
GWOCSA Based Algorithm for Allocating Resources to the Tasks in the Cloud

Ellendula Madhukar1*, Thirumalaisamy Ragunathan2

1 Department of CSE, Sreenidhi Institute of Science and Technology, Hyderabad, Telangana 501301, India
2 Department of CSE, SRM University, Amaravati, Andhra Pradesh 522503, India

Corresponding Author Email: emadhukar@gmail.com

https://doi.org/10.18280/ria.360218 ABSTRACT

Received: 14 February 2022

Accepted: 22 April 2022

In the era of enhancing demand for online resources cloud is emerging as the greatest

cutting edge technologies to serve the requirements. With volatility in the usage of the cloud

resources, it is a tough task to serve the user requirements. Heuristic algorithms, Meta

heuristic algorithms are trending these days, as they are helping to find the nearby optimal

solutions within a reasonable time. But they suffer from either slow convergence or with

premature solutions. It is evident that NP-complete algorithms take exponential time to find

an efficient and optimal solution. This paper hybridizes grey wolf optimization along with

Crow search algorithm. This balances the exploration and exploitation. The experimental

results prove that the proposed algorithm is on par with existing algorithms and at times it

shows better performance.

Keywords:

cloud computing, resource allocation,

optimization, GWO, CSA, hybrid algorithms,

makespan

1. INTRODUCTION

Despite the fact that cloud computing has proved to be a

transformative technology, the current COVID scenario has

placed the technology into a demand zone to meet the

requirements of the users to avoid the gathering and to

maintain physical distancing. This led to a growing need for

online services in the industry, academia, health care, and

society. Cloud has aided in maintaining social distance and

mob gathering by offering on-demand support for platforms

such as Zoom, CISCO Webex, Google meet, Microsoft team,

and others

It is possible to get teachers and students together on a

common, shared network by introducing cloud computing.

Educational institutions are not required to own servers and

data centers [1]. Instead, they will use cloud infrastructure to

get access to compute resources, databases, servers, and other

services as required.

Educational institutions develop interactive classrooms for

their students utilizing cloud-based technology. The approach

drastically decreases the costs of infrastructure. The cloud

technology removes time and geographical limitations,

ensuring that information is consistently provided at all times.

The healthcare sector has come a long way in terms of

optimizing its data collection activities, from traditional

storage to the digitalization of healthcare data. The generation,

consumption, preservation, and distribution of healthcare data

have changed dramatically [2].

Industry 4.0 is the most recent era in the manufacturing

industry, brought about by the Internet of Things and data

accessibility. The concept of "Smart Factories" is gaining

traction. Increased automation, machine-to-machine, and

human-to-machine connection, artificial intelligence, ongoing

technical advancements, and digitization of business are all

part of the current trend.

The primary purpose of cloud computing is to distribute

computing activities to a resource pool made up of a vast

number of heterogeneous virtual machines (VMs).

Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and other clouds offer the services to worldwide customers,

whether stationary or on the go, with a new level of computing

tools. In an Internet-based world, these types of services are

available on-demand through a pay-per-use/subscription

model [3].

Scheduling is essential to improve the efficiency of the

cloud. It helps in allocating the resources to the Jobs to

complete their execution. Scheduling can be done with

deterministic or heuristic algorithms. It is evident that the

deterministic algorithms are not suitable for large scale. In

contrast, heuristic algorithms are problem-specific. Meta-

heuristic algorithms have shown good improvement with the

objective function. This led the researchers to work with

various metaheuristic algorithms like Ant colony optimization

(ACO), Simulated annealing (SA), Particle swarm

optimization (PSO), Differential evolution algorithm, Genetic

algorithm, and so on.

The two aspects of metaheuristic algorithms are expanded

searching (exploration) in the solution space and sharpened

search (exploitation) to discover the optimal solution.

Balancing these two characteristics is a designing challenge,

which in turn shows the efficacy of the metaheuristic

algorithms. Concerning these, features of individual

metaheuristics are combined to magnify the all-inclusive

performance.

Grey wolf optimization algorithm (GWO) [4] is one of the

efficient meta-heuristic algorithms. It mimics the headship

quality and inimitable(unique) system of the cast about (search)

behavior of grey wolf to attack the prey. GWO algorithm is

based on population, which initially considers feasible

solutions and converges in each iteration towards the optimal

solution. Though the exploration and exploitation capabilities

of GWO are well balanced, it has the problem of immature

exploration. It leads the algorithm to end with a compromised

solution. This problem can be avoided with an additional

Revue d'Intelligence Artificielle
Vol. 36, No. 2, April, 2022, pp. 327-332

Journal homepage: http://iieta.org/journals/ria

327

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360218&domain=pdf

control variable that enhances the capability of exploration.

Askarzadeh [5] proposed a Crow search algorithm (CSA)

based on crow's behavior. The communication between the

crows, hiding the food, and salvaging the food are the

intelligent actions of the crows. In CSA, the intelligent actions

of crows were adopted. This algorithm avoids the local optima

cleverly.

The challenge of managing the resources in the cloud

environment is NP-complete. Though many meta-heuristic

algorithms have been proposed, they have limitations. Majorly

they suffer from premature optimal solutions because of

inefficient exploration and exploitation strategies.

To conquer the predicament, researchers conjoined to

reduce the limitations. GWO and CSA are combined to bridge

the defects of the individual algorithms and amalgamated as

GWOCSA [6]. In this paper, the GWOCSA is checked on the

cloud for managing the resources and scheduling the tasks.

The algorithm has been checked and compared with GWO and

CSA algorithms for optimized makespan. The results show

that the performance of this hybridized algorithm is promising

and gives near-optimal solutions.

The remaining sections are organized as follows. Section 2

discusses related work. Section 3 explains the proposed

algorithms and related equations. Section 4 shows the

experimental results. Conclusion and future work is shown in

section 5.

2. RELATED WORK

In the area of optimization, many heuristic and meta-

heuristic theories have been proposed in the recent past. Cloud

computing has adopted some of the optimization techniques

which combine or improvise one or more meta-heuristic

algorithms. To enhance the efficiency of scheduling

algorithms, researchers are using swarm intelligence

algorithms. To quote a few, "Ant colony optimization, Particle

swarm optimization, Genetic Algorithm, Differential

evolution algorithm, Simulated annealing, Whale optimization,

Grey wolf optimization, Crow search algorithm, Eagle

strategy, Moth search algorithm, Artificial bee colony

algorithm, Spider Monkey algorithm, Jaya algorithm,

Teaching learning based optimization" [1], and so on.

2.1 Ant colony optimization

Tawfeek et al. [7] applied an ant colony optimization

algorithm in scheduling and compares ACO with FCFS and

proves that ACO shows better results. Li et al. [8] applied ant

colony optimization to solve load balancing problems in the

cloud environment. They propose an improvised algorithm

LBACO.

Dai et al. [9] took into account the effect of strong positive

feedback of ACO on the algorithm's convergence rate. The

initial pheromone chosen has a significant effect on the

convergence rate. The algorithm uses a GA's global search

capability to find the best solution and then transforms it into

the ACO's initial pheromone.

Azad and Navimipour [10] combined the ACO algorithm

with the Cultural algorithm. Makespan and energy

consumption are considered as objectives. Particle swarm

optimization and ant colony optimization are combined in Ref.

[11]. To maintain the population's diversity and the fitness of

the particles increased, the authors demonstrate improved

working efficiency in fitness, expense, and running time

through their approach. They present a more accurate and

effective understanding of task scheduling.

However, ACO is strongly reliant on its two constants 𝛂 and

β as a probabilistic algorithm. For combinatorial kinds of

problems, it is highly desired to retain the standard values of

these parameters. The ACO algorithm's stagnation phase could

not be recovered without modifying the values of 𝛼. Even if

standard values of 𝛼 and β are preserved, the convergence

speed of the solution drastically varies for the same problem

and the same number of ants.

2.2 Particle swarm optimization

In the recent past, researchers proposed many algorithms to

solve optimization problems. Though individually, they

showed their efficiency, either they suffered from lack of

exploration or exploitation. The limitation of exploration and

exploitation of the algorithms led the researchers to hybridize

the algorithms to enhance efficiency. GA and PSO were added

to solve the optimization problems [12]. Individuals are

generated along with crossover, mutation, and operators of

local and global search of PSO. As suggested by Pandey et al.

[13], (PSO)-based heuristic for scheduling cloud applications

to consider both computing and data transmission costs as the

main objectives. The authors compare their proposed

algorithm with the "Best resource selection" heuristic. They

claim that their algorithm is better than the heuristic algorithm.

Awad et al. [14] proposed a numerical model by considering

reliability, execution time, transmission time, and load

balancing between tasks and virtual machines using Load

Balancing Mutation (balancing) a particle swarm optimization

(LBMPSO) based schedule and allocation. They compare their

method with standard PSO, random algorithm, and Longest

Cloudlet to Fastest Processor (LCFP) algorithm to show an

improvement.

Verma and Kaushal [15] proposed a multi-objective

optimization-based algorithm by hybridizing particle swarm

optimization (HPSO). Under deadline and budget constraints,

the HPSO heuristic attempts to optimize two competing goals,

namely, makespan and expense. Along with these two

opposing goals, the number of resources used to build the

workflow schedule is also reduced. The algorithm generates a

set of Pareto Optimal solutions from which the consumer can

choose the most appropriate one.

Gill et al. [16] suggested BULLET, a PSO-based resource

scheduling strategy for scheduling workloads in the cloud to

reduce execution expense, time, and energy consumption.

BULLET is efficient in reducing the execution time, expense,

and energy usage of cloud workloads, as well as other QoS

parameters, including availability, efficiency, latency, and

resource utilization, according to experimental findings.

The particle swarm optimization (PSO) algorithm has the

disadvantages of being easy to fall into a local optimum in

high-dimensional space and having a slow convergence rate in

the repeated process [17].

2.3 Genetic algorithm

Zhao et al. [18] suggested an efficient genetic algorithm for

scheduling independent and divisible tasks that can respond to

various computing. They activate the algorithm in

heterogeneous environments, where computing and

communication capabilities (including CPUs) are

328

heterogeneous. The use of dynamic scheduling is also being

considered.

Aziza and Krichen [19] devised a fitness mechanism that

aids in the reduction of mission execution costs and

minimization of makespan. The extension of GA to two

existing scheduling rules, time-shared and space-shared,

resulted in two additional policies, TSGA and SSGA. The

makespan and overall cost of execution are two metrics used

to measure performance.

Ibrahim et al. [20] proposed an Integer Linear Programming

(ILP) model that minimizes energy consumption in a Cloud

data center to create a dynamic task scheduling algorithm. In

addition, an Adaptive Genetic Algorithm (GA) is proposed to

reflect the complex nature of the Cloud world and to provide

a near-optimal scheduling solution that saves resources.

Zhou et al. [21] suggested MGGS (modified genetic

algorithm (GA) combined with greedy strategy) as a new

algorithm in this article. To maximize the efficiency of

scheduling, the proposed algorithm uses a revamped GA

algorithm paired with a greedy approach. MGGS, unlike other

algorithms, can find an optimal solution with a lower number

of iterations.

2.4 Grey wolf optimization

The grey wolf, also known as the timber wolf [5], is the

world's largest wild dog. Wolves exist in clans led by an alpha

wolf, with the rest of the pack adhering to a dominance

hierarchy. The actions like hunting and finding the location of

stay are taken by the alpha wolf. The second level of the wolf

pack is beta and is considered subordinate to the alpha. The

following levels of the wolves are delta and omega.

The phases of hunting can be considered as follows.

1) Tracking, pursuing, and closing in on the prey. 2) Pursue,

encircle, and annoy the prey until it comes to a halt. 3) Attack

on the prey.

Grey wolf optimizer is one of the metaheuristic algorithms.

It was suggested by Mirjalili et al. [5] who proposed an

intriguing meta-heuristic algorithm that mimicked the

behavior of grey wolves.

(1) Hierarchical structure

GWO has been mathematically modeled by taking into

account the social hierarchy. The best location of the search

agent in the solution space is considered as α wolf, β as the

second best, and δ as the third. The remaining are known as

omega wolves [5].

(2) Encircling

During the hunting wolves encircle the prey. The equation

for encircling the prey is denoted by in Eq. (1) and Eq. (2) [4,

5]. Here, the position of the wolves and the prey is represented

by a vector. In the equation 'Dist' indicates the distance

between prey and the wolf. GW and Xp correspond to the

location of the wolf and the placement of prey respectively.

�⃗⃗� = |𝐶 ∗⃗⃗⃗⃗ ⃗⃗ ⃗ 𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗(𝑡)| (1)

𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗(𝑡 + 1) = 𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐴 ∙ �⃗⃗� (2)

𝐴 = 2𝑎 𝑟 1 − 𝑎 (3)

𝐶 = 2 ∙ 𝑟 2 (4)

Eq. (3) & Eq. (4) are vectors of coefficients.

r1 and r2 represent random values between [0,1].

(3) Prey hunting

Grey wolves' encircling the prey is modeled by Eq. (5) and

Eq. (6). Guided byα, β, and δ wolves, all the remaining wolves

update their position by Eq. (7).

�⃗⃗� 𝛼 = |𝐶 ∗ 𝑋 𝛼(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗(𝑡)|

�⃗⃗� 𝛽 = |𝐶 ∗ 𝑋 𝛽(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗(𝑡)|

�⃗⃗� 𝛿 = |𝐶 ∗ 𝑋 𝛿(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗(𝑡)|

(5)

𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗
1(𝑡 + 1) = 𝑋 𝛼(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝛼

𝐺𝑊2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡 + 1) = 𝑋 𝛽(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝛽

𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗
3(𝑡 + 1) = 𝑋 𝛿(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝛿

(6)

𝐺𝑊(𝑡 + 1) =
∑ 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗

𝑖(𝑡 + 1)3
𝑖=1

3
(7)

(4) Searching & attacking the prey

The prey gets attacked by grey wolves only when it stops

progress. It is described mathematically with a vector 'A'

employed in Eq. (3). 'A' is a random vector and contains the

values in [-a, a] [4, 5], with 'a' decreasing from 2 to 0 during

the iterations using Eq. (8).

|A| < 1 will lead the wolf to assault the prey with movement

towards it and |A| > 1 lead the wolf to move away from the

prey [1]. The position of α, β and δ wolves decide the direction

of search for the prey. Global (exploration) and local

(exploitation) searches rely on A and C vectors.

𝑎 = 2 − (2 × 𝑡/𝑀𝑎𝑥𝑖𝑡𝑒𝑟) (8)

The range of random values for the C vector is [0, 2], which

is critical for preventing local optima stagnation. The values

of the C vector show random behavior, in turn this helps to

explore globally.

Algorithm 1: Grey-wolf-Optimization [4, 5]

1. grey wolves (search agents) initialized

2. Pops(i=1,2,...,n)

3. set the values of a, A and C

4. All individual Search agent's (Wolf) fitness has to be

calculated

5. GWα = The first high-quality search agent/wolf

6. GWβ = The second high-quality search agent/wolf

7. GWδ = The third high-quality search agent/wolf

8. repeat

9. {

10. (j< Max)

11. for all search agents

12. modify the location of all the search agents using Eq. 7

13. end for

14. modify a, A, C

15. all the search agent's fitness has to be calculated

16. modify GWα, GWβ, GWδ

17. j=j+1

18. } until(j>Max)

19. end loop

20. return GWα

The GWO suffers from poor local search and slow

convergence rate [22].

329

2.5 Crow search algorithms

Crows are intelligent creatures. They have the biggest brain

in proportion to their body size. Experiments proved that they

show self awareness ingenuity. Crows may use tools to

interact in complex ways, and remember the location of their

food for many months. Crows watch other birds, observing the

place of food storage, and then stealing it after actual bird

leaves. If a crow was a victim of theft before, it will take

special care including changing hiding areas to prevent being

a victim again. This behavior of cleverness is mimicked in

finding the optimal solution using a natural-inspired algorithm

by Askarzadeh [6]. CSA's operation is based on four important

principles: herd living, recall the place of secret food, pursue

another individual of their genus, and ultimately protect their

accumulation from arbitrary plundering.

(1) Mathematical model for CSA

The position of each crow is represented by an M

dimensional vector. Searching for the optimal solution starts

from an initial population. Initialize the upper bound of

iterations, count of crows, flight length and awareness

probability. The fitness will be calculated.

The notation CPopk represents the initial population of the

crow and [CPopj1, CPopj2, CPopj3, ...,CPopjM] indicates the

position of crow 'j'.

Cpopi,t indicates the initial location of 'ith' crow at time 't'.

Whereas 'ri,' and 'fl' indicate a random number, and flight

length respectively. The secret place is 'sp'.

If jth crow wants to visit the secret place where the food is

hidden, ith crow plans to find the secret place of the crow j. This

leads to either of the following. First awareness probability is

compared with a random number. The crow updates its

position by Eq. (9) [3, 6] if the awareness probability is larger.

Otherwise it updates its position with a random crow's position.

𝐶𝑝𝑜𝑝(𝑖+1,𝑡+1) = 𝐶𝑝𝑜𝑝𝑖,𝑡 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑡 × (𝑠𝑝𝑖,𝑡-𝐶𝑝𝑜𝑝𝑖,𝑡)

if AP>rj
(9)

Algorithm 2 shows the pseudo code for CSA.

Algorithm 2: CSA Algorithm [3, 5]

1. CPopk (k=1,2,...,n) is initialized

2. fitness of all the crows calculated

3. Initialize reminiscence of crows

4. repeat

5. {

6. for all crows

7. Awareness probability (AP) is defined

8. 'rand' is a randomly generated number

9. if rand >= AP

10. modify the location of crow with equation (9)

11. else

12. take the location of the crow randomly

13. end if

14. end for

15. find the viability of the latest solution

16. find the fitness of each search agent

17. modify the memory of the crows

18. i=i+1

19. }

20. until (i>Max)

21. return the best solution crow

The Crow search algorithm also suffers from slow

convergence speed and can be trapped into local optima.

3. POSED PROCEDURE TO UPDATE THE POSITION

OF SEARCH AGENTS

3.1 GWOCSA

Hasty convergence is a flaw in GWO algorithm. This is

attributable to the alpha, beta, and delta positions of the search

agent's updates. This has a small potential to be exploited as

well. By combining the GWO with the CSA, these flaws can

be overcome. This strikes an appropriate balance between

discovery and exploitation. The proposed algorithm

effectively maximizes the advantages of the two algorithms,

resulting in broad universal applicability. The CSA algorithm

uses flight [3, 6]as a control parameter. This helps in both ways,

i.e., in global and local searching. Small values guide to go for

local search and large values for global search.

The poor global searching capability can be overcome by

accommodating a constant. This is adapted from CSA. Eq. (10)

and Eq. (11) represent this scenario. The constant 'fl' guides to

search in the global space and local space based on the selected

value. This helps to stabilize both exploration and exploitation.

Algorithm 3 represents the pseudo-code for GWOCSA. In

the GWO based approach, updating of the search agent's

position will be done in view of α, β, and δ wolves location.

However, in the proposed hybrid model, the update of the grey

wolf is done in accordance with Eq. (10). This helps greatly in

avoiding local optima and helps to search in the global space.

Algorithm 3: GWOCSA [3]

1. Initialize the grey wolves GWi (i=1,2,...,n)

2. a, A, and C initialized.

3. find the fitness of all the search agents (Wolf)

4. find GWα and GWβ

5. while (t<Max)

6. for all the search agents

7. if AP>random number

8. modify the location of the present search agent by Eq.

(10)

9. else

10. modify the location of the present search agent by Eq.

(11)

11. end if

12. end for

13. modify AP using Eq. (12)

14. modify 'a' using Eq. (13)

15. modify A, C

16. modify the fitness of all search agents.

17. modify GWα, GWβ

18. t=t+1

19. end while

20. return GWα

However, to modify the location of the search agent is done

based on an adaptive parameter. If AP is greater than a

randomly generated number, Eq. (10) helps to calculate latest

location of the agent. Otherwise, Eq. (11) is used to update the

position. Eq. (12) shows the adaptive balance probability.

𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗ + 𝑓1. 𝑟𝑎𝑛𝑑. ((𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗)

+ (𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗
2 − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗))/2

(10)

330

𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗ + 𝑓𝑙 × 𝑟𝑎𝑛𝑑((𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗ ⃗)) (11)

𝐴𝑃 = 1 − (
1.01 × 𝑡3

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛3
) (12)

In the proposed model, a new update method is adopted.

Instead of using Eq. (8), to change the value of 'a', Eq. (13) is

used. This helps to improve the overall performance.

𝑎 = 2 − 𝑐𝑜𝑠 (𝑟𝑎𝑛𝑑()) ×
1

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (13)

4. EXPERIMENTAL RESULTS

The proposed algorithm is checked in MATALB R2020A

software for its efficiency on Intel core™i7 CPU@1.80-GHz

with 8 GB of RAM using synthetic data. As it is an NP-

Complete problem, the algorithm gives various outputs based

on the random numbers. In this setup five jobs and five

heterogeneous virtual machines are considered. Table 1

presents the initial population. Table 2 represents the

execution time of each job on every VM. Table 3 shows the

final allocation of the algorithm.

Table 1. Initial population

Initial population

Job2 Job3 Job5 Job4 Job1

Job3 Job2 Job1 Job5 Job4

Job4 Job2 Job3 Job5 Job1

Job1 Job3 Job5 Job4 Job2

Job4 Job3 Job1 Job5 Job2

Job3 Job5 Job2 Job4 Job1

Job4 Job5 Job1 Job3 Job2

Job1 Job3 Job2 Job5 Job4

Job3 Job4 Job1 Job2 Job5

Job4 Job3 Job2 Job1 Job5

Job1 Job5 Job3 Job2 Job4

Job3 Job4 Job1 Job2 Job5

Job2 Job4 Job1 Job3 Job5

Job5 Job1 Job2 Job3 Job4

Job4 Job5 Job2 Job1 Job3

Job3 Job2 Job5 Job1 Job4

Job3 Job4 Job5 Job1 Job2

Job1 Job4 Job2 Job5 Job3

Job5 Job3 Job2 Job1 Job4

Job3 Job5 Job1 Job2 Job4

Table 2. Execution times of jobs on VMS

 VM1 VM2 VM3 VM4 VM5

JOB1 28 26 28 24 17

JOB2 17 16 24 25 24

JOB3 28 20 15 25 15

JOB4 28 27 26 20 18

JOB5 21 26 28 24 15

Table 3. Final allocation-GWOCSA

VM1 VM2 VM3 VM4 VM5 Completion time

JOB5 JOB2 JOB3 JOB4 JOB1 89

The best makespan of the given problem after 10 iterations

calculated by GWOCSA=124, with GWO=122 and with

CSA=128. After iteration 120, the best makespan is 89.

GWOCSA algorithm converges quickly. GWO and CSA

suffer from slow convergence. Based on the values obtained

from results it can be concluded that the proposed algorithm

competes with GWO and CSA algorithms. It has proven that

at times its efficiency is better than the other two algorithms.

Figure 1 shows the comparison of the GWOCSA with

GWO and CSA. From the figure, it can be observed that at the

initial stages GWO shows a better solution. CSA algorithm

does not converge quickly. However, the proposed algorithm

balances the exploration and exploitation and reaches an

optimal solution. The makespan after 20 iterations was 123

with GWO,130 with CSA, and 120 with GWOCSA.

GWOCSA converges to the optimal solution after 120

iterations. The convergence of the GWO algorithms takes after

160 iterations, and with CSA algorithm happens after 180

iterations.

Figure 1. Comparison of makespan

5. CONCLUSION

Present paper discusses the drawbacks of existing meta-

heuristic algorithms. GWO and CSA algorithms are

considered to enhance the drawbacks of the algorithms when

considered individually. Exploration and exploitation are

balanced with the help of hybridization. This work can be

further enhanced by applying a multi-objective function, in

which multiple objectives can be addressed. The proposed

algorithm is tested on MATLAB. The proposed algorithm

converges quickly when compared with GWO and CSA

algorithms. The present work can be extended further.

Interested researchers may test on real clouds like

OPENSTACK and CLOUDSTACK to check for the

efficiency.

REFERENCES

[1] https://cloudacademy.com/blog/surprising-ways-cloud-

computing-is-changing-education/.

[2] https://www.healthitoutcomes.com/doc/ways-cloud-

computing-is-impacting-healthcare-0001.

[3] Xu, F., Liu, F., Jin, H., Vasilakos, A.V. (2013).

Managing performance overhead of virtual machines in

cloud computing: A survey, state of the art, and future

directions. Proceedings of the IEEE, 102(1): 11-31.

https://doi.org/10.1109/JPROC.2013.2287711

331

[4] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf

optimizer. Advances in Engineering Software, 69: 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[5] Askarzadeh, A. (2016). A novel metaheuristic method

for solving constrained engineering optimization

problems: Crow search algorithm. Computers &

Structures, 169: 1-12.

https://doi.org/10.1016/j.compstruc.2016.03.001

[6] Arora, S., Singh, H., Sharma, M., Sharma, S., Anand, P.

(2019). A new hybrid algorithm based on grey wolf

optimization and crow search algorithm for

unconstrained function optimization and feature

selection. IEEE Access, 7: 26343-26361.

https://doi.org/10.1109/ACCESS.2019.2897325

[7] Tawfeek, M.A., El-Sisi, A., Keshk, A.E., Torkey, F.A.

(2013). Cloud task scheduling based on ant colony

optimization. 2013 8th International Conference on

Computer Engineering & Systems (ICCES), Cairo,

Egypt, pp. 64-69.

https://doi.org/10.1109/ICCES.2013.6707172

[8] Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D. (2011).

Cloud task scheduling based on load balancing ant

colony optimization. 2011 Sixth Annual Chinagrid

Conference, Liaoning, China, pp. 3-9.

https://doi.org/10.1109/ChinaGrid.2011.17

[9] Dai, Y., Lou, Y., Lu, X. (2015). A task scheduling

algorithm based on genetic algorithm and ant colony

optimization algorithm with multi-QoS constraints in

cloud computing. 2015 7th International Conference on

Intelligent Human-Machine Systems and Cybernetics,

Hangzhou, China, pp. 428-431.

https://doi.org/10.1109/IHMSC.2015.186

[10] Azad, P., Navimipour, N.J. (2017). An energy-aware task

scheduling in the cloud computing using a hybrid cultural

and ant colony optimization algorithm. International

Journal of Cloud Applications and Computing (IJCAC),

7(4): 20-40. https://doi.org/10.4018/IJCAC.2017100102

[11] Chen, X., Long, D. (2019). Task scheduling of cloud

computing using integrated particle swarm algorithm and

ant colony algorithm. Cluster Computing, 22(2): 2761-

2769. https://doi.org/10.1007/s10586-017-1479-y

[12] Kao, Y.T., Zahara, E. (2008). A hybrid genetic algorithm

and particle swarm optimization for multimodal

functions. Applied Soft Computing, 8(2): 849-857.

https://doi.org/10.1016/j.asoc.2007.07.002

[13] Pandey, S., Wu, L., Guru, S.M., Buyya, R. (2010). A

particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing

environments. 2010 24th IEEE International Conference

on Advanced Information Networking and Applications,

pp. 400-407. https://doi.org/10.1109/AINA.2010.31

[14] Awad, A.I., El-Hefnawy, N.A., Abdel_kader, H.M.

(2015). Enhanced particle swarm optimization for task

scheduling in cloud computing environments. Procedia

Computer Science, 65: 920-929.

https://doi.org/10.1016/j.procs.2015.09.064

[15] Verma, A., Kaushal, S. (2017). A hybrid multi-objective

particle swarm optimization for scientific workflow

scheduling. Parallel Computing, 62: 1-19.

https://doi.org/10.1016/j.parco.2017.01.002

[16] Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.

(2018). BULLET: Particle swarm optimization based

scheduling technique for provisioned cloud resources.

Journal of Network and Systems Management, 26(2):

361-400. https://doi.org/10.1007/s10922-017-9419-y

[17] Li, M., Du, W., Nian, F. (2014). An adaptive particle

swarm optimization algorithm based on directed

weighted complex network. Mathematical Problems in

Engineering, 2014: 434972.

https://doi.org/10.1155/2014/434972

[18] Zhao, C., Zhang, S., Liu, Q., Xie, J., Hu, J. (2009).

Independent tasks scheduling based on genetic algorithm

in cloud computing. 2009 5th International Conference

on Wireless Communications, Networking and Mobile

Computing, Beijing, China, pp. 1-4.

https://doi.org/10.1109/WICOM.2009.5301850

[19] Aziza, H., Krichen, S. (2018). Bi-objective decision

support system for task-scheduling based on genetic

algorithm in cloud computing. Computing, 100(2): 65-91.

https://doi.org/10.1007/s00607-017-0566-5

[20] Ibrahim, H., Aburukba, R.O., El-Fakih, K. (2018). An

integer linear programming model and adaptive genetic

algorithm approach to minimize energy consumption of

cloud computing data centers. Computers & Electrical

Engineering, 67: 551-565.

https://doi.org/10.1016/j.compeleceng.2018.02.028

[21] Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J.H.,

Chowdhury, M.U. (2020). An improved genetic

algorithm using greedy strategy toward task scheduling

optimization in cloud environments. Neural Computing

and Applications, 32(6): 1531-1541.

https://doi.org/10.1007/s00521-019-04119-7

[22] Wang, J.S., Li, S.X. (2019). An improved grey wolf

optimizer based on differential evolution and elimination

mechanism. Scientific Reports, 9(1): 7181.

https://doi.org/10.1038/s41598-019-43546-3

332

