
Load Balancing and Parallel Computation Model for Performance and Accuracy over the

Cluster of Nodes

Annabathula Phani Sheetal*, Ravi Teja Bhima, Radha Karampudi, Srisailapu D. Vara Prasad

Computer Science and Engineering, School of Technology, GITAM Deemed to be University, Hyderabad 502329, Telangana,

India

Corresponding Author Email: uma.15phani@gmail.com

https://doi.org/10.18280/isi.270219 ABSTRACT

Received: 13 January 2022

Accepted: 19 April 2022

Cloud computing can be online based network engineering which contributed with a rapid

advancement at the progress of communication technological innovation by supplying

assistance to clients of assorted conditions with aid from online computing sources. It's

terms of hardware and software apps together side software growth testing and platforms

applications because tools. Large-scale heterogeneous distributed computing surroundings

give the assurance of usage of a huge quantity of computing tools in a comparatively low

price. As a way to lessen the software development and setup onto such complicated

surroundings, high speed parallel programming languages exist which have to be

encouraged by complex operating techniques. There are numerous advantages for

consumers in terms of cost and flexibility that come with Cloud computing anticipated

uptake. Building on well-established research in Internet solutions, networks and utility

computing, virtualization et cetera Service-Oriented Architectures and the Internet of

Services (IoS) have implications for a wide range of technological issues such as parallel

computing and load balancing as well as high availability and scalability. Effective load

balancing methods are essential to solving these issues. Adaptive task load model is the

name of the method we suggest in our article for balancing the workload (ATLM). We

developed an adaptive parallel distributed computing paradigm as a result of this (ADPM).

While still maintaining the model's integrity, ADPM employs a more flexible

synchronization approach to cut down on the amount of time synchronous operations use.

As well as the ATLM load balancing technique, which solves the straggler issue caused by

the performance disparity between nodes, ADPM also applies it to ensure model

correctness. The results indicate that combining ADPM and ATLM improves training

efficiency without compromising model correctness.

Keywords:

cloud computing, load balancing, parallel

computing, service oriented architectures

1. INTRODUCTION

Inside the area of network engineering, cloud computing

engineering is currently now revealing outstanding growth

because of this progress of communicating engineering,

volatile utilization of the web, and clear up large-scale issues.

It lets the hardware, and software purposes as tools across the

web such as your own cloud consumer. Cloud computing is

also a Internet-based computing model which conveys tools

(e.g. networks, servers and storage, software (and solutions),

software, and also data to Different apparatus of their

consumer on-demand [1]. The scalable and efficient attributes

of cloud computing may reach by sustaining good direction of

cloud tools. All these cloud tools will be from the digital form

that's the main features of this cloud network. The Cloud

Service Provider (CSP) gives companies for the end

consumers in leased foundation. The part of CSP to deliver the

professional services into this user can be really just actually a

exact complex 1 together using the obtainable digital cloud

tools. Hence, scientists are awarded more awareness to the

balancing of this load. With this load balancing, the platform's

performance has been greatly improved. It is indeed a trade-

off between monetary gains and ensuring that each individual

is adequately resourced, even in the CSP design. When it

comes to load balancing, we also consider Service Level

Agreements (SLAs), the agreement between the cloud service

provider and its customers. When it comes to cloud load

balancing, physical hosts or virtual machines can both be used.

In terms of load balancing calculations, static and lively are

the only two options available. With an optional program, even

static-based balancing calculations are suitable for most

conditions. Flexible and effective in both homogeneous and

heterogeneous settings, dynamic balancing calculations.

Inactive load balancing procedures have less system overhead

than dynamic load balancing processes [2].

The load is a term commonly used in cloud computing to

describe the feasibility of assigning different tasks to VMs.

There are several ways to describe the load balancing issue.

(1) Allocation of Task- The arbitrary distribution of a

limited number of tasks across multiple Physical Machines

(PMs), each of which is assigned to a separate virtual machine

(VM). How effective the job allocation to the cloud is what

determines how effective the load balancing algorithm is [3-

6].

(2) VM/Task Migration Management- Back in the

Environment of Cloud Computing'' VM Migration is only the

movements of the VM out of 1 PM to a different PM into

advancing the reference use of this info centre where the PM

Ingénierie des Systèmes d’Information
Vol. 27, No. 2, April, 2022, pp. 343-348

Journal homepage: http://iieta.org/journals/isi

343

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270219&domain=pdf

continues to be overloaded. Likewise, the migration of this

ongoing condition of some task in one VM to some other VM

or VM of a single sponsor into VM of some other server is

known as task migration. That really is why; both the VM or

task migration plays an important part load balancing of cloud

computing.

Communication and synchronization enable more efficient

use of CPU resources in parallel processes. Overall, a data

center's responsiveness to parallel tasks must be maintained

while ensuring effective node utilization [1]. However, load

balancing is a significant problem in cloud computing,

necessitating a distributed solution.

A major problem with cloud computing is the difficulty in

properly balancing load by allocating tasks to the right servers

and clients individually. It is therefore not cost-effective nor

feasible to meet all the demand by keeping a few idle services

running around. Even when tasks are allocated, there is still a

degree of ambiguity [3].

ATLM/ADPM is thus proposed, with the goal of improving

server throughput and performance, as well as maximizing the

use of resources. The load balancing and parallel distributed

computing drawbacks are solved within the existing protocols

by using this protocol's cloud-based approach. In order to

simplify the tasks and decrease the amount of time spent

waiting and switching between them, as well as improve the

computer's speed, as well as the server's throughput and

efficiency.

2. REVIEW STUDY

A method inspired by honey bee behavior was suggested in

ref. [7] to create well balanced load among VMs in order to

optimize throughput and balance the priority of activities on

VMs. This technique is described in detail in ref. [7]. Because

of this, jobs in the queue don't have to spend a lot of time

waiting. The average execution time and reduced waiting time

for jobs in the queue were both improved as a result of using

this method. This method is suitable for non-preemptive

independent jobs in heterogeneous systems.

For cloud computing and queuing models for a collection of

heterogeneous multi core servers of various sizes and speeds,

performance optimization and power saving in data centers

were addressed in ref. [8]. For many heterogeneous multi core

server processors, it tackles the issue of power allocation and

load distribution across clouds and data centers, in particular.

Even so, this is only a proof-of-concept research.

According to Rao et al. [9], the information nodes of all

other nodes should be approached with a balanced manner. It's

necessary for a node to query the other buttons when it gets

work to see which one has less use to send it, and when all the

nodes are querying overload occurs. The network will be

burdened greatly if all nodes broadcast a status update. Time

spent in performing query status at each node is the next

problem to consider. Additionally, the present condition of the

network has an impact on how well load balancing works. This

is due to the fact that configuring a network node to find every

other node in a complicated network with many subnets is a

difficult job. As a result, checking the status of cloud nodes

will have an impact on load balancing performance.

For example, reaction time has a significant impact on how

well the cloud load balances performance. There were two

problems with the previous method that were not addressed in

this research. When the server is overloaded, load balancing

takes place; otherwise, the computing cost and bandwidth

usage rise. Authors have suggested an algorithm based on

request response time to properly allocate necessary server

choices, and this method has decreased query information on

available resources, as well as contact with and computation

on each of the servers individually [10].

However, the algorithm has not yet taken into account the

burden of each resource, thus Min – Min [11] reduces the time

it takes to perform the task in each network node. To address

this shortcoming, the authors came up with the Load Balance

Improved Min-Min (LBIMM) method. There will be many

overloaded and idle resources if the workload of each resource

is not taken into account. This has an impact on the load

balancing of clouds. The present cloud computing scheduling

method is based on the basic conventional Min-Min Algorithm.

Resource scheduling rules and resource load balancing in

the cloud are important considerations for the LBRS (Load

Balanced Resource Scheduling Method) algorithm developed

by Kapur [12]. Aims include increasing CPU utilization and

throughput while lowering reaction times, ensuring that users

do not have to wait, and adhering to the Fairness Principle.

When discussing quality of service (QoS), the terms being

used include throughput, response time, and waiting time. For

load balancing, we use simulation and analysis of data on the

effects of various factors. It was then that we found out how

important the parameter of make span (runtime) is to the cloud

data center infrastructure. As a result, the researchers' goal is

to determine if the algorithms' load balancing is helpful in

reducing virtual machines' make time.

The dynamic demand is spread over many resources via

load balancing to ensure that no one resource is underused or

overwhelmed, but this presents a significant optimization

challenge. This article proposes a load balancing method based

on Simulated Annealing (SA), with the main goal of balancing

the cloud infrastructure's load. The efficacy of the algorithm is

assessed using a customized version of a conventional Cloud

Analyst simulator. The suggested method outperforms current

approaches such as First Come First Serve (FCFS), local

search algorithms such as Stochastic Hill Climbing (SHC), and

Round Robin (RR) [13].

3. METHODOLOGY-LOAD BALANCING AND

PARALLEL COMPUTING ADPM–ATLM

The user supplies the task requirements, including the job

duration, and the scheduler uses those needs to make

operational choices. Once an idle or least-laden VM is found,

the load balancer uses the current status information to

determine whether to move the job from the highly loaded one

to the idle or least-loaded one. The resource monitor interacts

with each VM's resource prober and gathers information about

each VM's capabilities, current load, and number of tasks in

the execution/waiting queue. The user supplies the task

requirements, including the job duration, and the scheduler

uses those needs to make operational choices.

A single computer gathers all the intermediate findings and

reports them to a single machine that combines them all to get

the final answers. This is how most parallelizable problems

operate. As the software runs, it will identify which computer

it is operating on and then attack the relevant portion of the

original issue based on that knowledge. To receive results

from all other computers once the calculation is complete, one

machine will serve as a receiver. Each running program or

344

process must be able to tell itself apart from other running

programs for this method to function.

Figure 1. Load balancing design

Each of the VMs' capabilities is collected by the resource

management by communicating with all of the VMs and

obtaining the number of processor elements and the processing

capacity of each of the processor elements. Using the

processing capacity assigned to each VM, the resource

management also determines the VM's weight. This also tells

you how much RAM each of the virtual machines has set up

for and is needed is shown in Figure 1. The load balancer

determines the amount of tasks per VM and divides that

number by the number of VMs. If the ratio is less than 1, the

scheduler will be notified to choose a VM for the task;

otherwise, the load on each VM will be calculated using the

VMs' job execution list. If the utilization is less than 20%, the

least used VM will be assigned; otherwise, the scheduler will

be notified to determine the best VM for the task. A suitable

VM will be found, and the Job will be assigned to it. The

collection of computing resources is comprised of the

configured data centers, which contain hosts and their VMs, as

well as the associated processing components. In order to

properly distribute task requests to a suitable resource, the

resources are checked for idleness and high load.

A. Computation of Load balance factor

Represents the total load on all virtual machines,

1

,
k

i

i

L l
=

= (1)

where is the number of virtual machines in the data center?

The following is an explanation of load per unit capacity:

1

LPC LP * ,Ci im

i

i

L
Threshold T c

C
=

= =



(2)

where, ci represents the node's overall capacity. The virtual

machine's load imbalance factor is calculated as follows:

1

1

1

, Underloaded,

 , Overloaded,

, Balanced.

k

i v

v

k

i v

v

k

i i

i

T L

If VM T L

T l

=

=

=


 −


 −


= −








 (3)

Once the overloaded VM's load falls below a certain

threshold, the migration of tasks from the overloaded VM to

the under loaded VM may be permitted until the difference

between the two values is i.

When the total load of all the VMs is less than the threshold

value for that VM, it is considered under loaded. Under loaded

VM takes load from overloaded VM till overloaded VM's load

reaches threshold and difference is the λj.

The overloaded VM's load is transferred until it falls below

the threshold. The under loaded VM can only take on load up

to a certain point before it becomes overloaded.

B. Model Methodology

As a result of this approach, jobs and processing are

allocated to VMs with the best processing capability based on

information about each VM, such as its processing capacity,

load on each VM, and the amount of time it will take to

complete each work with its priority. This algorithm's static

scheduling determines the proper VM allocation based on the

processing capability of the VMs, the number of incoming

tasks, and the duration of each job.

Using an idle slot from an underused or unutilized VM and

a waiting task from a highly loaded one, the load balancer

rescues the scheduling controller and rearranges the jobs

accordingly. When a job is finished in any of the VMs, the load

balancer uses resource prober to determine whether ones are

unutilized or underused. The load balancer will not do any task

movement across the VMs if there is no unutilized VM shown

in Figure 2. To avoid overloading the overcrowded VM, it will

move the job to any available underutilized/underused VM.

Only after one of the jobs on any of the VMs has been

completed does the load balancer look at the resource's (VM)

load. It doesn't look at the resource's (VM) load on its own to

avoid the VMs' overhead. The number of task migrations

across VMs and the number of resource probe executions in

VMs will be reduced as a result of this.

Figure 2. Proposed architecture recent generation

345

C. Implementation Aspect of the Algorithm

Here, we propose a model built on the most recent

generation of load balancing algorithms.

4. MODEL

Allowing for the existence of many virtual machines, let

T=(T1, T2, T3, ..., Tn) be the list of tasks that each virtual

machine should process. VMs run independently of one

another, each using a different set of system resources as a

result. Other VMs cannot access its resources. We allocate 'n'

tasks to'm' VMs in a non-preemptive dependent schedule.

Processing Time. Let PTij be the processing time of

assigning task ‘i’ to VM ‘j’ and define

1, if task " " is assigned

0, otherwise
ij

i
x


= 


(4)

Then the linear programming model is given as

1 1

1

 PT

: 1, 1, 2, ,

0 or 1.

n m

ij ij

i j

n

ij

i

ij

Minimize Z x

Subjectto x j m

x

= =

=

=

= = 

=




(5)

Utilization of available resources. It's essential to maximize

the use of resources, which comes from (6) and (7). It gets

more difficult to achieve high levels of resource consumption.

The new standard for determining average usage is [14-18].

VMs
 ,

 Makespan * Number of VMs

j

j

CT

Average utilization


=


(6)

where make span can be expressed as

max .
jCT

Makespan
j VMs

 
=  

 
(7)

Capacity of a VM. Consider

VM num mipspe *pe ,C = (8)

where, CVM is the capacity of the VM (see (8)), penum is the

number of processing elements in the VM, and penum is the

million instructions per second of a PE.

Capacity of All the VMs. Consider

VM

1

,
j

m

j

C C
=

= (9)

When all VMs are added together, the total capacity

allocated to an application or environment is C.

Task Length. Consider

mips peTL * ,T T= (10)

Job Length. Consider

1

JL TL ,
p

i

k=

= (11)

where, 'P' seems to be the job's total number of interrelated

tasks. Ratio of work to rest time. In (12) and (13) the task load

ratio is computed to identify and distribute jobs to virtual

machines. It may be summed up as

VM

TL
TLR ,

1,2, , , 1,2, , ,

j

i

ij
C

i n tasks j m Virtualmachines

=

=  = 

(12)

where, TLi is the task length which is estimated at the

beginning of the execution and Cvm is the capacity of the VM.

Consider

0, assign the task to VM,
 If TLR

 Otherwise, Do not assign.
ij


= 


(13)

5. RESULTS OF EXPERIMENTS AND ANALYSIS OF

PERFORMANCE

The model's performance was examined using the

CloudSim simulation results. To make use of the techniques,

the CloudSim simulator's classes have been extended

(overridden). As shown in the accompanying diagrams,

resource circumstances affect everything from load balancing

to response time to the number of job migrations data

incorporated in Table 1.

Table 1. Load balancing and distributed processing in cloud

computing environment using ADPM – ATLM

S.No Entity Parameters Values

1 Task Center

Length of task 5000-10000

Total number of

task
50-250

File size 300-5000

2
Virtual

Machine

MIPS of pe 512-1024

Number of VM 10

Numberof peper vm 1-3

Bandwidth 500-1200

Memory 512-2055

Storage
100000-

500000

Unit cost 1-10

In the cloud sim, set the same environmental parameters as

the premise, we simulate the environment with round robin,

weighted round robin and proposed ADPM - ATLM models.

In the aspects of task management over the load balancing and

distributed processing on the work loads.

Using the ADPM-ATLM static scheduler method, jobs are

distributed across heterogeneous VMs based on their duration

and processing capability. VMs with larger capacity are thus

used for a greater number of tasks in heterogeneous settings

where there are homogeneous workers. This speeds up the

process of getting the task done. The dynamic scheduler takes

into account the current load on all of its configured VMs, as

well as the amount of the data associated with the task's

346

estimated completion time and storage requirements. The

scheduler then estimates the completion time of the new task

in each of the specified VMs and adds this calculated time to

the completion time of the current load in each VM. Once the

time computation has been completed, the tasks are allocated

for processing. With these computations, we've determined

which of the VMs can do this task the fastest, and we've

allocated it to that machine. As a result, this method is best

suited for heterogeneous data centers, where load balancing

and job distribution must be done in parallel to avoid

performance degradation in Figure 3.

Figure 3. Displays the number of tasks allocated

The figure displays the number of tasks allocated for each

and every virtual machine, the task is randomly distributed

without any load balancing measures.

Comparison of the load balancing methods with different

models in shows Figure 4.

Task execution on the load balanced virtual machines

shown in Figure 5, In order to perform which leads the

migration of the jobs from one VM to other VM as to not over

load the VM, in the execution time shows in Figure 6.

Figure 4. Distribution of the task after performing the load

balancing proposed methods

Figure 5. Task migration for load balancing and processing

Figure 6. Task completion time

The parallel distributed processing has been implemented

on the task distributed over the VMs and the model outward

performs in a best way in terms of efficiency.

6. CONCLUSION

In this work, the improved models have the capabilities of

load balancing on each VM and identifying the task length in

order to perform the distributed processing over the VM. This

section will apply the load balancing model even for the task

execution as to shift the task from one Vm to other in terms of

executing the task in a better way. The enhanced model's load

balancer runs after each job has been completed. Because the

loads are equally spread and handled across all VMs, there is

no idle time in the participating resources at the conclusion of

each job (VMs).

REFERENCES

[1] Bohn, R.B., Messina, J., Liu, F., Tong, J., Mao, J. (2011).

NIST cloud computing reference architecture. In 2011

IEEE World Congress on Services, pp. 594-596.

https://doi.org/10.1109/SERVICES.2011.105

[2] Tsai, C.W., Rodrigues, J.J. (2013). Metaheuristic

scheduling for cloud: A survey. IEEE Systems Journal,

8(1): 279-291.

https://doi.org/10.1109/JSYST.2013.2256731

[3] Mishra, S.K., Puthal, D., Sahoo, B., Jena, S.K., Obaidat,

M.S. (2018). An adaptive task allocation technique for

green cloud computing. The Journal of Supercomputing,

74(1): 370-385. https://doi.org/10.1007/s11227-017-

2133-4

[4] Volkova, V.N., Chemenkaya, L.V., Desyatirikova, E.N.,

Hajali, M., Khodar, A., Osama, A. (2018). Load

balancing in cloud computing. In 2018 IEEE Conference

of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus), pp. 387-390.

https://doi.org/10.1109/EIConRus.2018.8317113

[5] Parida, S., Panchal, B. (2018). An efficient dynamic load

balancing algorithm using machine learning technique in

cloud environment. International Journal of Scientific

Research in Science, Engineering and Technology, 4(4):

1184-1186.

[6] Shah, J.M., Kotecha, K., Pandya, S., Choksi, D.B., Joshi,

N. (2017). Load balancing in cloud computing:

Methodological survey on different types of algorithm.

In 2017 International Conference on Trends in

Electronics and Informatics (ICEI), pp. 100-107.

347

https://doi.org/10.1109/ICOEI.2017.8300865

[7] LD, D.B., Krishna, P.V. (2013). Honey bee behavior

inspired load balancing of tasks in cloud computing

environments. Applied Soft Computing, 13(5): 2292-

2303. https://doi.org/10.1016/j.asoc.2013.01.025

[8] Cao, J., Li, K., Stojmenovic, I. (2013). Optimal power

allocation and load distribution for multiple

heterogeneous multicore server processors across clouds

and data centers. IEEE Transactions on Computers, 63(1):

45-58. https://doi.org/10.1109/TC.2013.122

[9] Rao, P.S., Rao, V.P.C., Govardhan, A. (2013). Dynamic

load balancing with central monitoring of distributed job

processing system. International Journal of Computer

Applications, 65(21): 43-47.

[10] Sharma, A., Peddoju, S.K. (2014). Response time based

load balancing in cloud computing. In 2014 International

Conference on Control, Instrumentation,

Communication and Computational Technologies

(ICCICCT), pp. 1287-1293.

https://doi.org/10.1109/ICCICCT.2014.6993159

[11] Chen, H., Wang, F., Helian, N., Akanmu, G. (2013).

User-priority guided Min-Min scheduling algorithm for

load balancing in cloud computing. In 2013 National

Conference on Parallel Computing Technologies

(PARCOMPTECH), pp. 1-8.

https://doi.org/10.1109/ParCompTech.2013.6621389

[12] Kapur, R. (2015). A workload balanced approach for

resource scheduling in cloud computing. In 2015 eighth

international conference on contemporary computing

(IC3), pp. 36-41.

https://doi.org/10.1109/IC3.2015.7346649

[13] Mondal, B., Choudhury, A. (2015). Simulated annealing

(SA) based load balancing strategy for cloud computing.

International Journal of Computer Science and

Information Technologies, 6(4): 3307-3312.

[14] Kushwaha, M., Gupta, S. (2015). Response time

reduction and performance analysis of load balancing

algorithms at peak hours in cloud computing.

International Journal of Computer Applications, 128(17):

26-31.

[15] Sharma, S., Luhach, A.K., Abdhullah, S.S. (2016). An

optimal load balancing strategy for virtual machine in

cloud environment. International Journal of Computer

Science and Engineering, 9(28): 1-4.

https://doi.org/10.17485/ijst/2016/v9i28/98384

[16] Prasad, V. (2014). Load balancing and scheduling of

tasks in parallel processing environment. Int. J. Inf.

Comput. Technol, 4(16): 1727-1732.

[17] Srivastava, S., Dadheech, P., Beniwal, M.K. (2011).

Load balancing using high performance computing

cluster programming. International Journal of Computer

Science Issues (IJCSI), 8(1): 62-65.

[18] Afzal, S., Kavitha, G. (2019). Load balancing in cloud

computing–A hierarchical taxonomical classification.

Journal of Cloud Computing, 8(1): 1-24.

https://doi.org/10.1186/s13677-019-0146-7

348

