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In the era of enhancing demand for online resources cloud is emerging as the greatest 

cutting edge technologies to serve the requirements. With volatility in the usage of the cloud 

resources, it is a tough task to serve the user requirements. Heuristic algorithms, Meta 

heuristic algorithms are trending these days, as they are helping to find the nearby optimal 

solutions within a reasonable time. But they suffer from either slow convergence or with 

premature solutions. It is evident that NP-complete algorithms take exponential time to find 

an efficient and optimal solution. This paper hybridizes grey wolf optimization along with 

Crow search algorithm. This balances the exploration and exploitation. The experimental 

results prove that the proposed algorithm is on par with existing algorithms and at times it 

shows better performance. 
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1. INTRODUCTION

Despite the fact that cloud computing has proved to be a 

transformative technology, the current COVID scenario has 

placed the technology into a demand zone to meet the 

requirements of the users to avoid the gathering and to 

maintain physical distancing. This led to a growing need for 

online services in the industry, academia, health care, and 

society. Cloud has aided in maintaining social distance and 

mob gathering by offering on-demand support for platforms 

such as Zoom, CISCO Webex, Google meet, Microsoft team, 

and others 

It is possible to get teachers and students together on a 

common, shared network by introducing cloud computing. 

Educational institutions are not required to own servers and 

data centers [1]. Instead, they will use cloud infrastructure to 

get access to compute resources, databases, servers, and other 

services as required. 

Educational institutions develop interactive classrooms for 

their students utilizing cloud-based technology. The approach 

drastically decreases the costs of infrastructure. The cloud 

technology removes time and geographical limitations, 

ensuring that information is consistently provided at all times. 

The healthcare sector has come a long way in terms of 

optimizing its data collection activities, from traditional 

storage to the digitalization of healthcare data. The generation, 

consumption, preservation, and distribution of healthcare data 

have changed dramatically [2]. 

Industry 4.0 is the most recent era in the manufacturing 

industry, brought about by the Internet of Things and data 

accessibility. The concept of "Smart Factories" is gaining 

traction. Increased automation, machine-to-machine, and 

human-to-machine connection, artificial intelligence, ongoing 

technical advancements, and digitization of business are all 

part of the current trend. 

The primary purpose of cloud computing is to distribute 

computing activities to a resource pool made up of a vast 

number of heterogeneous virtual machines (VMs). 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 

and other clouds offer the services to worldwide customers, 

whether stationary or on the go, with a new level of computing 

tools. In an Internet-based world, these types of services are 

available on-demand through a pay-per-use/subscription 

model [3]. 

Scheduling is essential to improve the efficiency of the 

cloud. It helps in allocating the resources to the Jobs to 

complete their execution. Scheduling can be done with 

deterministic or heuristic algorithms. It is evident that the 

deterministic algorithms are not suitable for large scale. In 

contrast, heuristic algorithms are problem-specific. Meta-

heuristic algorithms have shown good improvement with the 

objective function. This led the researchers to work with 

various metaheuristic algorithms like Ant colony optimization 

(ACO), Simulated annealing (SA), Particle swarm 

optimization (PSO), Differential evolution algorithm, Genetic 

algorithm, and so on. 

The two aspects of metaheuristic algorithms are expanded 

searching (exploration) in the solution space and sharpened 

search (exploitation) to discover the optimal solution. 

Balancing these two characteristics is a designing challenge, 

which in turn shows the efficacy of the metaheuristic 

algorithms. Concerning these, features of individual 

metaheuristics are combined to magnify the all-inclusive 

performance.  

Grey wolf optimization algorithm (GWO) [4] is one of the 

efficient meta-heuristic algorithms. It mimics the headship 

quality and inimitable(unique) system of the cast about (search) 

behavior of grey wolf to attack the prey. GWO algorithm is 

based on population, which initially considers feasible 

solutions and converges in each iteration towards the optimal 

solution. Though the exploration and exploitation capabilities 

of GWO are well balanced, it has the problem of immature 

exploration. It leads the algorithm to end with a compromised 

solution. This problem can be avoided with an additional 
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control variable that enhances the capability of exploration. 

Askarzadeh [5] proposed a Crow search algorithm (CSA) 

based on crow's behavior. The communication between the 

crows, hiding the food, and salvaging the food are the 

intelligent actions of the crows. In CSA, the intelligent actions 

of crows were adopted. This algorithm avoids the local optima 

cleverly. 

The challenge of managing the resources in the cloud 

environment is NP-complete. Though many meta-heuristic 

algorithms have been proposed, they have limitations. Majorly 

they suffer from premature optimal solutions because of 

inefficient exploration and exploitation strategies. 

To conquer the predicament, researchers conjoined to 

reduce the limitations. GWO and CSA are combined to bridge 

the defects of the individual algorithms and amalgamated as 

GWOCSA [6]. In this paper, the GWOCSA is checked on the 

cloud for managing the resources and scheduling the tasks. 

The algorithm has been checked and compared with GWO and 

CSA algorithms for optimized makespan. The results show 

that the performance of this hybridized algorithm is promising 

and gives near-optimal solutions. 

The remaining sections are organized as follows. Section 2 

discusses related work. Section 3 explains the proposed 

algorithms and related equations. Section 4 shows the 

experimental results. Conclusion and future work is shown in 

section 5. 

2. RELATED WORK

In the area of optimization, many heuristic and meta-

heuristic theories have been proposed in the recent past. Cloud 

computing has adopted some of the optimization techniques 

which combine or improvise one or more meta-heuristic 

algorithms. To enhance the efficiency of scheduling 

algorithms, researchers are using swarm intelligence 

algorithms. To quote a few, "Ant colony optimization, Particle 

swarm optimization, Genetic Algorithm, Differential 

evolution algorithm, Simulated annealing, Whale optimization, 

Grey wolf optimization, Crow search algorithm, Eagle 

strategy, Moth search algorithm, Artificial bee colony 

algorithm, Spider Monkey algorithm, Jaya algorithm, 

Teaching learning based optimization" [1], and so on. 

2.1 Ant colony optimization 

Tawfeek et al. [7] applied an ant colony optimization 

algorithm in scheduling and compares ACO with FCFS and 

proves that ACO shows better results. Li et al. [8] applied ant 

colony optimization to solve load balancing problems in the 

cloud environment. They propose an improvised algorithm 

LBACO.  

Dai et al. [9] took into account the effect of strong positive 

feedback of ACO on the algorithm's convergence rate. The 

initial pheromone chosen has a significant effect on the 

convergence rate. The algorithm uses a GA's global search 

capability to find the best solution and then transforms it into 

the ACO's initial pheromone. 

Azad and Navimipour [10] combined the ACO algorithm 

with the Cultural algorithm. Makespan and energy 

consumption are considered as objectives. Particle swarm 

optimization and ant colony optimization are combined in Ref. 

[11]. To maintain the population's diversity and the fitness of 

the particles increased, the authors demonstrate improved 

working efficiency in fitness, expense, and running time 

through their approach. They present a more accurate and 

effective understanding of task scheduling. 

However, ACO is strongly reliant on its two constants 𝛂 and 

β as a probabilistic algorithm. For combinatorial kinds of 

problems, it is highly desired to retain the standard values of 

these parameters. The ACO algorithm's stagnation phase could 

not be recovered without modifying the values of 𝛼. Even if 

standard values of 𝛼  and β are preserved, the convergence 

speed of the solution drastically varies for the same problem 

and the same number of ants. 

2.2 Particle swarm optimization 

In the recent past, researchers proposed many algorithms to 

solve optimization problems. Though individually, they 

showed their efficiency, either they suffered from lack of 

exploration or exploitation. The limitation of exploration and 

exploitation of the algorithms led the researchers to hybridize 

the algorithms to enhance efficiency. GA and PSO were added 

to solve the optimization problems [12]. Individuals are 

generated along with crossover, mutation, and operators of 

local and global search of PSO. As suggested by Pandey et al. 

[13], (PSO)-based heuristic for scheduling cloud applications 

to consider both computing and data transmission costs as the 

main objectives. The authors compare their proposed 

algorithm with the "Best resource selection" heuristic. They 

claim that their algorithm is better than the heuristic algorithm. 

Awad et al. [14] proposed a numerical model by considering 

reliability, execution time, transmission time, and load 

balancing between tasks and virtual machines using Load 

Balancing Mutation (balancing) a particle swarm optimization 

(LBMPSO) based schedule and allocation. They compare their 

method with standard PSO, random algorithm, and Longest 

Cloudlet to Fastest Processor (LCFP) algorithm to show an 

improvement. 

Verma and Kaushal [15] proposed a multi-objective 

optimization-based algorithm by hybridizing particle swarm 

optimization (HPSO). Under deadline and budget constraints, 

the HPSO heuristic attempts to optimize two competing goals, 

namely, makespan and expense. Along with these two 

opposing goals, the number of resources used to build the 

workflow schedule is also reduced. The algorithm generates a 

set of Pareto Optimal solutions from which the consumer can 

choose the most appropriate one. 

Gill et al. [16] suggested BULLET, a PSO-based resource 

scheduling strategy for scheduling workloads in the cloud to 

reduce execution expense, time, and energy consumption. 

BULLET is efficient in reducing the execution time, expense, 

and energy usage of cloud workloads, as well as other QoS 

parameters, including availability, efficiency, latency, and 

resource utilization, according to experimental findings. 

The particle swarm optimization (PSO) algorithm has the 

disadvantages of being easy to fall into a local optimum in 

high-dimensional space and having a slow convergence rate in 

the repeated process [17]. 

2.3 Genetic algorithm 

Zhao et al. [18] suggested an efficient genetic algorithm for 

scheduling independent and divisible tasks that can respond to 

various computing. They activate the algorithm in 

heterogeneous environments, where computing and 

communication capabilities (including CPUs) are 
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heterogeneous. The use of dynamic scheduling is also being 

considered. 

Aziza and Krichen [19] devised a fitness mechanism that 

aids in the reduction of mission execution costs and 

minimization of makespan. The extension of GA to two 

existing scheduling rules, time-shared and space-shared, 

resulted in two additional policies, TSGA and SSGA. The 

makespan and overall cost of execution are two metrics used 

to measure performance. 

Ibrahim et al. [20] proposed an Integer Linear Programming 

(ILP) model that minimizes energy consumption in a Cloud 

data center to create a dynamic task scheduling algorithm. In 

addition, an Adaptive Genetic Algorithm (GA) is proposed to 

reflect the complex nature of the Cloud world and to provide 

a near-optimal scheduling solution that saves resources. 

Zhou et al. [21] suggested MGGS (modified genetic 

algorithm (GA) combined with greedy strategy) as a new 

algorithm in this article. To maximize the efficiency of 

scheduling, the proposed algorithm uses a revamped GA 

algorithm paired with a greedy approach. MGGS, unlike other 

algorithms, can find an optimal solution with a lower number 

of iterations. 

2.4 Grey wolf optimization 

The grey wolf, also known as the timber wolf [5], is the 

world's largest wild dog. Wolves exist in clans led by an alpha 

wolf, with the rest of the pack adhering to a dominance 

hierarchy. The actions like hunting and finding the location of 

stay are taken by the alpha wolf. The second level of the wolf 

pack is beta and is considered subordinate to the alpha. The 

following levels of the wolves are delta and omega. 

The phases of hunting can be considered as follows. 

1) Tracking, pursuing, and closing in on the prey. 2) Pursue,

encircle, and annoy the prey until it comes to a halt. 3) Attack 

on the prey. 

Grey wolf optimizer is one of the metaheuristic algorithms. 

It was suggested by Mirjalili et al. [5] who proposed an 

intriguing meta-heuristic algorithm that mimicked the 

behavior of grey wolves. 

(1) Hierarchical structure

GWO has been mathematically modeled by taking into

account the social hierarchy. The best location of the search 

agent in the solution space is considered as α wolf, β as the 

second best, and δ as the third. The remaining are known as 

omega wolves [5]. 

(2) Encircling

During the hunting wolves encircle the prey. The equation

for encircling the prey is denoted by in Eq. (1) and Eq. (2) [4, 

5]. Here, the position of the wolves and the prey is represented 

by a vector. In the equation 'Dist' indicates the distance 

between prey and the wolf. GW and Xp correspond to the 

location of the wolf and the placement of prey respectively. 

�⃗⃗� = |𝐶 ∗⃗⃗⃗⃗ ⃗⃗  ⃗ 𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)| (1) 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡 + 1) =  𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐴 ∙ �⃗⃗� (2) 

𝐴 = 2𝑎 𝑟 1 − 𝑎 (3) 

𝐶 = 2 ∙ 𝑟 2 (4) 

Eq. (3) & Eq. (4) are vectors of coefficients. 

r1 and r2 represent random values between [0,1]. 

(3) Prey hunting

Grey wolves' encircling the prey is modeled by Eq. (5) and

Eq. (6). Guided byα, β, and δ wolves, all the remaining wolves 

update their position by Eq. (7). 

�⃗⃗� 𝛼 = |𝐶 ∗ 𝑋 𝛼(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

�⃗⃗� 𝛽 = |𝐶 ∗ 𝑋 𝛽(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

�⃗⃗� 𝛿 = |𝐶 ∗ 𝑋 𝛿(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

(5) 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
1(𝑡 + 1) = 𝑋 𝛼(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛼

𝐺𝑊2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋 𝛽(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛽

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
3(𝑡 + 1) = 𝑋 𝛿(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛿

(6) 

𝐺𝑊(𝑡 + 1) =
∑ 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

𝑖(𝑡 + 1)3
𝑖=1

3
(7) 

(4) Searching & attacking the prey

The prey gets attacked by grey wolves only when it stops

progress. It is described mathematically with a vector 'A' 

employed in Eq. (3). 'A' is a random vector and contains the 

values in [-a, a] [4, 5], with 'a' decreasing from 2 to 0 during 

the iterations using Eq. (8). 

|A| < 1 will lead the wolf to assault the prey with movement 

towards it and |A| > 1 lead the wolf to move away from the 

prey [1]. The position of α, β and δ wolves decide the direction 

of search for the prey. Global (exploration) and local 

(exploitation) searches rely on A and C vectors. 

𝑎 = 2 − (2 × 𝑡/𝑀𝑎𝑥𝑖𝑡𝑒𝑟) (8) 

The range of random values for the C vector is [0, 2], which 

is critical for preventing local optima stagnation. The values 

of the C vector show random behavior, in turn this helps to 

explore globally. 

Algorithm 1: Grey-wolf-Optimization [4, 5] 

1. grey wolves (search agents) initialized

2. Pops(i=1,2,...,n)

3. set the values of a, A and C

4. All individual Search agent's (Wolf) fitness has to be

calculated

5. GWα = The first high-quality search agent/wolf

6. GWβ = The second high-quality search agent/wolf

7. GWδ = The third high-quality search agent/wolf

8. repeat

9. { 

10. (j< Max) 

11. for all search agents

12. modify the location of all the search agents using Eq. 7

13. end for

14. modify a, A, C

15. all the search agent's fitness has to be calculated

16. modify GWα, GWβ, GWδ

17. j=j+1

18. } until(j>Max)

19. end loop

20. return GWα

The GWO suffers from poor local search and slow 

convergence rate [22]. 

329



 

2.5 Crow search algorithms 

 

Crows are intelligent creatures. They have the biggest brain 

in proportion to their body size. Experiments proved that they 

show self awareness ingenuity. Crows may use tools to 

interact in complex ways, and remember the location of their 

food for many months. Crows watch other birds, observing the 

place of food storage, and then stealing it after actual bird 

leaves. If a crow was a victim of theft before, it will take 

special care including changing hiding areas to prevent being 

a victim again. This behavior of cleverness is mimicked in 

finding the optimal solution using a natural-inspired algorithm 

by Askarzadeh [6]. CSA's operation is based on four important 

principles: herd living, recall the place of secret food, pursue 

another individual of their genus, and ultimately protect their 

accumulation from arbitrary plundering. 

(1) Mathematical model for CSA 

The position of each crow is represented by an M 

dimensional vector. Searching for the optimal solution starts 

from an initial population. Initialize the upper bound of 

iterations, count of crows, flight length and awareness 

probability. The fitness will be calculated.  

The notation CPopk represents the initial population of the 

crow and [CPopj1, CPopj2, CPopj3, ...,CPopjM] indicates the 

position of crow 'j'.  

Cpopi,t indicates the initial location of 'ith' crow at time 't'. 

Whereas 'ri,' and 'fl' indicate a random number, and flight 

length respectively. The secret place is 'sp'. 

If jth crow wants to visit the secret place where the food is 

hidden, ith crow plans to find the secret place of the crow j. This 

leads to either of the following. First awareness probability is 

compared with a random number. The crow updates its 

position by Eq. (9) [3, 6] if the awareness probability is larger. 

Otherwise it updates its position with a random crow's position. 

 

𝐶𝑝𝑜𝑝(𝑖+1,𝑡+1) = 𝐶𝑝𝑜𝑝𝑖,𝑡 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑡 × (𝑠𝑝𝑖,𝑡-𝐶𝑝𝑜𝑝𝑖,𝑡) 

if AP>rj 
(9) 

 

Algorithm 2 shows the pseudo code for CSA. 

 

Algorithm 2: CSA Algorithm [3, 5] 

1. CPopk (k=1,2,...,n) is initialized 

2. fitness of all the crows calculated 

3. Initialize reminiscence of crows  

4. repeat  

5. { 

6. for all crows 

7. Awareness probability (AP) is defined 

8. 'rand' is a randomly generated number 

9. if rand >= AP 

10. modify the location of crow with equation (9) 

11. else 

12. take the location of the crow randomly 

13. end if 

14. end for 

15. find the viability of the latest solution 

16. find the fitness of each search agent 

17. modify the memory of the crows 

18. i=i+1 

19. } 

20. until (i>Max) 

21. return the best solution crow 

 

The Crow search algorithm also suffers from slow 

convergence speed and can be trapped into local optima. 

 

 

3. POSED PROCEDURE TO UPDATE THE POSITION 

OF SEARCH AGENTS 

 

3.1 GWOCSA 

 

Hasty convergence is a flaw in GWO algorithm. This is 

attributable to the alpha, beta, and delta positions of the search 

agent's updates. This has a small potential to be exploited as 

well. By combining the GWO with the CSA, these flaws can 

be overcome. This strikes an appropriate balance between 

discovery and exploitation. The proposed algorithm 

effectively maximizes the advantages of the two algorithms, 

resulting in broad universal applicability. The CSA algorithm 

uses flight [3, 6]as a control parameter. This helps in both ways, 

i.e., in global and local searching. Small values guide to go for 

local search and large values for global search. 

The poor global searching capability can be overcome by 

accommodating a constant. This is adapted from CSA. Eq. (10) 

and Eq. (11) represent this scenario. The constant 'fl' guides to 

search in the global space and local space based on the selected 

value. This helps to stabilize both exploration and exploitation.  

Algorithm 3 represents the pseudo-code for GWOCSA. In 

the GWO based approach, updating of the search agent's 

position will be done in view of α, β, and δ wolves location. 

However, in the proposed hybrid model, the update of the grey 

wolf is done in accordance with Eq. (10). This helps greatly in 

avoiding local optima and helps to search in the global space. 

 

Algorithm 3: GWOCSA [3] 

1. Initialize the grey wolves GWi (i=1,2,...,n) 

2. a, A, and C initialized. 

3. find the fitness of all the search agents (Wolf) 

4. find GWα and GWβ 

5. while (t<Max) 

6. for all the search agents 

7. if AP>random number 

8. modify the location of the present search agent by Eq. 

(10) 

9. else 

10. modify the location of the present search agent by Eq. 

(11) 

11. end if  

12. end for  

13. modify AP using Eq. (12)  

14. modify 'a' using Eq. (13) 

15. modify A, C  

16. modify the fitness of all search agents. 

17.  modify GWα, GWβ  

18. t=t+1  

19. end while  

20. return GWα 

 

However, to modify the location of the search agent is done 

based on an adaptive parameter. If AP is greater than a 

randomly generated number, Eq. (10) helps to calculate latest 

location of the agent. Otherwise, Eq. (11) is used to update the 

position. Eq. (12) shows the adaptive balance probability. 

 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗ + 𝑓1. 𝑟𝑎𝑛𝑑. ((𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗)

+ (𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
2 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗))/2 

(10) 
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𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗ + 𝑓𝑙 × 𝑟𝑎𝑛𝑑((𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗)) (11) 

 

𝐴𝑃 = 1 − (
1.01 × 𝑡3

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛3
) (12) 

 

In the proposed model, a new update method is adopted. 

Instead of using Eq. (8), to change the value of 'a', Eq. (13) is 

used. This helps to improve the overall performance. 

 

𝑎 = 2 − 𝑐𝑜𝑠 (𝑟𝑎𝑛𝑑( )) ×
1

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (13) 

 

 

4. EXPERIMENTAL RESULTS 

 

The proposed algorithm is checked in MATALB R2020A 

software for its efficiency on Intel core™i7 CPU@1.80-GHz 

with 8 GB of RAM using synthetic data. As it is an NP-

Complete problem, the algorithm gives various outputs based 

on the random numbers. In this setup five jobs and five 

heterogeneous virtual machines are considered. Table 1 

presents the initial population. Table 2 represents the 

execution time of each job on every VM. Table 3 shows the 

final allocation of the algorithm. 

 

Table 1. Initial population 

 
Initial population 

Job2 Job3 Job5 Job4 Job1 

Job3 Job2 Job1 Job5 Job4 

Job4 Job2 Job3 Job5 Job1 

Job1 Job3 Job5 Job4 Job2 

Job4 Job3 Job1 Job5 Job2 

Job3 Job5 Job2 Job4 Job1 

Job4 Job5 Job1 Job3 Job2 

Job1 Job3 Job2 Job5 Job4 

Job3 Job4 Job1 Job2 Job5 

Job4 Job3 Job2 Job1 Job5 

Job1 Job5 Job3 Job2 Job4 

Job3 Job4 Job1 Job2 Job5 

Job2 Job4 Job1 Job3 Job5 

Job5 Job1 Job2 Job3 Job4 

Job4 Job5 Job2 Job1 Job3 

Job3 Job2 Job5 Job1 Job4 

Job3 Job4 Job5 Job1 Job2 

Job1 Job4 Job2 Job5 Job3 

Job5 Job3 Job2 Job1 Job4 

Job3 Job5 Job1 Job2 Job4 

 

Table 2. Execution times of jobs on VMS 

 

 VM1 VM2 VM3 VM4 VM5 

JOB1 28 26 28 24 17 

JOB2 17 16 24 25 24 

JOB3 28 20 15 25 15 

JOB4 28 27 26 20 18 

JOB5 21 26 28 24 15 

 

Table 3. Final allocation-GWOCSA 

 
VM1 VM2 VM3 VM4 VM5 Completion time 

JOB5 JOB2 JOB3 JOB4 JOB1 89 

 

The best makespan of the given problem after 10 iterations 

calculated by GWOCSA=124, with GWO=122 and with 

CSA=128. After iteration 120, the best makespan is 89. 

GWOCSA algorithm converges quickly. GWO and CSA 

suffer from slow convergence. Based on the values obtained 

from results it can be concluded that the proposed algorithm 

competes with GWO and CSA algorithms. It has proven that 

at times its efficiency is better than the other two algorithms. 

Figure 1 shows the comparison of the GWOCSA with 

GWO and CSA. From the figure, it can be observed that at the 

initial stages GWO shows a better solution. CSA algorithm 

does not converge quickly. However, the proposed algorithm 

balances the exploration and exploitation and reaches an 

optimal solution. The makespan after 20 iterations was 123 

with GWO,130 with CSA, and 120 with GWOCSA. 

GWOCSA converges to the optimal solution after 120 

iterations. The convergence of the GWO algorithms takes after 

160 iterations, and with CSA algorithm happens after 180 

iterations. 

 

 
 

Figure 1. Comparison of makespan 

 

 

5. CONCLUSION 

 

Present paper discusses the drawbacks of existing meta-

heuristic algorithms. GWO and CSA algorithms are 

considered to enhance the drawbacks of the algorithms when 

considered individually. Exploration and exploitation are 

balanced with the help of hybridization. This work can be 

further enhanced by applying a multi-objective function, in 

which multiple objectives can be addressed. The proposed 

algorithm is tested on MATLAB. The proposed algorithm 

converges quickly when compared with GWO and CSA 

algorithms. The present work can be extended further. 

Interested researchers may test on real clouds like 

OPENSTACK and CLOUDSTACK to check for the 

efficiency.  
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