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Greenhouses are considered to be a favorable artificial environment separated from the 

outside. However, pests can still exist by the same plant sources that bring the pathogen. 

The conditions and abundant food in a greenhouse provide a stable environment for the pest 

development. Normally, the natural enemies that serve to keep pests under control outside 

are not present in the greenhouse, pest situations often develop in this indoor environment 

more rapidly and with greater severity than outdoors. Early detection and diagnosis of pests 

and diseases are key to managing greenhouse pests as well as selecting and applying 

appropriate pesticides when needed. The aim of this invention is to develop an intelligent 

pest early detection system using a convolutional neural network in the greenhouse. By 

using a pre-trained disease recognition model, we were able to perform deep transfer 

learning to produce a network that can predict with the precision above 90%.  
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1. INTRODUCTION

Agriculture plays an important role in our daily lives 

because it provides food for daily consumption and for social 

needs. Agriculture is a primary production sector and plays a 

major role in fighting poverty for developing countries [1]. In 

addition to factors such as soil, nutrition, water, minerals that 

affect crop quality, pests and diseases are also considered as 

one of the main factors affecting plant development and 

productivity [2]. Numerous studies have shown that pests and 

diseases greatly affect crops [3]. According to the National 

Geographic report, grasshoppers in Africa, the Middle East 

and Asia can destroy 423 million pounds of crops every day, 

causing losses of about 82 million US dollars [4]. Another 

example is fungus related diseases, which affect many plants, 

caused by a variety of fungi species. It usually produces a 

powdery mildew substance that grows on both sides of the leaf. 

These leaves can be twisted, deformed, then wilted and died 

from the infection, or as some other fungal disease reduces the 

photosynthesis process takes place, prevents respiration and 

evaporation, and causes the growth slower. To overcome pests 

and diseases that affect crop yields, one of the solutions used 

is the greenhouse [5]. Greenhouse is a model in which plants 

can grow and develop with the best conditions for each 

specific species, while also helping minimize the risks that 

nature brings to plants. It can bring a very high economic 

efficiency than the form of outdoor farming [6]. However, 

pests and diseases can still exist in the greenhouses from 

varying sources: 

(1) Eggs, nymphs of many harmful insects; spores of

various diseases lurking in the soil, in the bushes, grasses, etc. 

(2) Using seeds and seedlings infected with insects and

diseases causes pests and diseases to exist. 

For that reason, early detection of pests and diseases in 

greenhouses is the most important key point to crop 

management. It prevents damage and loss, thus increasing 

production and significantly contributes to a nation’s food 

security. There are many existing methods for crop 

management such as locating the geological location of pests 

and their natural enemies, for example, spiders were used 

against rice pests to protect the crop in Korea [7]. This method 

is eco-friendly, but other problems may appear when applied 

in a greenhouse environment. Another way is using devices 

such as traps to capture fruit flies in tarweed plants [8]. This 

technique shows efficiency with a large area, but if this was 

used in the greenhouse, the area of the traps will affect the 

distribution of lights in the greenhouse. Another simple but 

troublesome solution is using pesticides. However, these 

substances release many toxic elements to the environment, 

and governments usually have a very restricted list of allowed 

substances and amounts. 

With the rising of computer vision and Artificial 

Intelligence (AI), Selvaraj et al. applied AI with transfer 

learning to detect banana diseases to create banana mobile app 

management [9] or Türkoğlu and Hanbay using deep learning-

based features to detect plant diseases and pests to provide 

automatic diagnosis of plant diseases with visual inspection 

[10]. 

In order to use in reality and be able to use on mobile 

embedded systems such as Raspberry Pi, we apply a transfer 

learning method using Single Shot Multibox detector Lite [11] 

(SSD Lite) architecture with MobileNetV2 [12] model to train 

pest images obtained from the greenhouse. This is executed on 

the server, and the result after training will be transferred to a 

single board computer (SBC) to detect and classify pests. We 

believe that our project will improve food quality and quantity, 
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prevent plant’s diseases, chemical substances and reduce 

human health risks.  

 

 

2. MATERIALS & METHODS 

 

2.1 System block diagram 

 

In our greenhouse we have two parts as shown in Figure 1. 

The first to train the machine learning model on the server. We 

use only 3 common types of pests in the greenhouse to prepare 

the dataset for training such as Cabbage looper, Colorado 

potato beetle and Cutworm. These images were taken under 

various conditions such as different light conditions, focal 

lengths and rotating positions, and resized to 300 x 300 pixels 

for training with the SSD Lite MobileNetV2 pre-trained model. 

The second is recognition in the greenhouse, which is a 

Raspberry Pi SBC with configuration shown as in Table 1 and 

a fixed camera to provide a video stream of the pest. The 

camera is installed on top of the greenhouse to observe the 

crop below. Since pests are constantly moving around, when 

we use a camera with sufficiently high resolution, there will 

probably be no blind spot in most cases. In case the greenhouse 

area is too large, the camera does not have high enough 

resolution, or there exists a blind spot on the farm plot, we will 

consider moving both Raspberry Pi and the camera mounted 

to the drone, or moving along the axis of the greenhouse It will 

detect and classify pests from the obtained video based on 

training results from the server in the first part. The result will 

be sent to the central monitor to help users control pests in the 

real-time by removing or applying appropriate pesticides when 

needed. 

 

 
 

Figure 1. Diagram of the main block system 

 

Table 1. Raspberry Pi configuration 

 
 Specifications 

CPU ARM Cortex A53 of 1.2 GHz 

GPU 400 MHz VideoCore IV multimedia 

Memory 1GB LPDDR2 

GPIO 17 GPIO plus specific functions 

Connectivity Ethernet, Wlan, Bluetooth 

Software Python, OpenCV-library 

 

 

2.2 Dataset collection and labeling  

 

Our dataset consists of 200 photos taken in the greenhouse 

as mentioned above, of which 120 are used for training and 80 

are used for testing. After taking pictures of common pests in 

the greenhouse, we preprocessed the images, resizing them 

into 300x300 pixels but still keeping the images of pests, the 

distribution of each pest type as shown in Table 2. Training 

photos are needed for the model to learn the features of pests, 

and testing photos are needed to evaluate the performance of 

the model. After collecting the data, we will have to label the 

images. The process of labeling images is done by LabelImg 

software [13]. 

 

Table 2. Distribution of pest dataset 

 
 Training Testing 

Cabbage looper 38 24 

Colorado potato beetle 43 29 

Cutworm 39 27 

Total 120 80 

 

2.3 Transfer learning and CNN architectures 

 

2.3.1 Transfer learning 

Transfer learning [14] is a popular method in computer 

vision because it allows us to build an accurate model without 

wasting time. The idea of transfer learning is very simple. 

Instead of the traditional machine learning method, which is 

used for each task, we create a model to solve only that 

problem. Transfer learning uses the knowledge gained from 

solving a previous problem and applies that knowledge to a 

different but related problem. In computer vision, transfer 

learning is often shown through the use of pre-trained models 

(for example: VGG, Inception, MobileNet). A pre-trained 

model is a model that has been trained on a big dataset to solve 

a related problem to the problem that we want to solve. 

Transfer learning helps to save time and dramatically reduce 

the amount of data and labels needed to train for the current 

model because it has applied knowledge learned from previous 

models into the current model. This process is shown as in 

Figure 2. 

For pest early detection, we train the model using SSD Lite 

architecture with the pre-trained MobileNetV2 model. Which 

was trained on the ImageNet dataset with one million images. 

Currently, ImageNet is one of the well-labeled datasets for 

learning general-purpose tasks. By using the pre-trained model 

from the beginning to recognize the features of the image like 

shape, color of pests, it will be more convenient to re-train on 

our labeled pest dataset. 

 

 
 

Figure 2. Basic flow of transfer learning 
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2.3.2 SSD Lite MobileNetV2 model 

The architecture of SSD Lite [11] is that the regular 

convolutions are replaced by depth wise separable 

convolutions in the predictive layers and the whole process is 

done in a single phase. SSD Lite extracts feature maps and 

applies convolution filters in Conv4_3 class to detect, classify 

and accurately identify object containers. In SSD Lite, 

multibox is a technique that uses multiple bounding boxes 

suitable for all objects, large and small, including pests and 

diseases for this project. The Non-Maximum Suppression 

(NMS) at the end of the architecture is used to retain only the 

best predictions of the model by setting the threshold to 

preserve highly overlapping objects and predict very small 

bounding boxes that are compact for all cases. By changing 

the threshold value, we realized that if the value is too low, 

then it will increase the chance of overlapping the predictions. 

However, if the value is too big, it’ll be very difficult to 

differentiate entities that are close to another one. After 

performing the threshold, we picked a fixed and suitable value 

of NMS = 0.45 to balance our predictions. 

MobileNetV2 pre-trained model is a model used to classify 

objects for mobile devices proposed [12]. This model uses 

linear bottleneck and inverted residuals for improving 

performance. The bottleneck takes in compressed low 

performance and expands, improves it into high performance, 

and then turns back into compressed low performance by 

applying depth-wise separable convolutions into the 

bottleneck, and using a linear convolution. This process 

reduces the chance of information loss and saves memory 

more than the original bottleneck. It improves the performance 

of mobile models on multiple tasks and benchmarks as well as 

on the spectrum of different model sizes with some advance 

feature: 

- Linear bottlenecks between the layers;  

- Shortcut connection between the bottlenecks. 

Bottlenecks encode average inputs and outputs, while the 

inner layer encapsulates the ability to convert from low-level 

concepts like pixels to higher levels like the model categories 

of the model Finally, with other traditional residual 

connections, shortcuts allow for faster training with greater 

accuracy. When SSD Lite was applied to MobileNetV2, the 

number of parameters and the computational cost were 

significantly reduced. Moreover, it can be used on a low 

power-consumption SBC such as a Raspberry Pi B. SSD Lite 

replaces all the regular convolutions with separable 

convolutions in the SSD predict layer, thereby helping to 

significantly reduce the parameters and computational costs. 

The sub-network stack of SSD Lite is based on auxiliary 

convolutional feature layers, which are designed such that they 

decrease in size in a progressive manner, thus enabling the 

flexibility of detecting objects within a scene across different 

scales. The SSD Lite MobileNetV2 model that we used has the 

following structure as shown in Figure 3. 

 

 
 

Figure 3. SSD lite MobileNet V2 model 

2.3.3 The algorithm for transfer training 

The following steps summarize SSD Lite MobileNetV2: 

- Step 1: Acquire the image. 

- Step 2: Label the image and save as a “𝑥𝑚𝑙” file. 

- Step 3: Convert the “𝑥𝑚𝑙” file to “𝑇𝐹𝑅𝑒𝑐𝑜𝑟𝑑” format. 

- Step 4: Transfer file format “𝑇𝐹𝑅𝑒𝑐𝑜𝑟𝑑” and a trained 

CNN model with the server to start training. 

- Step 5: Perform inference and then export the inference 

graph. 

- Step 6: Transfer Inference graph results into the 

Raspberry Pi, the image or video acquired from camera 

attached in the Raspberry Pi will be recognized in real-

time. 

 

 

3. EXPERIMENT AND RESULT 

 

3.1 Pest dataset collection and labeling 

 

We use the software LabelImg on Ubuntu operating system 

to label the images, then create a separate conda environment 

for LabelImg. After that, when labeling is shown as in Figure 

4, the type of class and coordinates of the boxes are saved as 

“𝑥𝑚𝑙” files shown as in Figure 5. 

Each label represents a different type of pests. Each image 

may contain more than one label depending on the number of 

infected areas of the crop. The LabelImg file is saved as a 

“𝑝𝑏𝑡𝑥𝑡” and later converted to “𝑇𝐹𝑟𝑒𝑐𝑜𝑟𝑑” format. Finally, 

we split our dataset into 2 subsets, training and testing, for 

training on the server. 

After training, some types of pests are noticed for high 

accuracy up to 99% as shown in Figure 6. However, if the pest 

is curved to the abnormal shape or size of the pest, the system 

will fail to recognize the insect. We also observed that during 

the labeling process, a single class for an image worked as a 

ground-truth bounding box for the model. 

 

 
 

Figure 4. Labeling images 

 

 
 

Figure 5. Dataset and 𝑥𝑚𝑙 file 
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Figure 6. Comparison between labeling and result 

 

3.2 Training process 

 

After all images are extracted to “𝑇𝐹𝑟𝑒𝑐𝑜𝑟𝑑”, we perform 

transfer learning with the feature server in Table 3. The time 

for training images lasts for 15 hours 21 minutes and the 

training process is shown as in Figure 7. 

 

Table 3. Server to train 

 
 Values 

CPU Intel® X3450@2.67 GHz x 8 

GPU GeForce GTX 750 Ti/PCle/SSE2 

Memory RAM 16Gb, HDD 256Gb 

OS Ubuntu 18.04.3 LTS 

Program LabelImg, Python, OpenCV library 

bash_size 8 

num_class 5 

 

 
 

Figure 7. Training process 

 

3.3 Loss function 

 

Loss function is a value that shows the error between the 

training data and the testing data. In our project, we considered 

two losses which are localization loss (𝐿𝑙𝑜𝑐) and confidence 

loss (𝐿𝑐𝑜𝑛𝑓). Total loss is a weighted sum of the 𝐿𝑙𝑜𝑐  and the 

𝐿𝑐𝑜𝑛𝑓given in the following equation: 

 

𝐿(𝑥,𝑐,𝑙,𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (1) 

 

where, 𝐿𝑙𝑜𝑐  is the localization loss which is the smooth 𝐿1 loss 

between the predicted 𝑏𝑜𝑥 (𝑙) and the ground-truth 𝑏𝑜𝑥 (𝑔) 

parameters. These parameters include the offsets for the center 

point (𝑐𝑥, 𝑐𝑦), width (𝑤) and height (ℎ) of the bounding box 

expressed as the following equation: 

 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − �̂�𝑗

𝑚)

𝑁

𝑖∈𝑃𝑜𝑠

 (2) 

 
 

Figure 8. Loss function graph 

 

𝐿𝑐𝑜𝑛𝑓  is the confidence loss which is the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 loss over 

multiple classes of confidences (𝑐 ), 𝛼  is set to 1 by cross 

validation, 𝑥𝑖𝑗
𝑝

= [1,0]  is an indicator for matching 𝑖 − 𝑡ℎ 

default box to the 𝑗 − 𝑡ℎ  ground truth box of category 

𝑝 represented by the following equation: 

 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝

log(�̂�𝑖
𝑝

) − ∑ log (�̂�𝑖
0)

𝑖∈𝑃𝑜𝑠

𝑁

𝑖∈𝑃𝑜𝑠

 (3) 

 

The value of the loss function is directly corresponding to 

the model performance as shown in Figure 8. 

At first, the model can only perform minor detection such 

as line detection, shape detection, etc. Therefore, the model 

when compared with the testing dataset creates a high loss 

value. After later iterations, the model can combine minor 

detection to form object detection. This is when the loss value 

decreases dramatically. The training process will stop when 

the loss value is smaller than 0.8 and the other near value 

remains constant for a long time. 

 

3.4 Metric evaluation 

 

Although accuracy rate is one of the most representative 

values to use when evaluating the model, to calculate that we 

certainly need to base it on 4 fundamental values in prediction 

evaluation: True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN). In comparison to the 

ground truth, we have: 

- True Positive: 37, is the number of samples that the model 

predicted to be in one class, and in fact belong to that class. 

- False Positive: 2, is the number of samples that the model 

predicted to be in one class, but in fact do not belong to 

that class. 

- True Negative: 40, is the number of samples that the 

model predicted NOT to be in one class, and in fact do not 

belong to that class. 

- False Negative: 1, is the number of sample(s) that the 

model predicted NOT to be in one class, but in fact belong 

to that class. 

With these 4 pillar values, we can now calculate the scores 

to evaluate the model. There are several formulas representing 

different aspects of the model, but here we just list some most 

commonly used: 

- Sensitivity, as known as (AKA) Recall or True Positive 

Rate (TPR) is the probability of a positive prediction 

being true: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

37

37 + 1
≈ 97% (4) 

212



 

- Specificity, AKA Selectivity or True Negative Rate (TNR) 

is the probability of a negative prediction being true: 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

40

40 + 2
≈ 95% (5) 

 

As we can see, these two values when calculated alone do 

not represent the performance of the model, since it only needs 

to predict everything as positive or negative to get a 100% on 

TPR or TNR. Thus, we need other values in order to be able 

to evaluate the true performance of the model, such as: 

- Precision or Positive Predictive Value (PPV) is the rate of 

correct positive predictions over all positive predictions, 

representing the performance of the model when it comes 

to positive tests: 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

37

37 + 2
≈ 95% (6) 

 

- Negative Predictive Value (NPV) is the rate of correct 

negative predictions over all negative predictions, 

representing the performance of the model when it comes 

to negative tests: 

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

40

40 + 1
≈ 98% (7) 

 

- Accuracy (ACC) represents the performance of the model 

when it comes to both positive and negative tests, with a 

relatively simple equation: 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

37 + 40

37 + 40 + 20 + 1
≈ 96% (8) 

 

- F1-score: Another value representing the model’s 

performance overall, based on the harmonic mean of 

Sensitivity and Precision: 

 

𝐹1 = 2 ×
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
= 2 ×

0.97 × 0.95

0.97 + 0.95
≈ 96% (9) 

 

3.5 Pest detection on the mobile device 

 

In this project, we labeled all images, trained the model 

using transfer learning on the server, and produced an 

inference graph. After testing, we noticed that the model can 

detect pests in real-time as shown in Figure 9. 

 

 
 

Figure 9. Correct detection 

 
 

Figure 10. Incorrect detection 

 

 
 

Figure 11. A prototype of the system 

 

However, some detections are incorrect due to abnormal 

shapes or colors, such as overlapping bounding boxes as 

shown in Figure 10. Because our dataset only contains 200 

training and testing images, therefore, in the multibox layer, 

the model cannot detect the insect, which causes overlapping 

bounding boxes. 

 

3.6 Prototype of system 

 

After designing and investigating, our group finished the 

system. The final prototype of our project is shown as in 

Figure 11. 

In our prototype of the system, we created a model with 

trees and some types of pests. It included a camera attached to 

a Raspberry Pi SBC to collect the pests' images in the 

greenhouse for the detection. Here are the models of the pests 

which were artificially provided but not the natural pests. 

During the test, we changed the pests in many positions, and 

the accurate prediction output was up to 96% under laboratory 

conditions. 

 

 

4. CONCLUSIONS 

 

In this work, we applied transfer learning based on SSD Lite 

architecture using MobileNetV2 as the backbone for the pest 

classifying application. While the inference time is still not 

desirable as the camera configuration has not reached 

1080p@30fps, the model’s accuracy is already high enough to 

be used in real life condition if we reduce the camera’s FPS. 
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We believe our model can be furthermore improved with a 

larger dataset for training and testing, although we still make 

our self-collected dataset available for the public. Some work 

planned to be done in the future are: 

- Acquire more images for training, validating and testing.

- Apply more data augmentation with existing images in

our dataset to improve the model’s performance.

- Trying other recently released image detection algorithms

for better inference time, such as YOLOv3 Lite.

- Switching to another computationally stronger SBC such

as Nvidia Jetson instead of Raspberry Pi.
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