
Pest Early Detection in Greenhouse Using Machine Learning

Le Quang Thao1,2*, Duong Duc Cuong2, Nguyen Tuan Anh3, Nguyen Minh4, Nguyen Duc Tam5

1 Faculty of Physics, VNU University of Science, Hanoi 100000, Vietnam
2 Vietnam National University, Hanoi 100000, Vietnam
3 Nguyen Sieu High School, Hanoi 100000, Vietnam
4 Chu Van An High School, Hanoi 100000, Vietnam
5 Aachen University of Applied Sciences, Aachen 52066, North Rhine-Westphalia, Germany

Corresponding Author Email: thaolq@hus.edu.vn

https://doi.org/10.18280/ria.360204 ABSTRACT

Received: 4 February 2022

Accepted: 12 April 2022

Greenhouses are considered to be a favorable artificial environment separated from the

outside. However, pests can still exist by the same plant sources that bring the pathogen.

The conditions and abundant food in a greenhouse provide a stable environment for the pest

development. Normally, the natural enemies that serve to keep pests under control outside

are not present in the greenhouse, pest situations often develop in this indoor environment

more rapidly and with greater severity than outdoors. Early detection and diagnosis of pests

and diseases are key to managing greenhouse pests as well as selecting and applying

appropriate pesticides when needed. The aim of this invention is to develop an intelligent

pest early detection system using a convolutional neural network in the greenhouse. By

using a pre-trained disease recognition model, we were able to perform deep transfer

learning to produce a network that can predict with the precision above 90%.

Keywords:

pests, greenhouse, transfer learning, SSD

Lite MobileNet V2

1. INTRODUCTION

Agriculture plays an important role in our daily lives

because it provides food for daily consumption and for social

needs. Agriculture is a primary production sector and plays a

major role in fighting poverty for developing countries [1]. In

addition to factors such as soil, nutrition, water, minerals that

affect crop quality, pests and diseases are also considered as

one of the main factors affecting plant development and

productivity [2]. Numerous studies have shown that pests and

diseases greatly affect crops [3]. According to the National

Geographic report, grasshoppers in Africa, the Middle East

and Asia can destroy 423 million pounds of crops every day,

causing losses of about 82 million US dollars [4]. Another

example is fungus related diseases, which affect many plants,

caused by a variety of fungi species. It usually produces a

powdery mildew substance that grows on both sides of the leaf.

These leaves can be twisted, deformed, then wilted and died

from the infection, or as some other fungal disease reduces the

photosynthesis process takes place, prevents respiration and

evaporation, and causes the growth slower. To overcome pests

and diseases that affect crop yields, one of the solutions used

is the greenhouse [5]. Greenhouse is a model in which plants

can grow and develop with the best conditions for each

specific species, while also helping minimize the risks that

nature brings to plants. It can bring a very high economic

efficiency than the form of outdoor farming [6]. However,

pests and diseases can still exist in the greenhouses from

varying sources:

(1) Eggs, nymphs of many harmful insects; spores of

various diseases lurking in the soil, in the bushes, grasses, etc.

(2) Using seeds and seedlings infected with insects and

diseases causes pests and diseases to exist.

For that reason, early detection of pests and diseases in

greenhouses is the most important key point to crop

management. It prevents damage and loss, thus increasing

production and significantly contributes to a nation’s food

security. There are many existing methods for crop

management such as locating the geological location of pests

and their natural enemies, for example, spiders were used

against rice pests to protect the crop in Korea [7]. This method

is eco-friendly, but other problems may appear when applied

in a greenhouse environment. Another way is using devices

such as traps to capture fruit flies in tarweed plants [8]. This

technique shows efficiency with a large area, but if this was

used in the greenhouse, the area of the traps will affect the

distribution of lights in the greenhouse. Another simple but

troublesome solution is using pesticides. However, these

substances release many toxic elements to the environment,

and governments usually have a very restricted list of allowed

substances and amounts.

With the rising of computer vision and Artificial

Intelligence (AI), Selvaraj et al. applied AI with transfer

learning to detect banana diseases to create banana mobile app

management [9] or Türkoğlu and Hanbay using deep learning-

based features to detect plant diseases and pests to provide

automatic diagnosis of plant diseases with visual inspection

[10].

In order to use in reality and be able to use on mobile

embedded systems such as Raspberry Pi, we apply a transfer

learning method using Single Shot Multibox detector Lite [11]

(SSD Lite) architecture with MobileNetV2 [12] model to train

pest images obtained from the greenhouse. This is executed on

the server, and the result after training will be transferred to a

single board computer (SBC) to detect and classify pests. We

believe that our project will improve food quality and quantity,

Revue d'Intelligence Artificielle
Vol. 36, No. 2, April, 2022, pp. 209-214

Journal homepage: http://iieta.org/journals/ria

209

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360204&domain=pdf

prevent plant’s diseases, chemical substances and reduce

human health risks.

2. MATERIALS & METHODS

2.1 System block diagram

In our greenhouse we have two parts as shown in Figure 1.

The first to train the machine learning model on the server. We

use only 3 common types of pests in the greenhouse to prepare

the dataset for training such as Cabbage looper, Colorado

potato beetle and Cutworm. These images were taken under

various conditions such as different light conditions, focal

lengths and rotating positions, and resized to 300 x 300 pixels

for training with the SSD Lite MobileNetV2 pre-trained model.

The second is recognition in the greenhouse, which is a

Raspberry Pi SBC with configuration shown as in Table 1 and

a fixed camera to provide a video stream of the pest. The

camera is installed on top of the greenhouse to observe the

crop below. Since pests are constantly moving around, when

we use a camera with sufficiently high resolution, there will

probably be no blind spot in most cases. In case the greenhouse

area is too large, the camera does not have high enough

resolution, or there exists a blind spot on the farm plot, we will

consider moving both Raspberry Pi and the camera mounted

to the drone, or moving along the axis of the greenhouse It will

detect and classify pests from the obtained video based on

training results from the server in the first part. The result will

be sent to the central monitor to help users control pests in the

real-time by removing or applying appropriate pesticides when

needed.

Figure 1. Diagram of the main block system

Table 1. Raspberry Pi configuration

 Specifications

CPU ARM Cortex A53 of 1.2 GHz

GPU 400 MHz VideoCore IV multimedia

Memory 1GB LPDDR2

GPIO 17 GPIO plus specific functions

Connectivity Ethernet, Wlan, Bluetooth

Software Python, OpenCV-library

2.2 Dataset collection and labeling

Our dataset consists of 200 photos taken in the greenhouse

as mentioned above, of which 120 are used for training and 80

are used for testing. After taking pictures of common pests in

the greenhouse, we preprocessed the images, resizing them

into 300x300 pixels but still keeping the images of pests, the

distribution of each pest type as shown in Table 2. Training

photos are needed for the model to learn the features of pests,

and testing photos are needed to evaluate the performance of

the model. After collecting the data, we will have to label the

images. The process of labeling images is done by LabelImg

software [13].

Table 2. Distribution of pest dataset

 Training Testing

Cabbage looper 38 24

Colorado potato beetle 43 29

Cutworm 39 27

Total 120 80

2.3 Transfer learning and CNN architectures

2.3.1 Transfer learning

Transfer learning [14] is a popular method in computer

vision because it allows us to build an accurate model without

wasting time. The idea of transfer learning is very simple.

Instead of the traditional machine learning method, which is

used for each task, we create a model to solve only that

problem. Transfer learning uses the knowledge gained from

solving a previous problem and applies that knowledge to a

different but related problem. In computer vision, transfer

learning is often shown through the use of pre-trained models

(for example: VGG, Inception, MobileNet). A pre-trained

model is a model that has been trained on a big dataset to solve

a related problem to the problem that we want to solve.

Transfer learning helps to save time and dramatically reduce

the amount of data and labels needed to train for the current

model because it has applied knowledge learned from previous

models into the current model. This process is shown as in

Figure 2.

For pest early detection, we train the model using SSD Lite

architecture with the pre-trained MobileNetV2 model. Which

was trained on the ImageNet dataset with one million images.

Currently, ImageNet is one of the well-labeled datasets for

learning general-purpose tasks. By using the pre-trained model

from the beginning to recognize the features of the image like

shape, color of pests, it will be more convenient to re-train on

our labeled pest dataset.

Figure 2. Basic flow of transfer learning

210

2.3.2 SSD Lite MobileNetV2 model

The architecture of SSD Lite [11] is that the regular

convolutions are replaced by depth wise separable

convolutions in the predictive layers and the whole process is

done in a single phase. SSD Lite extracts feature maps and

applies convolution filters in Conv4_3 class to detect, classify

and accurately identify object containers. In SSD Lite,

multibox is a technique that uses multiple bounding boxes

suitable for all objects, large and small, including pests and

diseases for this project. The Non-Maximum Suppression

(NMS) at the end of the architecture is used to retain only the

best predictions of the model by setting the threshold to

preserve highly overlapping objects and predict very small

bounding boxes that are compact for all cases. By changing

the threshold value, we realized that if the value is too low,

then it will increase the chance of overlapping the predictions.

However, if the value is too big, it’ll be very difficult to

differentiate entities that are close to another one. After

performing the threshold, we picked a fixed and suitable value

of NMS = 0.45 to balance our predictions.

MobileNetV2 pre-trained model is a model used to classify

objects for mobile devices proposed [12]. This model uses

linear bottleneck and inverted residuals for improving

performance. The bottleneck takes in compressed low

performance and expands, improves it into high performance,

and then turns back into compressed low performance by

applying depth-wise separable convolutions into the

bottleneck, and using a linear convolution. This process

reduces the chance of information loss and saves memory

more than the original bottleneck. It improves the performance

of mobile models on multiple tasks and benchmarks as well as

on the spectrum of different model sizes with some advance

feature:

- Linear bottlenecks between the layers;

- Shortcut connection between the bottlenecks.

Bottlenecks encode average inputs and outputs, while the

inner layer encapsulates the ability to convert from low-level

concepts like pixels to higher levels like the model categories

of the model Finally, with other traditional residual

connections, shortcuts allow for faster training with greater

accuracy. When SSD Lite was applied to MobileNetV2, the

number of parameters and the computational cost were

significantly reduced. Moreover, it can be used on a low

power-consumption SBC such as a Raspberry Pi B. SSD Lite

replaces all the regular convolutions with separable

convolutions in the SSD predict layer, thereby helping to

significantly reduce the parameters and computational costs.

The sub-network stack of SSD Lite is based on auxiliary

convolutional feature layers, which are designed such that they

decrease in size in a progressive manner, thus enabling the

flexibility of detecting objects within a scene across different

scales. The SSD Lite MobileNetV2 model that we used has the

following structure as shown in Figure 3.

Figure 3. SSD lite MobileNet V2 model

2.3.3 The algorithm for transfer training

The following steps summarize SSD Lite MobileNetV2:

- Step 1: Acquire the image.

- Step 2: Label the image and save as a “𝑥𝑚𝑙” file.

- Step 3: Convert the “𝑥𝑚𝑙” file to “𝑇𝐹𝑅𝑒𝑐𝑜𝑟𝑑” format.

- Step 4: Transfer file format “𝑇𝐹𝑅𝑒𝑐𝑜𝑟𝑑” and a trained

CNN model with the server to start training.

- Step 5: Perform inference and then export the inference

graph.

- Step 6: Transfer Inference graph results into the

Raspberry Pi, the image or video acquired from camera

attached in the Raspberry Pi will be recognized in real-

time.

3. EXPERIMENT AND RESULT

3.1 Pest dataset collection and labeling

We use the software LabelImg on Ubuntu operating system

to label the images, then create a separate conda environment

for LabelImg. After that, when labeling is shown as in Figure

4, the type of class and coordinates of the boxes are saved as

“𝑥𝑚𝑙” files shown as in Figure 5.

Each label represents a different type of pests. Each image

may contain more than one label depending on the number of

infected areas of the crop. The LabelImg file is saved as a

“𝑝𝑏𝑡𝑥𝑡” and later converted to “𝑇𝐹𝑟𝑒𝑐𝑜𝑟𝑑” format. Finally,

we split our dataset into 2 subsets, training and testing, for

training on the server.

After training, some types of pests are noticed for high

accuracy up to 99% as shown in Figure 6. However, if the pest

is curved to the abnormal shape or size of the pest, the system

will fail to recognize the insect. We also observed that during

the labeling process, a single class for an image worked as a

ground-truth bounding box for the model.

Figure 4. Labeling images

Figure 5. Dataset and 𝑥𝑚𝑙 file

211

Figure 6. Comparison between labeling and result

3.2 Training process

After all images are extracted to “𝑇𝐹𝑟𝑒𝑐𝑜𝑟𝑑”, we perform

transfer learning with the feature server in Table 3. The time

for training images lasts for 15 hours 21 minutes and the

training process is shown as in Figure 7.

Table 3. Server to train

 Values

CPU Intel® X3450@2.67 GHz x 8

GPU GeForce GTX 750 Ti/PCle/SSE2

Memory RAM 16Gb, HDD 256Gb

OS Ubuntu 18.04.3 LTS

Program LabelImg, Python, OpenCV library

bash_size 8

num_class 5

Figure 7. Training process

3.3 Loss function

Loss function is a value that shows the error between the

training data and the testing data. In our project, we considered

two losses which are localization loss (𝐿𝑙𝑜𝑐) and confidence

loss (𝐿𝑐𝑜𝑛𝑓). Total loss is a weighted sum of the 𝐿𝑙𝑜𝑐 and the

𝐿𝑐𝑜𝑛𝑓given in the following equation:

𝐿(𝑥,𝑐,𝑙,𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (1)

where, 𝐿𝑙𝑜𝑐 is the localization loss which is the smooth 𝐿1 loss

between the predicted 𝑏𝑜𝑥 (𝑙) and the ground-truth 𝑏𝑜𝑥 (𝑔)

parameters. These parameters include the offsets for the center

point (𝑐𝑥, 𝑐𝑦), width (𝑤) and height (ℎ) of the bounding box

expressed as the following equation:

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − �̂�𝑗

𝑚)

𝑁

𝑖∈𝑃𝑜𝑠

 (2)

Figure 8. Loss function graph

𝐿𝑐𝑜𝑛𝑓 is the confidence loss which is the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 loss over

multiple classes of confidences (𝑐), 𝛼 is set to 1 by cross

validation, 𝑥𝑖𝑗
𝑝

= [1,0] is an indicator for matching 𝑖 − 𝑡ℎ

default box to the 𝑗 − 𝑡ℎ ground truth box of category

𝑝 represented by the following equation:

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝

log(�̂�𝑖
𝑝

) − ∑ log (�̂�𝑖
0)

𝑖∈𝑃𝑜𝑠

𝑁

𝑖∈𝑃𝑜𝑠

 (3)

The value of the loss function is directly corresponding to

the model performance as shown in Figure 8.

At first, the model can only perform minor detection such

as line detection, shape detection, etc. Therefore, the model

when compared with the testing dataset creates a high loss

value. After later iterations, the model can combine minor

detection to form object detection. This is when the loss value

decreases dramatically. The training process will stop when

the loss value is smaller than 0.8 and the other near value

remains constant for a long time.

3.4 Metric evaluation

Although accuracy rate is one of the most representative

values to use when evaluating the model, to calculate that we

certainly need to base it on 4 fundamental values in prediction

evaluation: True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN). In comparison to the

ground truth, we have:

- True Positive: 37, is the number of samples that the model

predicted to be in one class, and in fact belong to that class.

- False Positive: 2, is the number of samples that the model

predicted to be in one class, but in fact do not belong to

that class.

- True Negative: 40, is the number of samples that the

model predicted NOT to be in one class, and in fact do not

belong to that class.

- False Negative: 1, is the number of sample(s) that the

model predicted NOT to be in one class, but in fact belong

to that class.

With these 4 pillar values, we can now calculate the scores

to evaluate the model. There are several formulas representing

different aspects of the model, but here we just list some most

commonly used:

- Sensitivity, as known as (AKA) Recall or True Positive

Rate (TPR) is the probability of a positive prediction

being true:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

37

37 + 1
≈ 97% (4)

212

- Specificity, AKA Selectivity or True Negative Rate (TNR)

is the probability of a negative prediction being true:

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

40

40 + 2
≈ 95% (5)

As we can see, these two values when calculated alone do

not represent the performance of the model, since it only needs

to predict everything as positive or negative to get a 100% on

TPR or TNR. Thus, we need other values in order to be able

to evaluate the true performance of the model, such as:

- Precision or Positive Predictive Value (PPV) is the rate of

correct positive predictions over all positive predictions,

representing the performance of the model when it comes

to positive tests:

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

37

37 + 2
≈ 95% (6)

- Negative Predictive Value (NPV) is the rate of correct

negative predictions over all negative predictions,

representing the performance of the model when it comes

to negative tests:

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

40

40 + 1
≈ 98% (7)

- Accuracy (ACC) represents the performance of the model

when it comes to both positive and negative tests, with a

relatively simple equation:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

37 + 40

37 + 40 + 20 + 1
≈ 96% (8)

- F1-score: Another value representing the model’s

performance overall, based on the harmonic mean of

Sensitivity and Precision:

𝐹1 = 2 ×
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
= 2 ×

0.97 × 0.95

0.97 + 0.95
≈ 96% (9)

3.5 Pest detection on the mobile device

In this project, we labeled all images, trained the model

using transfer learning on the server, and produced an

inference graph. After testing, we noticed that the model can

detect pests in real-time as shown in Figure 9.

Figure 9. Correct detection

Figure 10. Incorrect detection

Figure 11. A prototype of the system

However, some detections are incorrect due to abnormal

shapes or colors, such as overlapping bounding boxes as

shown in Figure 10. Because our dataset only contains 200

training and testing images, therefore, in the multibox layer,

the model cannot detect the insect, which causes overlapping

bounding boxes.

3.6 Prototype of system

After designing and investigating, our group finished the

system. The final prototype of our project is shown as in

Figure 11.

In our prototype of the system, we created a model with

trees and some types of pests. It included a camera attached to

a Raspberry Pi SBC to collect the pests' images in the

greenhouse for the detection. Here are the models of the pests

which were artificially provided but not the natural pests.

During the test, we changed the pests in many positions, and

the accurate prediction output was up to 96% under laboratory

conditions.

4. CONCLUSIONS

In this work, we applied transfer learning based on SSD Lite

architecture using MobileNetV2 as the backbone for the pest

classifying application. While the inference time is still not

desirable as the camera configuration has not reached

1080p@30fps, the model’s accuracy is already high enough to

be used in real life condition if we reduce the camera’s FPS.

213

We believe our model can be furthermore improved with a

larger dataset for training and testing, although we still make

our self-collected dataset available for the public. Some work

planned to be done in the future are:

- Acquire more images for training, validating and testing.

- Apply more data augmentation with existing images in

our dataset to improve the model’s performance.

- Trying other recently released image detection algorithms

for better inference time, such as YOLOv3 Lite.

- Switching to another computationally stronger SBC such

as Nvidia Jetson instead of Raspberry Pi.

REFERENCES

[1] Johnston, B.F., Mellor, J.W. (1961). The role of

agriculture in economic development. The American

Economic Review, 51(4): 566-593.

[2] Headey, D., Alauddin, M., Rao, D.P. (2010). Explaining

agricultural productivity growth: An international

perspective. Agricultural Economics, 41(1): 1-14.

https://doi.org/10.1111/j.1574-0862.2009.00420.x

[3] Dhanush, D., Bett, B.K., Boone, R.B., et al. (2015).

Impact of climate change on African agriculture: Focus

on pests and diseases. CCAFS Info Note. Copenhagen,

Denmark: CGIAR Research Program on Climate Change,

Agriculture and Food Security (CCAFS).

[4] National Geographic Information,

www.nationalgeographic.com.

[5] Teitel, M., Montero, J.I., Baeza, E.J. (2011). Greenhouse

design: Concepts and trends. In International Symposium

on Advanced Technologies and Management Towards

Sustainable Greenhouse Ecosystems: Greensys2011,

Athens, Greece, pp. 605-620.

http://dx.doi.org/10.17660/ActaHortic.2012.952.77

[6] Growcer Robotic Urban Farming, www.growcer.com.

[7] Lee, J.H., Kim, S.T. (2001). Use of spiders as natural

enemies to control rice pests in Korea (Vol. 501). Food

and Fertilizer Technology Center.

[8] Krimmel, B.A., Pearse, I.S. (2013). Sticky plant traps

insects to enhance indirect defence. Ecology Letters,

16(2): 219-224. https://doi.org/10.1111/ele.12032

[9] Selvaraj, M.G., Vergara, A., Ruiz, H., Safari, N.,

Elayabalan, S., Ocimati, W., Blomme, G. (2019). AI-

powered banana diseases and pest detection. Plant

Methods, 15(1): 92. https://doi.org/10.1186/s13007-019-

0475-z

[10] Türkoğlu, M., Hanbay, D. (2019). Plant disease and pest

detection using deep learning-based features. Turkish

Journal of Electrical Engineering & Computer Sciences,

27(3): 1636-1651. http://dx.doi.org/10.3906/elk-1809-

181

[11] Liu, W., Anguelov, D., Erhan, D., et al. (2016). SSD:

Single shot multibox detector. Computer Vision – ECCV

2016, Amsterdam, the Netherlands, pp. 21-37.

https://doi.org/10.1007/978-3-319-46448-0_2

[12] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Lake City,

UT, USA, pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

[13] LabelImg Soft, https://github.com//tzutalin/labelImg.

[14] Torrey, L., Shavlik, J., (2009). Transfer Learning.

Handbook of Research on Machine Learning

Applications. https://ftp.cs.wisc.edu/machine-

learning/shavlik-group/torrey.handbook09.pdf.

214

