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Combinatorial testing is an effective method for generating test cases. Pairwise testing is a 

combinatorial approach that evaluates the interactions between the input test parameters 

while reducing test case size by selecting a broader search area. Most combinatorial testing 

research focuses on developing novel approaches for generating an optimal number of test 

cases that cover pairwise combinations of input test parameters. Using existing test case 

generation techniques, optimal or near-optimal combinatorial test cases are generated in 

polynomial time. The authors presented the Q-value-based Particle Swarm Optimization 

(Q-PSO) technique for efficiently and effectively generating an optimal number of test 

cases. The primary goals of the proposed technique are to generate test cases using a Q-

value based PSO, which is easier to build and has fewer parameters to define than other 

meta-heuristic search methodologies and to put the proposed technique into practice and 

report on an empirical study that examines and verifies the significant impact factors in the 

proposed approach. Q-value is used to evaluate the particles (referred to as test cases) in the 

Q-PSO. The reward is totalled in the Q-value, which serves as the fitness function for PSO 

evolution. The Q-value of each particle determines its performance and indicates how

quickly the particle can lead the system's state to the set of objective states. The authors 

used the Q-PSO technique to validate the efficiency and efficacy of the proposed approach.

The Q-PSO technique's results are compared to existing metaheuristics and computation-

based techniques. In most inputs based on the development environment, meta-heuristic

search techniques take significantly longer than other greedy techniques. For some inputs,

the proposed Q-PSO technique outperforms existing meta-heuristics techniques. Q-PSO

results are also compared to IPOG, ITCH, Jenny, TConfig, TVG, and other well-known

computational-based techniques. The goal of the comparison is to examine how the size of

the test cases generated has grown over time.
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1. INTRODUCTION

Unexpected interactions between software and system 

elements become increasingly prevalent as the complexity of 

a software project grows. These undesired encounters 

sometimes lead unwanted and difficult issues to detect. 

Regression testing, test case generation, test oracle problem, 

test coverage criterion design, and fault localization problem 

are the new research focus areas of software testing domain. 

The researchers presently recognized that the test case 

generation as a promising and attentive research area. The test 

case generation is considered as a promising and attentive 

research area by researchers nowadays. In this paper, the 

authors are giving more emphasis on generating combinatorial 

test cases. In the section, combinatorial testing and 

mathematical background of the proposed approach is 

summarized.  

1.1 Overview of combinatorial testing 

Combinatorial Testing (CT) is a specification-based test 

case generation technique and develops test cases depending 

on the artefacts being evaluated, which are based on functional 

requirements or complete development specifications. It is a 

helpful technique for discovering hardware or software 

systems issues based on the combinations of input or output 

system parameters. The input or output parameters of 

graphical user interfaces, entire software product and web 

forms have been tested using this technique. 

Pairwise testing is one of the most extensively used 

combinatorial testing strategies. Because it examines all 

possible combinations of all input parameters, it is a valuable 

testing technique that considers all discrete possibilities of 

each pair of system input parameters. Exhaustive testing takes 

more time than pairwise testing, since the common of software 

problems are occurred by a single or two input parameters.  

Let us consider an e-commerce configurable software 

system as a model to explain pairwise testing. In this case, 

there are four parameters in the system. The user can make 

payments through different smart phones using different 

payment modes made available by the system. Different web 

servers and database servers are the other system 

configurations of the e-commerce software system.  

Table 1 shows the system configurations, which have four 

parameters combined with three values for each parameter. 

Although multiple testing methodologies for this software 

system may be helpful, unanticipated interactions between 

parameters are a general problem of failure of the software’s. 

If the number of parameters and values rises, the software is 

more likely to fail. Manufacturers may need to analyze all 
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potential combinations of parameters to limit this danger and 

ensure the quality of such software. It is known as exhaustive 

testing, and it necessitates 81 test cases (i.e., 3x3x3x3). The 

pairs are nothing more than interactions between parameter 

values, and they are determined using the formula below. 

The total number of pairs generated = (Par - 1 + Par – 2 +...+ 

Par - n) * (Val2), where Par denotes the number of parameters 

and Val denotes the number of values of those parameters. 

Total (3+2+1) * 32 = 54 pairs (two-way) are formed in the 

given case. However, as shown in Table 2, only nine test cases 

can be used to investigate all these pairwise interactions of 

system characteristics. 

Table 1. Configurations of E-commerce software system 

Configurations / Parameters Smart Phone Payment Mode Web Server Database Server 

Values IPhone Paypal Tomcat SQL 

Android Google pay Glassfish MongoDB 

Amazon Fire Phone Phone pay WebSphere Access 

Table 2. Pairwise test cases for the system configurations in Table 1 

Test Case No. Smart Phone Payment Mode Web Server Database Server 

1 Amazon Fire Phone Phone pay Tomcat Access 

2 Amazon Fire Phone Google pay WebSphere MongoDB 

3 Android Phone pay WebSphere SQL 

4 Android Google pay Glassfish Access 

5 IPhone Phone pay Glassfish MongoDB 

6 Android Paypal Tomcat MongoDB 

7 IPhone Google pay Tomcat SQL 

8 IPhone Paypal WebSphere Access 

9 Amazon Fire Phone Paypal Glassfish SQL 

This reduces the number of test instances (9 from 81) while 

covering all pairwise possibilities (54 pairs). The reduction in 

test case size from 81 to 9 in the example above may not 

appear to be substantial. It is, nevertheless, appealing for more 

complex inputs, such as ten parameters with ten values each. 

A total of 1010 test cases will be generated if exhaustive 

testing is performed. If pairwise testing is used, the proposed 

approach will only yield 172 test cases. Different 

mathematical notations have been employed to express such 

combinations as the importance of combinatorial testing has 

grown. In the next section, mathematical background in the 

view of combinatorial testing is discussed. 

1.2 Mathematical background 

Combinatorial test cases are generated using algebraic and 

computational mathematical methodologies. The extensions 

of mathematical functions are commonly used in algebraic 

procedures for generating Orthogonal Arrays (OA). The basis 

for describing combinatorial testing is an OA represented as 

OA (N; t; k; v) of size N, and strength t is N x k array in which 

there are t-interaction elements that appear exactly N/vt times 

for every N x t sub-array. The limitations of an orthogonal 

array are that it requires homogeneous parameters and values, 

and it is not available for all input parameter combinations. In 

general, the computations required by algebraic techniques are 

minor. However, algebraic methodologies regularly force 

limitations on the framework boundaries and qualities to 

which they can be applied [1]. 

The computational technique, in contrast to the algebraic 

approach, typically relies on producing all feasible 

combinations. It takes a lot of searching in the combinatorial 

space to find all the possible combinations. In the 

computational method, One Parameter at Time (OPAT) and 

One Test at Time (OTAT) techniques are used for building test 

cases. The OTAT technique creates a single test case and uses 

a variety of elements to assess its coverage. This approach 

iteratively analyses the needed interaction, producing a 

complete test case for each iteration. The technique greedily 

examines that the generated test case covers the most 

unexplored interactions and should be included in the final test 

suite at the end of each cycle. In the case of OPAT, a specific 

approach builds a final test case in a sequential way, one 

parameter at a time. This method builds the test case in stages, 

horizontally extending it till it is complete. If necessary, 

vertical extension is used to cover any remaining uncovered 

interactions [2]. The CA notation is a collection of standard 

mathematical notations for defining and constructing 

parameter and value combinations. A CA (N; t; k; v) depicts a 

N x k array containing v values, where each N x t sub-array 

contains all ordered subsets from v values of size t at least k 

times [3]. For example, the notation CA (9; 2, 33) represent a 

test suite of system with three parameters each with three 

values, to cover pairwise interactions. N = 9 indicates nine test 

cases are generated using pairwise testing. In some testing 

circumstances, parameters may have a variable number of 

values. In these cases, the Mixed Covering Array (MCA) is 

used. An MCA (N; t; k; (v1, v2, ..., vn)) is a N x k array in 

which each column i (1 ≤ i ≤ k) contains only levels from the 

set Vi and the rows of each N t sub-array at least once cover 

all t-sets from the t columns. For example, a test suite with the 

notation MCA (21; 2, 513822) represents N=21 (i.e., twenty-

one test cases) for a system with eleven parameters where one 

parameter is having five values, eight parameters are having 

three values each and two parameters are having two values 

each to cover the two-way (pairwise) interactions. 

2. SIGNIFICANCE OF THE WORK

Combinatorial explosion is a well-known issue of hardware 

as well as software systems because of the interactions of 

many systems configurations. This issue frequently has 

significant testing and quality assurance implications [4]. Due 

to time and budget restrictions, thorough testing is nearly 

impossible. Combinatorial test case generation is an NP-hard 
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problem, which means that as the parameter size grows, the 

computational time and degree of problem complexity expand 

exponentially [5]. As a result, determining the optimal number 

of test cases is challenging. To address this NP-hard problem, 

many artificial intelligence-based algorithms have been 

designed to find optimal solutions in polynomial time. To 

tackle these challenges, a sampling approach is used which 

selects a subset of inputs as test data from essentially infinite 

search space. Combinatorial test case generation is an NP-hard 

problem, which means that the computational time and degree 

of problem complexity grow exponentially as the parameter 

size grows. As a result, discovering the optimized number of 

test cases is a challenging task. According to current research, 

artificial intelligence-based testing strategies have shown 

success in achieving a solution that is close to ideal, because 

of which the size of test cases is smaller than existing strategies. 

The authors of this paper suggested Q-value based PSO, a 

meta-heuristics-based algorithm for generating an optimal 

number of combinatorial test cases. The primary goals of this 

research work are listed below: 

1. To generate test cases using a Q-value based PSO, which

is simpler to build and has less parameter to define than other 

meta-heuristic search methodologies. 

2. To put the proposed strategy into practice and report on

an empirical study that examines the significant impact factors 

in the proposed approach and verifies its efficacy and 

efficiency. 

3. REVIEW OF RELATED WORK

In this section, the authors discussed related work into two 

parts: meta-heuristics and computational based search 

techniques employed to develop combinatorial test cases. 

3.1 Meta-heuristic-based techniques 

The use of meta-heuristics as a computational approach for 

generating combinatorial test cases has recently gotten a lot of 

interest. Meta-heuristic-based algorithms appear to 

outperform other computational techniques, according to the 

literature. Meta-heuristic algorithms, in general, start with a 

random number of solutions. To improve these solutions, they 

are exposed to a series of adjustments. The appropriate 

candidates are chosen at each iteration until all the required 

combinations have been covered. Early attempts to produce 

combinatorial test cases using meta-heuristic algorithms 

included Ant Colony Optimization (ACO), Genetic 

Algorithms (GA), and Simulated Annealing (SA). Cohen et al. 

[6] employed the SA approach, which uses a vast random

search space and transformation equations which are based on

probability to generate combinatorial test cases. Shiba et al. [7]

introduced a GA algorithm for generating combinatorial test

cases. It all starts with chromosomes, which are randomly

created test instances. On these chromosomes, mutation and

crossover occur until and unless a termination condition is

satisfied. The final test suite is generated by selecting best

chromosomes at each cycle. ACOs, unlike GAs, search for

food in the same way that ants do. The complexity of GA and

ACO algorithms, as well as their potential for consuming

computational resources, has been questioned. SA is prone to

early convergence due to its sensitivity to its initial beginning

point in the search space. As a result of these qualities, these

algorithms are confined to low contact strengths. PSO

algorithm is used to solve an extensive variety of 

combinatorial optimization applications. Ahmed et al. 

suggested many Particle Swarm Optimization (PSO) 

algorithms that simulate bird’s swarm behavior [8-13]. 

Internally, PSO variant algorithms execute iterative global and 

local searches to discover the solution that will be added to the 

final suite until all the combination pairs are covered. Prakash 

et al. [14] completed a comprehensive review on 

combinatorial test case generation using different PSO 

algorithms. The performance of the various PSO variant 

algorithms was critically discussed. Bewoor et al. evaluated 

the performance of PSO with Tabu Search (TS) and GA [15, 

16]. It is found that PSO outperforms the other meta-heuristics 

for random inputs. Bewoor et al. presented the Hybrid PSO 

solution for solving the combinatorial optimization problem of 

No Wait Flow Shop Scheduling, indicating that PSO 

outperforms other meta-heuristics algorithms [17]. Bangare et 

al. have worked in the software testing metrics and provided 

the research directions in their software quality work [18-22]. 

Tatale et al. [23-26] applied meta-heuristics techniques like 

SA, PSO to generate combinatorial test cases from UML 

sequence and activity diagrams. 

3.2 Computational based techniques 

A lot of contribution is made by many researchers into 

development of computational-based strategies for generating 

combinatorial test cases with a wide range of input 

configurations. Cohen et al. [27] introduced the Automatic 

Efficient Test Generator (AETG) tool based on the OTAT 

technique. After building all the required combinations, AETG 

builds a test case. For each iteration, AETG produces several 

test cases. The test case is carefully selected to cover the most 

unexplored combinations among these test cases. Lei and Tai 

[28] proposed the In-Parameter-Order (IPO) technique, which

is based on the OPAT strategy. IPO creates a pairwise test set

for the first two parameters, then expands it by creating a pair

for the following three parameters, and so on, until all the

system parameters are covered. If necessary, a vertical growth

is made to cover the uncovered combinations. This tool

performs poorly in terms of test size due to its unpredictable

behavior. The developed Test Vector Generator (TVG) [29] is

tool that produces test cases. The graphical user interface is

designed to generate combinatorial test cases which are based

on the input-output relationship of the system parameters. This

strategy covers n-way combinations of the parameters. By

creating test cases that cover the 1-way interaction, the OTAT

technique [30] was applied. The test cases were then expanded

to include pairwise combinations, and the process was

repeated until all n-way interactions had been covered. the

Eclipse Java plug-in tools Intelligent Test Case Handler

(ITCH) [31] was created to produce test cases for n-way

coverage. This strategy takes a long time and delivers

unfavorable results due to the comprehensive search. Pande et

al. [32-34] have presented a comprehensive review on capsule

networks and applied it for IR which could be further applied

in PSO.

4. PROPOSED WORK

The proposed Q-PSO algorithm is described in this section. 

The algorithm is separated into two sections, one for the Q-

value and one for the PSO operation. Section 4.1 describes the 
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creation of particle Q-values, whereas section 4.2 describes the 

PSO operation and the Q-PSO flowchart. 

4.1 Q-value generation 

In the existing PSO algorithm, the test cases are considered 

as particles. Each particle consists of pairs of parameters and 

values of system configurations. Once the particle is generated, 

it calculates the number of pairs generated. These particles are 

made up of repeating and unique pairs that other particle in 

earlier iterations have covered because of repeating pairs in the 

particles, the size of the test suite increases. This is problem of 

fitness function of the existing PSO algorithm. To overcome 

this problem in the fitness function of the existing PSO 

algorithm, the authors of this research article proposed Q-

value based PSO. The Q-value of each particle is calculated 

based on the number of pairs generated. When a particle is 

chosen, the Q-value of the chosen particle is calculated based 

on the reward and penalty of the pairs generated by the particle. 

The following is a description of the particle Q-value 

generating strategy. 

These generated pairs are used to calculate the particle's Q-

values. The penalty and reward are given to the pairs generated 

from the selected particles. Unique pairs receive rewards, but 

repetitive pairs that other particle in a prior iteration have 

already covered receive penalties. The Q-value of the particle 

is determined using these penalty and reward operators. The 

Q-value is generated based on the below formula.

( )
1 1

i *( ) *( )
m m

Value

j j

q UP DP 
= =

= +  (1) 

α is the reward operator, which carries positive values, and 

β is the penalty operator, which carries negative values. UP is 

unique pairs generated by the particle, and DP is duplicate 

pairs generated by the particle. k is the number of parameters 

of the system configuration, m is maximum pairs generated by 

the selected particle, which is calculated using (k x (k-1))/2. If 

n particles are in the swarm, the Q-PSO algorithm takes n trials 

in one generation. An operator selects a particle based on its 

Q-value and operates on the system environment in each trial.

The advantage of this Q-value generation is that it only

considers unique pairs generated; because of this, the size of

the test suite is minimum, and it gives maximum coverage.

4.2 Q-PSO operation 

Initialization of the swarm and PSO evolution are two main 

steps in the PSO operation in Q-PSO. The Q-values of each 

particle in equation (1) create the fitness values for PSO 

evolution. The Q-value of each particle affects how well it 

manages the system. In the proposed Q-PSO, each particle's 

Q-value specifies how rapidly it may move the system's state

to the set of objective states.

Poli et al. [34] proposed the PSO algorithm in 2007. It is a 

population-based algorithm that simulates the swarm 

behaviour of flocks of birds. PSO consists of sections for local 

and global searches that simultaneously manipulate a set 

number of potential solutions. The population is considered as 

swarm, and each proposed solution is considered as particle. 

Each particle keeps track of important information about its 

journey in the search space to find a better solution to the 

problem. This data is for the randomly selected ith particle 

which contains the velocity (vi), position (xi), global best 

(gbesti) and personal best (pbesti). 

The PSO method generates a random number of particles in 

random positions, then modifies their velocity rates to move 

them towards pbesti and gbesti respectively. Each particle 

moves through the search space by updating its position 

according to predefined rules. The velocity and position of the 

ith particle for the dth dimension search space are updated as 

follows: 

Eq. (2) updates the velocity of the particle. 

, ,

, ,

, ,

( ) ( -1)

1 ( ( -1) - ( -1))

2 2( ( -1) - ( -1))

i d i d

i d i d

i d i d

Vel n wVel n

c rl gbest n Pos n

c r pbest n Pos n

=

+

+

(2) 

Eq. (3) updates the position of the particle. 

, , ,- ( -1) ( )i d i d i dPos X Pos n Vel n= + (3) 

where d is the dimension, i is particle index and n are the 

number of iterations, the inertia weight factor is w. r1, r2 are 

random numbers and c1, c2 are acceleration coefficients which 

are used to modify the weight distribution of the particles. 

The following section outlines the flowchart and algorithm 

of Q-PSO. The flowchart of how each particle evolves by the 

end of each trial is shown in Figure 1. 

The below is the pseudo code of the proposed Q-PSO 

method. The parameters and values of the system 

configuration are passed to the Q-PSO algorithm as the first 

two arguments.  

1. Let Ps be set of all the combinations of parameters and

values

2. Generate pairs Ps

3. Let Ts is a set of candidate tests

4. While particles do not cover all pairs

5. Randomly select particles from the search space

6. Evaluate particles for pairwise interactions with Ps

7. If particle covers unique pairs from Ps

8. Calculate rewards for unique pairs

9. Otherwise calculate penalty for duplicate pairs

10. Calculate Q-value of the particle based on reward and

penalty

11. If Q-value is greater

12. Select particle into solution set Ts

13. End once all the pairs are covered

A combination list, Ps, containing pairwise interactions of

parameters is constructed using combination generator logic 

(Line 1 and 2). After then, the programme generates a set of 

random parameter values for each particle (Line 5). A 

candidate particle (or a candidate test case) enters a check 

weight function while attempting to evaluate its coverage in 

the search space (Line 6). The check weight function returns 

the number of pairs covered after converting a given test case 

to its base pairs; for example, a weight of six indicates that the 

candidate test case can cover six pairs. Each candidate test case 

covers a maximum of (k x (k-1))/2 pairs, where k is the number 

of parameters. Indexing is required in this circumstance to 

speed up the process of discovering the covered pairings. 

The candidate test case is made up of all unique pairs, 

duplicate pairs, or a combination of unique and duplicate pairs 

that a previously generated test case has already covered in an 

earlier iteration. The candidate test case's Q-value is calculated 

using the reward and penalty operator (Step 7 to 9). Equation 

(1) is used to calculate the Q-value (Line 10). The approach
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modifies the particle's position in the next iteration using the 

update rule (Eqns. (2) and (3)), considering. After changing 

the position of the particles, the programme re-evaluates them 

and looks for a better Q-value. The algorithm adds particles to 

Ts of the output test cases if a better Q-value is found (Line 

12). Until Ps is empty, the process is repeated.  

 

 
 

Figure 1. Flowchart of the proposed work 

 

 

5. EXPERIMENTAL RESULTS  

 

The results of the proposed Q-PSO algorithm are discussed 

in this section. The proposed Q-PSO algorithm is written in 

Python and operates on a Lenovo ThinkPad T400 laptop with 

the Windows 10 operating system. The proposed Q-PSO 

algorithm is tested using inputs that have been frequently used 

in the literature to compare the efficacy of various approaches. 

Some inputs have the same number of parameters as others, 

and others have a different number of parameters. The authors 

of this research article divided the experiments into two parts. 

The first section focuses on analyzing and comparing Q-PSO 

to previously reported meta-heuristic search results. The 

evaluation and comparison of Q-PSO with other 

computational-based techniques are discussed in the second 

part. 

 

5.1 Result comparison of Q-PSO with existing meta-

heuristic search techniques  

 

The results of Q-PSO directly compared to the results of 

some meta-heuristics methods reported by Chen et al. [36]. 

Furthermore, because both GA and ACA outcomes are 

obtained from AETG, the AETG results are compared. The 

NA value in the cells shows that the results of those inputs are 

Not Available in the published literatures. In all inputs, SA 

always generated a minimum size of test cases. However, the 

SA strategy was time-consuming because of the large number 

of computational resources required. When the input was more 

complicated, the current PSO-based technique still produced 

promising outcomes. By comparing programming language, 

execution time and platform of various techniques, the 

efficiency and effectiveness of the PSO technique were proven. 

According to the authors, meta-heuristic search approaches 

take significantly longer than other greedy methods in most 

inputs based on this environment. The results generated in 

terms of test case size by each technique are shown in Table 3. 

There are usually two phases or stages to these meta-heuristics. 

Random test cases with fixed sizes are generated in the first 

stage. The second stage uses the meta-heuristic search 

techniques to select test cases which cover a wide range of 

conceivable combinations. When compared to previous meta-

heuristics methods, the proposed Q-PSO algorithm 

outperforms them for some inputs. The proposed Q-PSO 

algorithm generates optimized number of test cases than 

existing PSTG algorithm for the mixed covering array input 

configuration i.e., System S6 to S13. 

The Figure 2 represents the comparison of the results 

generated using Q-PSO algorithm and existing meta heuristic 

search techniques. The results show the number of test cases 

generated by each strategy. 

 

 
 

Figure 2. Result comparison of Q-PSO with existing meta-

heuristic search techniques 

 

5.2 Result comparison of Q-PSO with existing 

computation-based search techniques 

 

The findings of Q-PSO are compared to those of IPOG, 

ITCH, Jenny, TConfig, TVG, and other well-known 

computational-based techniques. The purpose of the 

comparison is to look at how the size of the test cases 

generated has grown over time. The number of parameters and 
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values can be fixed (i.e., a covering array) or variable (i.e., 

mixed covering array). Many strategies have been developed 

to create covering arrays, and each algorithm is designed to 

solve a specific set of issues. 

IPO technique is based on the OPAT strategy which 

generates pairwise test set for the first two parameters, then 

expands it by creating a pair for the following parameters, and 

so on, until all the system parameters are covered. If necessary, 

a vertical growth is made to cover the uncovered combinations. 

This tool performs poorly in terms of test size due to its 

unpredictable behavior. TVG technique generates 

combinatorial test cases which are based on the input-output 

relationship of the system parameters. Jenny technique is 

dependent on OTAT strategy. ITCH technique takes a long 

time and delivers unfavorable results due to the 

comprehensive search.  

In the majority of the inputs, Q-PSO beats other techniques, 

as seen in Table 4. Though the result Q-PSO algorithm is not 

the best for some input configurations, the number of test cases 

is within an acceptable range. 

The Figure 3 represents the comparison of the results 

generated using Q-PSO algorithm and computation-based 

techniques. The results show the number of test cases 

generated by each strategy. 

 

 
 

Figure 3. Result comparison of Q-PSO with existing 

computation-based techniques 

 

Table 3. Result comparison in test case size of Q-PSO with existing meta-heuristic search techniques 

 
System System Configuration AETG SA GA ACA PSTG Q-PSO 

S1 33 NA NA NA NA 9 9 

S2 34 9 9 9 9 9 9 

S3 313 15 16 17 17 18 17 

S4 1010 NA NA 157 159 170 169 

S5 1020 198 183 227 225 213 219 

S6 513822 20 15 15 16 21 21 

S7 6151463823 34 30 33 32 39 37 

S8 716151453823 45 42 42 42 49 42 

S9 1019181716151413121 NA NA NA NA 97 86 

S10 101624331 NA NA 12 13 65 60 

S11 514431125 30 21 26 25 27 27 

S12 415317229 37 30 37 37 38 36 

S13 41339235 27 21 27 27 27 27 

 

Table 4. Result comparison in test case size of Q-PSO with existing computation-based search techniques 

 
System System Configuration IPO ITCH Jenny TConfig TVG Q-PSO 

S1 22 8 6 8 7 7 4 

S2 23 17 15 16 15 15 4 

S3 24 28 28 28 28 27 6 

S4 25 42 45 37 42 42 6 

S5 35 14 15 14 14 13 15 

S6 36 15 15 15 15 15 15 

S7 37 17 15 16 15 15 15 

S8 38 17 15 17 17 15 15 

S9 39 17 15 18 17 15 15 

S10 310 20 15 19 17 16 15 

S11 311 20 15 17 20 16 17 

S12 312 20 15 19 20 16 17 

S13 510 50 45 45 48 50 44 

S14 2233 11 15 12 12 10 12 

S15 21345 20 28 26 29 27 25 

S16 273241102 100 120 106 109 100 87 

 

 

6. CONCLUSIONS  

 

By keeping the capacity to detect large errors, combinatorial 

testing can significantly lower the software testing cost. 

Generating optimal number of combinatorial test cases, on the 

other hand, is an NP-hard problem that has yet to be solved. 

The authors of this research work proposed and evaluated 

pairwise testing technique for software test case generation 

using Q-value based PSO. The authors were encouraged by the 

Q-PSO results, which showed that for most of the system input 
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sizes studied, they were able to get the optimal number of test 

cases. Q-PSO outperforms existing meta-heuristics and 

computational-based search techniques in the great majority of 

cases. 
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