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The optimal regime models implement parameters presented by nominal values, intervals, 

fuzzy models, intuitionistic models. Unfortunately, these models are restrictive and ignore 

a significant portion of the knowledge contained in the specifications. To overcome this 

problem, we propose an optimal system that implements deep learning artificial neural 

networks and fuzzy genetic algorithms for the first time in the literature. The deep neural 

network extracts the information, the neural network units memorize this information, 

genetic algorithms select the best architecture of the auto-encoder basing on new regulation 

function, and fuzzy logic allows some flexibility for our system. First, we collect the 

expert's nutrients recommendations from different expert research papers. These 

recommendations are, then, represented in terms of trapezoidal numbers by adopting 

appropriate rules that encourage the consumption of the favorable nutrients and limit 

consumption of the unfavorable nutrients in daily diets. Then, we generate large data sets 

basing on the trapezoidal representation. To transform the expert's recommendations into 

significant crisp values, we call the auto-encoder neural network, and we propose an 

original regulation term that controls all the auto-encoder units. To select the best auto-

encoder architecture, we use the fuzzy genetic algorithm basing on a simple fuzzy rule to 

determine the crossover percent, the mutation percent, and the population size at each 

iteration. Compared to the random systems, the proposed method has shown a great 

capacity to generalize its experience to unseen recommendations. In a clinical setting, our 

system can be used by a dietician to accurately determine the daily nutrient requirements 

of a given individual. 

Keywords: 

auto-encoder, fuzzy logic, genetic algorithm, 

deep learning, mixed-variable optimization 

1. INTRODUCTION

Mathematical programming plays an essential role in the 

field of nutrition, particularly in determining optimal diets for 

individuals suffering from chronic diseases [1, 2]. These 

Mathematical programming differ in the objective functions 

considered, the manner to consider favorable nutrients, 

unfavorable nutrients, and in the manner to estimate the 

requirements. Determining an optimal diet involves four steps: 

(a) definition of the target population, (b) quantification of the

knowledge about the different nutrients, (c) mathematical

modeling of the diet problem [1-3], and (d) solving the

resulting problem by a suitable optimization method [3, 4]. As

knowledge about nutrients is the basis of statistical studies,

they are subject to uncertainty which makes phase two very

difficult and strongly influences the quality of the resulting

diet [3-5].

This article is in the context of artificial intelligence, 

particularly in the area of knowledge representation in the field 

of nutrition. In this regard, we propose a representation of 

nutrients expert knowledge based on an optimal auto-encoder 

based on a new regulation function for the first time in the 

literature [6]. Generally, in order to model the problem of 

optimal diet, one needs to know the individual's daily 

requirements of favorable and unfavorable nutrients. The 

representation by mean values is adopted in several works; it 

is very easy to treat especially in the phase of the resolution of 

the model but a single value does not allow to represent 

faithfully a vague information [7, 8]. The representation by a 

single interval considers a nominal value and the maximum 

deviation around this value [9]; this representation gives the 

same probability to different individuals without taking into 

account the age, gender, weight and height of the target 

individuals [10, 11]. The exhaustive representation takes into 

account all the details contained in the experts' knowledge; this 

results in giant tables that are difficult to manage in the model 

resolution phase [8, 10-12]. The representation based on fuzzy 

logic uses the knowledge of different experts to build 

membership functions reflecting the degree of trueness of such 

information [3]; this representation does not take into account 

the doubt that an expert can have on his decisions. Giving an 

estimate of daily nutrient requirement in terms of a single 

value for all ages and genders is a restrictive approach that is 

subject to over- or underestimation. In this article, we propose 

a personalized representation of nutrients expert knowledge 

based on trapezoidal numbers, an optimal auto-encoder based 

on a new regulation function [6], and on fuzzy genetic 

algorithm [7]. The trapezoidal numbers permit to generate a 

huge data set with labeled samples which permitted to set the 

parameters of the auto-encoder basing the new regulation 
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function. This latter permitted the selection of optimal 

architecture for the auto-encoder with two hidden layers of 

only 5 units capable to predict the requirements of unseen 

individuals for all 14 favorable nutrients and 4 unfavorable 

nutrients. Compared to the fuzzy, means, worst, and the 

random auto-encoder, the proposed method has shown a great 

capacity to generalize its experience to unseen 

recommendations and produces requirements estimations 

appropriate to individuals given their characteristics.  

The rest of this article is organized as follows. In the second 

paragraph, we present the interest of mathematical 

programming to optimal diet and we point out the problem of 

requirements estimation. In the third section, we give our 

proposed process to transform expert nutrient 

recommendations into trapezoidal numbers. In the fourth 

paragraph, we present our control function to control the auto-

encoder architecture. Towards the end, we use a fuzzy genetic 

algorithm to select an auto-encoder with an optimal 

architecture. We test the proposed system on large data sets 

that we generate based on trapezoidal numbers.  

 

 

2. MATHEMATICAL PROGRAMMING TO OPTIMAL 

DIET AND THE NUTRIMENTS REQUIREMENT 

PROBLEM 

 

Over the years, the optimal regime problem has been the 

focus of many researchers whose contributions vary only in 

the objective functions considered. Stigler & Danzig 

introduced the first optimization model in which the objective 

function is the cost of the diet while the constraints represent 

the requirements on the good balance of the diet [13]. In the 

model proposed in Ref. [14], the objective function makes a 

trade-off between the different meals using the penalty 

technique. In this context, the authors consider the three usual 

meals, a snack and a portion of fruit. The proposal of Masset 

et al. [15] aims at controlling the difference between the actual 

and recommended intake according to the nutritional 

requirements. Additional investigations have proposed 

complementary diets and nutritional menus at minimal cost to 

children [16]. To control different objectives at the same time, 

other authors have used multi-objective mathematical models 

[16, 17]. Van Mierlo et al. [18] considered almost the same 

situation by substituting the cost of the diet with the 

minimization of fossil fuel depletion. Cholesterol intake and 

glycemic load are known to be the main factors contributing 

to childhood obesity and were the subject of the two objective 

functions of the multi-objective model proposed by Taniguchi 

[19].  

Generally, in order to model the problem of optimal diet, 

one needs to know the individual's daily requirements of 

favorable and unfavorable nutrients. Several favorable and 

unfavorable nutrients exist but almost all research studies 

solve the optimal diet problem based on Calories (2000 kcal), 

Protein (91 g), Carbohydrate (271 g), Potassium (4044 mg), 

Magnesium (380 mg), Calcium (1316 mg), Iron (18 mg), 

Phosphorus (1740 mg), Zinc (14 mg), Vitamin b6 (2.4 mg), 

Vitamin b12 (8.3 µg), Vitamin C (155 mg), Vitamin A (1052 

µg), Vitamin E (9.5 mg), Satured fat (17 g), Sodium (1779 mg), 

Total fat (65 g), and Cholesterol (230 mg) [5, 17, 19]. In 

parentheses, we give the estimates of favorable and 

unfavorable nutrient requirements adopted in Refs. [5-20]. 

To point out the daily nutrient’s requirements, consider, for 

example, the favorable nutrient Potassium. In 2019, the 

committee of the Academies of Science, Engineering, and 

Medicine (NASEM) updated the Dietary Reference Intakes 

(DRIs) for potassium (and sodium) [21]. The committee found 

the data insufficient to derive an estimated average 

requirement (EAR) for potassium. Therefore, it established 

AIs for all ages based on the highest median potassium intakes 

in healthy children and adults, and on estimates of potassium 

intakes from breast milk and complementary foods in infants. 

Table 1 presents the current potassium AIs for healthy 

individuals.  

 

Table 1. Adequate Intakes (AIs) for Potassium 

 
Age  Male Female Pregnancy 

Birth to 6 months 400 mg 400 mg  

7–12 months 860 mg 860 mg  

1–3 years  2000 mg 2000 mg  

4–8 years  2,300 mg 2,300 mg  

9–13 years 2,500 mg 2,300 mg  

14–18 years 3,000 mg 2,300 mg 2,600 mg 

19–50 years 3,400 mg 2,600 mg 2,900 mg 

51+ years 3,400 mg 2,600 mg  

 

So, according to this table, the value 4044 mg [5] is a very 

exaggerated over-estimate and does not take into account the 

age, gender, pregency etc. 

The idea proposed in this work is to generate a database on 

Table 1 and on the notion of triangular fuzzy numbers. A part 

of this database is used to educate an auto-encoder neural 

network. Then, given an individual (age, gender, ...), never 

seen before, our auto-encoder will give an adequate estimation 

of the needs of our individual in terms of Potassium. This 

process will be generalized to other nutrients (favorable or 

unfavorable), which will allow to automate and personalize the 

needs in a precise way.  

It should be noted that the models proposed in the literature 

to solve the optimal diet problem are based on nominal (for 

example average) estimations of favorable and unfavorable 

nutrient requirements. In this sense, it is the first time in the 

literature that a technique based on auto-encoding is 

implemented to predict the requirements of different nutrients. 

 

 

3. KNOWLEDGES REPRESENTATION MODEL TO 

DATA SETS GENERATION  

 

First, we collected the experts’ nutrients recommendations 

from different nutrient research papers [11, 12]. Then we 

transform these requirements intervals knowledge to 

trapezoidal numbers. Figure 1 presents the type of adopted 

trapezoidal function. The trapezoidal number (TN) associated 

with this function is denoted by <a,b,c,d>.  

 

 
 

Figure 1. Trapezoidal function of the support [a b] 

 

To construct the trapezoidal numbers from the requirements 
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intervals, we adopt the following rules: 

(rule 1) IF the nutrient is favorable, THEN we favor the 

upper bound by weighted it with .8 and lower bound by .2 (this 

will encourage the consumption of the favorable nutrients). 

Example: iron is a favorable nutrient and individual (whose 

age is great than 9 years) minimum needs is given by the 

interval 10-18 mg. We favor the upper bounds, a=10, d=18, 

b=.8*18+.2*10=16.4, and c=.2*16.4+.8*18=17.68. Iron is 

represented by <10,16.4,17.78,18>;  

(rule 2) IF the nutrient is unfavorable, THEN we favor the 

lower bound by weighted it with .8 and lower bound by .2 (this 

will limit the consumption of the favorable nutrients). 

Example: cholesterol is an unfavorable nutrient and individual 

(whose the age is great than 9 years) maximum needs is given 

by the interval 200-230 mg. We favor the lower bounds, a=200, 

d=230, b=0.8*200+0.2*230=206, and 

c=0.8*206+0.2*230=210.8. cholesterol is represented by 

<200,206,210.8,230>. 

Generally, the favorite bound is multiplied by a large α 

(very close to 1) and the other bound is multiplied by 1- α. 

In this work, we consider 14 favorable nutrients (calories, 

protein, carbohydrate, potassium, magnesium, calcium, iron, 

phosphorus, zinc, vitamins b6, b12, c, a, and e, and 4 

unfavorable nutrients sutured fat, sodium, cholesterol, and 

total fat. When applying the proposed rules to the potassium, 

magnesium, and calcium requirements, we obtain the 

trapezoidal numbers presented in the Table 2, Table 3 and 

Table 4. 

 

Table 2. Potassium trapezoidal number daily requirements 

 

Gender Potassium TN (mg/day) 

Male (M) <3000,3800,3960,4000>  

Female (F) <2500,2900,2980,3000> 

 

Table 3. Calcium trapezoidal number daily requirements 

 
Age (gender)  Calcium TN (mg/day) 

19-50 (F) OR 19-70 (M) OR 9-11 

(M/F) 

<800,830.72,836.86,838.

4> 

>70(M) OR >51(F) OR 12-18 

(M/F) 
<1050, 1250,1290,1300> 

 

Table 4. Phosphorus trapezoidal daily requirements 

 
Age (gender)  Phosphorus TN (mg/day) 

9-18yr <1055,1211,1142.2,1250> 

>19yr  <600,920,984,1000> 

 

Basing on the TN tables of different nutrients, we generate 

the expert's knowledge data sets. We find more details in the 

experimentation paragraph. 

 

 

4. AUTO-ENCODER WITH AN OPTIMAL 

ARCHITECTURE 

 

The auto-encoder is widely used to compress data [6]. We 

use this multilayers neural network to transform different TN 

to crisp values. First, we start with an auto-encoder with 

random architecture (random number of layers and number of 

units in each layer) (Figure 2). In this figure, the auto-encoder 

is a deep neural network that contains two principles parts 

encoder and decoder, the middle layer is formed by a single 

neuron that produces the coded information or that produces 

the crisp value which represents the nutrient prediction. The 

encoder contains three layers: one output layer of six neurons 

whom 4 represent the TN components and 2 for gender and 

age, two hidden layers or treatment layers. The decoder 

contains three layers: the output layer that will produce the 

coded information from the crisp value and the treatment 

layers. At the biggening we don’t know the optimal 

architecture of the auto-encoder that permit to produce 

predictions of the nutrient with minimum loss of information. 

To solve this problem, we propose a new regulation function 

and we use fuzzy genetic algorithm to select the optimal auto-

encoder architecture problem basing on the generated data. 

 

 
 

Figure 2. Auto-encoder with random architecture; the middle 

layer produces crisp values 

 

Fitting the auto-encoder parameters Ω consists of 

minimizing some cost function E(Ω) whose principal terms are 

the mean square error, the regulation term, and the sparsity 

term. 

 

𝐸(𝛺) = 𝑀𝑆𝐸(𝛺) + 𝜎 ∗ Λ(𝛺) + 𝜇 ∗ 𝜙(𝛺)  (1) 

 

The first term is the global reconstruction error, the second 

term is the regulation function (norm of the matrix formed by 

the auto-encoder parameters) [22], and the last term is the 

sparsity term [23]. When training a sparse autoencoder, it is 

possible to make the sparsity regulariser small by increasing 

the values of the weights and decreasing the values of the 

compression obtained by the auto-encoder. Adding a 

regularization term on the weights to the cost function prevents 

it from happening. This term is called the regularization term 

and is defined by ∑ ‖Ω𝑖‖
2

𝑖  where (Ω𝑖) are the parameters of 

the auto-encoder. Unfortunately, this formulation doesn't 

distinguish between different units and doesn't control the 

number of neurons. In this work, we introduce an original 

regulation term given by the Eqns. (2), (3), and (4). 

 

Λ(Ω) = Λ1(Ω) + Λ2(Ω) (2) 

 

where,  

 

Λ1(Ω) = ∑ 𝑃𝐸𝑛𝑐,𝑙,𝑖‖Ω𝐸𝑛𝑐,𝑙,𝑖‖
2

𝑙,𝑖   (3) 

 

Λ2(Ω) = ∑ 𝑃𝐷𝑒𝑐,𝑙,𝑖‖Ω𝐷𝑒𝑐,𝑙,𝑖‖
2

𝑙,𝑖   (4) 

 

We comment the Eq. (3) and the equation (4) is obtained by 

analogies. 𝑃𝐷𝑒𝑐,𝑙,𝑖  is the penalty coefficient that permits to 

control the weighted term. Here, we penalize each of the 

parameter’s neuron with specific penalty coefficients: 

If the neurons i and j are in the same hidden layer l, and if 

i<j, then 𝑃𝐸𝑛𝑐,𝑙,𝑖 < 𝑃𝐸𝑛𝑐,𝑙,𝑗 ; compared to the neuron j, the 

neuron i has a very high chance of remaining in the layer l.  
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For two given hidden layers l and k, if l<k, then 

max
𝑖

𝑃𝐸𝑛𝑐,𝑙,𝑖 < min
𝑗

𝑃𝐸𝑛𝑐,𝑘,𝑗; compared to the layer k, the layer 

l has high chance of remaining in the auto-encoder.  

To find a local minimum for the function E, one can use a 

recurrent network called continuous Hopfield network [24] 

and [25]. As we can use an evolutionary heuristic method such 

as: firefly optimization based [26], genetic algorithm [27], 

particle swarm algorithm, stochastic fractal search, and moth 

swarm algorithm with specific operators [20]. 

To benefit from the evolutionary strategy of producing good 

quality solutions from the current solutions thanks to the 

operators of crossing and mutation and the ability of fuzzy 

logic of reason in stochastic environments, we use, in this 

work, fuzzy genetic algorithm to minimize the function E to 

obtain an auto-encoder with optimal architecture. 

 

 

5. EXPERIMENTAL RESULTS  

 

In this part, we generate the data sets of different nutrients 

requirements basing on the TN representations. Then, we use 

the fuzzy genetic algorithm to minimize the function E to 

select an optimal auto-encoder. Then, we test the proposed 

system on unseen TN samples. 

The Table 5, Table 6, and Table 7 illustrate the data 

generation process on potassium, phosphorus, and calcium 

requirements from different TNs.  

 

Table 5. Potassium TN daily requirements data set 

 
Gender  Age Potassium TN (mg/day) 

G=1  

9<A=rand (1000) 

(3000,3800,3960,4000,1,.A) 

G=0 (2500,2900,2980,3000,0,.A) 

 

Table 6. Phosphorus TN daily requirements data set 

 
Gender  Age Phosphorus TN (mg/day) 

G=rand (100) 

from {0,1} 

9≤A=rand 

(1000) ≤18 

19≤A=rand 

(1000)  

(1055,1211,1142.2,1250,.G,

.A) 

G=0 (600,920,984,1000,.G,.A) 

 

Table 7. Calcium TN daily requirements data set 

 
Gender  Age Calcium TN (mg/day) 

G=0 19≤A=rand 

(1000) ≤50 

(800,830.72,836.86,838.4,0

,.A) 

G=1 
19≤A=rand 

(1000) ≤70 

(800,830.72,836.86,838.4,1

,.A) 

G=rand (100) 

from {0,1} 

9≤A=rand 

(1000) ≤11 

(800,830.72,836.86,838.4,

G,.A) 

G=1 
70≤A=rand 

(1000) 

(1050,1250,1290,1300,1,.A

) 

G=0 
51≤A=rand 

(1000) 

(1050, 

1250,1290,1300,0,.A) 

G=rand (100) 

from {0,1} 

12≤A=rand 

(1000) ≤18 

(1050, 

1250,1290,1300,.G,.A) 

 

To illustrate clearly the procedure of generation of the data 

and the example of type of obtained data, we consider at 

present the favorable nutrient the Phosphorus. 

We throw a coin in the air to generate the gender, let's say 

we get 1. Then, we go on to generate the age which is an 

arbitrary positive real between 9 and 18 years, let's say we get 

10 years. In this case we get the sample 

(1055,1211,1142.2,1250,1,10). The experts confirm that the 

daily phosphorus requirement is approximatively 1250 mg. 

Thus, the output associated with the sample is 1250. Let's 

repeat this procedure 100 times for the gender and 1000 times 

for the age, we get 100*1000 samples that encodes the need 

for 100000 artificial individuals. 

This process permits the generation of a data set of 406000 

samples. 80% of this data set is used to fit and to select optimal 

auto-encoder. 

We use a genetic algorithm to minimize the function E 

based on the following operators: 

- Random convex-combination crossover operator; 

- Random multi chromosomes mutation operator; 

- Random permutation selection operator. 

Mutation percent, crossover percent, and population size are 

chosen based on a fuzzy strategy, where the inputs are iteration 

fitness, best fitness, variation cost, and mean cost. In this 

context, we adopt nine simple fuzzy rules. The Figure 3 

presents the fuzzy genetic system. There are four inputs and 

three outputs and nine rules [28]. 

 

 
 

Figure 3. Fuzzy genetic system 

 

Figure 4 shows how to estimate mutation percent from best 

fitness and iteration membership. 

 

 
 

Figure 4. Estimation of the mutation percent from best 

fitness and iteration 

 

Figure 5 implements the performance curve of the fuzzy 

genetic algorithm on the loss function E. This figure gives the 

best and the mean fitness of each generation. The average 

change in the penalty fitness value becomes stable very early 

(from generation 10). The number of optimal hidden units is 5. 

To permit FGA to find a good local minimum, we can increase 

the mutation rate or the size of the population when 

minimizing the function E.  
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Figure 5. The genetic strategy performance curve 

 

Figure 6 presents the optimal auto-encoder. The optimal 

auto-encoder has symmetric architecture. Two hidden layers 

(of 5 units) are sufficient to reproduce the trapezoidal numbers 

presenting the individual requirements. 

 

 
 

Figure 6. The optimal auto-encoder 

 

Figure 7 and Figure 8 represent the performance curve of 

the optimal auto-encoder and an auto-encoder with random 

architecture (10 hidden units), respectively. 

Compared to the random auto-encoder, the optimal auto-

encoder has a large learning error; in fact, EOPT (training 

set)=0.045692>ER and (training set)=0.036953. But, the 

optimal auto-encoder is better than the random one on the test 

data set; in fact, EOPT (test data set)=0.0016<ER and (test 

data set)=0.0135. Consequently, the optimal auto-encoder is 

capable to extend its experience to unseen data. The proposed 

system is capable to predict appropriate daily nutrients 

requirements given the individual characteristics such as age, 

gender etc. 

 

 
 

Figure 7. Performance curve of the optimal auto-encoder on 

training dataset 

 
 

Figure 8. Performance of random auto-encoder with 10 units 

in the hidden layer 

 

 

6. CONCLUSIONS 

 

To determine a personalized optimal diet basing on 

mathematical modeling, one needs to know the individual's 

daily requirements of favorable and unfavorable nutrients. 

giving an estimate of daily nutrient requirement in terms of a 

single value for all ages and genders is a restrictive approach 

that is subject to over- or underestimation. In this paper, we 

propose a personalized representation of nutrients expert 

knowledge based on fuzzy trapezoidal numbers, an optimal 

auto-encoder based on a new regulation function, and on fuzzy 

genetic algorithm. Thanks to our regulation function and the 

deep learning of the optimal architecture auto-encoder 

educated on the basis of intelligently generated data set, the 

proposed system is able to predict the positive and negative 

nutrient requirements of each individual once the age and 

gender of that individual is provided. In a practical setting, our 

system can be used by a dietician to accurately determine the 

daily nutrient requirements of a given individual. In addition, 

the different mathematical models can use the different 

predictions to automatically solve the optimal diet problem. 

The resulted system can be used by a dietician to select a set 

of foods from a predetermined set of foods that meet the daily 

nutrient requirements while setting an economic function that 

depends on the targeted disease.  

Regardless of the contributions of the model and the good 

results obtained in this work, the proposed system and its 

application have some limitations. The proposed system uses 

the same autoencoder to predict the requirements of the 18 

nutrients, which may lead to erroneous predictions in some 

borderline cases. For example, vitamin requirements are very 

low while calorie requirements are very high. In addition, 

positive nutrients should not be treated in the same way as 

negative nutrients. At least three auto-encoders should be 

considered: one for unfavorable nutrients, one for small 

favorable nutrients and large favorable nutrients.  

We will use our system to dress optimal diets for different 

patients that suffer from chronic diseases. And to take into 

account of the falsity, one can use intuitionist logic in genetic 

algorithm instead of classical logic that considers the trueness 

only.  
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