1997). The AETG system: An approach to testing based

on combinatorial design. IEEE Transactions on Software

Engineering, 23(7): 437-444.

http://dx.doi.org/10.1109/32.605761

[28] Lei, Y., Tai, K.C. (1998). In-parameter-order: A test

generation strategy for pairwise testing. In Proceedings

Third IEEE International High-Assurance Systems

Engineering Symposium (Cat. No. 98EX231),

Washington, DC, USA, pp. 254-261.

https://doi.org/10.1109/HASE.1998.731623

[29] Arshem J (2010). TVG. Available:

http://sourceforge.net/projects/tvg.

[30] Hartman A, Klinger T, Raski L (2010). IBM Intelligent

Test Case Handler [Online]. Available:

http://www.alphaworks.ibm.com/tech/whitch.

[31] Jenkins B (2010). Jenny Test Tool [Online]. Available:

http://www.burtleburtle.net/bob/math/jenny.html.

[32] Pande, S. D., Chetty, M.S.R. (2018). Analysis of capsule

network (Capsnet) architectures and applications. J Adv

Res Dynam Control Syst, 10(10): 2765-2771.

[33] Pande, S., Chetty, M. (2019). Bezier curve based

medicinal leaf classification using capsule network.

International Journal of Advanced Trends in Computer

Science and Engineering, 8(6): 2735-2742

https://doi.org/10.30534/ijatcse/2019/09862019

[34] Pande, S.D., Chetty, M.S.R. (2021). Fast medicinal leaf

retrieval using CAPSNET. In International Conference

on Intelligent and Smart Computing in Data Analytics,

pp. 149-155. https://doi.org/10.1007/978-981-33-6176-

8_16

[35] Poli, R., Kennedy, J., Blackwell, T. (2007). Particle

swarm optimization. Swarm Intelligence, 1(1): 33-57.

http://dx.doi.org/10.1007/s11721-007-0002-0

[36] Chen, X., Gu, Q., Qi, J., Chen, D. (2010). Applying

particle swarm optimization to pairwise testing. In 2010

IEEE 34th Annual Computer Software and Applications

Conference, Seoul, Korea (South), pp. 107-116.

http://dx.doi.org/10.1109/COMPSAC.2010.17

326

