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Human verification is important to avoid spamming over the internet. Internet has grown 

tremendously in the last decade. Introduction to preference personalization make the users 

experience and attract more people. This has deemed it necessary to verify that some of the 

actions are carried out by a human rather than a computer program to generation of invalid 

traffic and prevent fraudulence. Methods like Captcha and ReCaptcha have extensively 

used to overcome this challenge but with the advancements in machine leaning and artificial 

intelligence, these techniques have started to become obsolete. So, to address this issue we 

are proposing a phase based human verification process using a combination of neural 

network and machine learning. 
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1. INTRODUCTION

Verifying a user to be human has been a long requirement 

in the computer world and information technology. 

Advancements in technology have eased the process to create 

automation scripts and programs that can perform varied 

operations. Automation makes the process doing tedious and 

repetitive tasks quick, error free and accurate, but it can often 

be used for malicious purposes. An automation program can 

be executed to sign up a lot of accounts on some social 

networking platform and use them to grow someone’s 

followers. Hence it is vital to detect if an action or a transaction 

is being caried out by a machine or a human. 

Several strategies have been invented over the years to 

verify if the user is a human or a bot. The most popular of those 

is CAPTCHA which distinguishes bot from humans by 

creating words in camouflage in an image that can only be 

understood by a person. Another variation of it is called 

reCAPTCHA, which used images to realize the same target 

but using asking users to select images of a particular object or 

thing. 

Although effective but these techniques have now started to 

become outdated and can be outsmarted by the modern bots. 

There are already many tutorials and videos posted by various 

people on how these verification programs can be bypassed. 

Also, the significant growth in artificial intelligence and 

machine learning in the last decade, will rendered these 

methods obsolete in not-so-distant future and will need to be 

replaced. 

There have been some inventions to create alternatives to 

the existing human verification methods. The author [1] lists 

down the difficulties with the exiting Captcha methods and 

also discusses other techniques of human verification. One 

such techniques called is called rtCAPTCHA [2], that uses 

facial and voice to distinguish a genuine user from a program. 

In this paper we propose a new method for human 

verification through digital image processing. We aim build a 

method to confirm that the interaction is taking place with a 

human by leveraging the cameras and webcams on their 

devices. 

2. LITERATURE REVIEW

Firstly, we aim to study and understand how the current 

version in actually attacked. The concept of captcha was 

introduced in 2000 and technology has taken a massive leap 

since then. Even before the machine learning era, all that was 

needed to overcome a traditional text-based captcha was a 

decent enough OCR.  

An attack on Microsoft’s captcha was conducted to test its 

strength [3]. It was found that it can be attacked using a cheap 

attack based on segmenting. A more efficient attack on the 

yahoo captcha is described in the reference [4]. Although the 

attack specified in this publication is performed on the captcha 

from one provider, the concept can be applied to another 

captcha provides like google and Microsoft. 

The only way captchas are able to defend against these 

attacks is applying background noise and make the characters 

more unreadable. This might work against a simple OCR but 

against a program that leverages machine learning, even these 

enhancements may not be enough. An experimental study is 

done conducted by Alqahtani & Alsulaiman [5], where attacks 

using machine learning were performed on Google 

reCAPTCHA. The experiment showed how easily machine 

learning can be used to attack existing captcha. Wang et al. [6] 

show how a deep CNN program can be trained to identify 

different variation of a captcha. The most complete solution is 

presented in Wang et al. [7]. The neural network developed by 

this method was tested on 20+ captcha variations and yielded 
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a result of over 95%. 

As mentioned before there have been techniques developed 

to overcome this challenge. Another attempt for captcha is 

mentioned by Almazyad et al. [8], where a combination of an 

image and text are used to make the process difficult for a bot. 

Another variation is designed to use characters in 3D shapes 

in reference [9]. Although it may be effective against an OCR 

but a NN can easily be designed to beat this variation.  

A text-based captcha are basically testing the user’s ability 

to comprehend distorted text, but a some other implementation 

have been proposed to test a user’s cognitive skills. The 

captcha requires a user to solve a simple jigsaw puzzle [10]. 

The user is asked to map semantically similar images [11]. A 

user is asked to select face of real person from a set of pictures 

that also included animated and cartoon faces [12]. 

Our implementation will be using the face/hand detection 

for human verification. It will consist of two phases - Human 

Detection Phase and Verification Phase. For the Human 

Detection Phase, one layer will be implemented using HAAR 

cascades and another later with a Neural Network. One of the 

most effective implementations of face detection is MTCNN 

[13], which is able to simultaneously also detect face features 

with high performance. The authors [14] test 4 different CNN 

algorithms for face detection. An RCNN is used in Sun et al. 

[15] and Jiang & Learned-Miller [16], that yields quick results 

for face detection. A different approach is described by 

Farfade et al. [17], which does not rely on face feature to detect 

faces, in fact it only requires a single model to be able to detect 

face in different orientations. 

For gesture recognition, instead of using a library we will 

be designing our own model. A survey was conducted on the 

many techniques available for gesture detection that can be 

used for a number of applications [18]. They looked primarily 

at four methods – HMMs, FSMs, particle filtering and 

condensation algorithm. The proposed solution is a hybrid of 

FSMs and HMMs, which will result in a system that is highly 

reliable and accurate. 

In reference [19], the authors achieve gesture recognition 

using Scale Invariance Feature Transform (SIFT). SIFT 

provides a faster processing speed which allow for a much 

better result in detection. A similar implementation to what we 

do in our detection phase is used in Ismail et al. [20] for gesture 

detection. The pitfall of this method is that each gesture needs 

to be fed into the system separately, even for different skin 

color and palm size. 

So, to bring efficiency to the system, a neural network is 

deployed. Once such type of execution [21] used Artificial 

Neural Network that required little computational cost. But 

one limitation of this technique was its incompetence to 

differentiate similar looking gestures. For example, it often 

confused letter 'G’ with ‘A’ or ‘D’. A similar solution is 

implemented [22] that is able to recognize gestures in real time. 

It describes a new way for extraction of features from an image.  

A method to carry out hand gesture recognition using a 

Convolution Neural Network (CNN) is discussed by Nagi et 

al. [23]. The proposed method yielded a success percentage of 

almost 96%. Gaussian Mixture model (GMM) is used to train 

the skin model and achieve robustness. In reference [24], a 

CNN is implemented but in a combination with stacked 

denoising encoder (SDAE). In reference [25], the author used 

a Micro-Doppler CNN (DCNN) and was able to achieve the 

required solution but not to great affect because the signature 

of the gesture varied according to the distance and angle of the 

radar. A comparative study on the different techniques for 

gesture recognition is conducted by Sonkusare et al. [26]. In 

their study they underlined that rate of recognition is trade-off 

with the time rate. 

 

 

3. METHODOLOGY 

 

The technique put forward in this paper has been contains 

two phases namely - Detection Phase and Verification Phase. 

The image will be captured frame by frame through a 

computer connected camera and will be sent to detection and 

verification engine in a live environment. Detection phase uses 

HAAR cascade methodology of line and edge detection 

through xml files. HAAR cascade xml files faces are prepared 

and stored before pushing the data into the detection engine. 

Details on HAAR cascade detection are given below. 

 

 
 

Figure 1. System flowchart 

 

Proposed Method for Human Verification [Figure 1]: 

1. Human Detection - In this phase intense digital image 

processing will be used to detect the object in camera to be a 

human through facial recognition. 

2. Human Verification – In this phase we will ask the user 

to make a hand sign. Once the user makes that gesture, we will 

run it against our model to see if it’s the same gesture that was 

requested. 

 

3.1 Human detection phase 

 

Detection phase will consist of multiple layers of detection 
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and initial face verification [Figure 2]. It will consist of two 

mandatory layers through which each captured frame must 

pass through with a certain threshold to qualify for the next 

phase. The thresholds are chosen at each stage as per 

algorithms implemented on that stage. For HAAR cascade the 

comparison is done through html and the threshold is generally 

above 90% while in neural engine face detection. 

In human detection phase we will be verifying a human face 

using digital image processing using the following process: 

 

3.1.1 HAAR face detector 

In this phase, a face will be detected on screen using a 

HAAR cascade face detector. We will use the trained 

classifiers that is provided by OpenCV for face detection that 

has been trained with positive and negative images to build a 

classifier based on the learning algorithm. 

We capture images from the user source input and then 

convert them to grayscale and then analyze them with HAAR 

cascades for a face [Figure 3]. These images are converted to 

greyscale because they are easier to process computationally. 

Grayscale images contain single-channel and the total process 

of human verification can be reduced greatly using grayscale 

images. 

To understand the implementation of HAAR cascades we 

first need to understand the Viola-Jones Face Detection 

Technique. The first part we need to extract feature from the 

image. This is achieved using the HAAR features [Figure 4]. 

These features help us to recognize changes in pixels intensity 

that corresponds to an edge in the image. The integer matrix 

corresponding to the feature is determined if the feature is an 

edge or not. In haarcascade this detection matrix is usually 

manual. 

 

 
 

Figure 2. Detection phase flowchart 

 

 
 

Figure 3. Flowchart for HAAR cascades face detection 

 

 
 

Figure 4. HAAR Features. Image Downloaded from 

https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08 

Below is an example on how these HAAR features are made 

use of. All pixel’s values are converted to a range from 0.0 to 

1.0 with 0 being completely white and 1 being completely 

black using the following formula. 

 

𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑛𝑒𝑤 =
(255 − 𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑜𝑙𝑑)

255
   

 

We calculate the avg intensity of pixels in the dark and light 

region of the HAAR feature once it is plotted on the image 

[Figure 5]. If the deviation of the intensity is approximately to 

1, it means that it is an edge. In the below example since the 

deviation is close to 0, hence it is not an edge. 
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Figure 5. HAAR Feature Calculation. Image Downloaded from https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08 

 

 
 

Figure 6. Calculations using Integral Image. Image downloaded from https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08 

 

All 5 HAAR features are used to identify different kind of 

features in an image. The HAAR feature is used to identify a 

vertical edge [Figure 6]. Each feature is running through the 

complete input image to recognize as many features as 

possible to be able to recognize and object. But doing this 

needs a lot of computation since there are a huge number of 

pixels in any image. Hence to make this algorithm more 

efficient, the image is converted to an Integral image before 

feature calculation. In an Integral image value for each pixel 

is calculated as sum of intensity values at top and before that 

pixel. We start with the pixel at (0,0) and move sequentially to 

other pixels in the same row, computing the value of each pixel 

as the sum of its own value and value of the pixel to its left. 

Once all the values of the first row are computed we move to 

the next to row. This time to calculate the value the pixel we 

add the value of the pixel above. This process is continued till 

the last pixel. The value of the last pixel will be the sum of all 

pixel values in the image. 

Once we have the integral image. The calculation of 

variation in intensities for each transversal becomes much 

faster since the addition operation has already been performed 

as show in image above. 

 

3.1.2 Face detection using neural engine 

Detection phase will consist of multiple layers of detection 

and initial face verification. Ife will consist of two mandatory 

layers through which each captured frame must pass through 

with a certain threshold to qualify for the next phase. 

In human detection phase we will be verifying a human face 

using digital image processing using the following process: 

 
 

Figure 7. Image Pyramid. Image downloaded from 

https://towardsdatascience.com/how-does-a-face-detection-

program-work-using-neural-networks-17896df8e6ff 

 

Firstly we create an image pyramid by resizing the image to 

different scales [Figure 7]. Once we have images in different 

scales, a cropped section of 12x12 pixels from the beginning 

of the image at (0,0) is captured from each scaled image and 

passed to the P-Net. The P-net’s job is to calculate the 

probability of how much this cropped image passed matches a 

face. It then returns a value of confidence reaching from 0 and 

1 and the relative coordinates of a rectangle enclosing the face 

in the cropped image [Figure 8].  

This process is carried out on the complete image for each 

scaled image by moving the filter by a stride of 2.  After all the 

transversal is done, we get a list of coordinates of filters on the 

image that has some probability of containing a face. But right 

now, these coordinates are not equivalent since they most 

probably have been captured on the different scaled images. 

Hence to make them consistent, the coordinates are scaled up 

to the size of the original image. 
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Figure 8. Image transversal by MTCNN. Image downloaded 

from https://medium.com/dummykoders/face-detection-

using-mtcnn-part-1-c35c4ad9c542 

 

Now that we have a list of probable locations of faces in the 

image, we need a process to get one single accurate result. This 

is achieved by an elimination process. The coordinate with the 

highest probability value is taken for image of each scale and 

are weighed up against the other coordinates in the same scale. 

If the overlapping area is high enough then the coordinate is 

eliminated. This step is repeated for the surviving coordinates 

from each scaled image.  

The last surviving coordinates are then sent to the R-net, 

which works in very similar to the P-net, but it consists of a 

fully connected CNN that detects faces more accurately than 

R-net [Figure 8]. The results from the R-net are, which are 

coordinates of faces in the image, are then padded if need and 

then passed to the O-net. The O-net in the end detects the face 

features in the passed coordinates. 

The outputs of O-Net are slightly different from that of P-

Net and R-Net [Figure 8]. O-Net provides 3 outputs: the 

coordinates of the bounding box (out[0]), the coordinates of 

the 5 facial landmarks (out[1]), and the confidence level of 

each box (out[2]). 

Once again, we get rid of the boxes with lower confidence 

levels, and standardize both the bounding box coordinates and 

the facial landmark coordinates. Finally, we run them through 

the last NMS. At this point, there should only be one bounding 

box for every face in the image. 

 

3.2 Human verification phase 

 

The human verification phase [Figure 9] will be as follows 

1. An arbitrary hand gesture will be picked up from a list of 

gestures which will be shown on to the user to copy. 

2. One notified, we will check the check frames from the 

video capture to check for hand gestures. 

3. Gesture picked pseudo randomly from the list will be 

compared with a gesture made by the user in camera 

through neural network comparison.  

 

 
 

Figure 9. Flowchart for verification phase 

 

 
 

Figure 10. American sign language gestures. Image 

downloaded from https://analyticsindiamag.com/hands-on-

guide-to-sign-language-classification-using-cnn/ 

In order to perform gesture recognition, we will build a 

CNN model using TensorFlow. This model was taught on the 

24 static gestures in the American sign language [Figure 10], 

on a cluster of 21000+ images.  

 

 

4. RESULTS 
 

4.1 Model for gesture recognition 

 

To build our model using the Keras API in python.  

 

4.1.1 Data pre-processing 

We have a dataset of almost 35000 samples, out of which 

7000 are reserved for testing the model. The dataset is in csv 

format, so our first step is to augment the data from the csv so 

that it can be passed to our model. The csv contains 785 

columns where the first column is for the label of the image 

and rest of the column represent the pixel value of a 28x28 

image. The label of the image is a number ranging from 0 to 
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24 representing alphabets from A to Y, with an exclusion of 9 

which represents 9. The model we created excludes the 

alphabet J and Z since they are not static hand gestures. 

Now that we understand our dataset. The next step is to 

transform the data in a form in which it can be processed. To 

achieve that, we remove the first column from our dataset 

which is the ‘Label’ column and store it in a separate array. 

After that the dataset is transformed into an array of 28x28 

matrix. Right now, the pixel values are in the range of 0-255. 

We rescale it to a range of 0-1 which make the processing of 

image during the learning phase easier. Lastly, we binarize our 

labels array by using LabelBinarizer. This transforms each 

element in the labels array into an array that contains 24 values 

representing each alphabet in our model. All the values in this 

array are 0, except the value for the alphabet that corresponds 

to the label of the image. The value of this alphabet is 

represented by 1.  

This process is applied to both the test and training data. 
 

4.1.2 Data augmentation 

We use data augmentation to improve the performance of 

our model. The idea is to train the model on data which is a 

slight modification of our existing dataset. For example, we 

can apply rotation, zooming, vertical/ horizontal flips etc. to 

improve our database. This helps the model to generalize it’s 

leaning and prevent overfitting. We use the 

‘ImageDataGenerator’ from the Keras api to achieve this. 
 

 
 

Figure 11. Code snippet for data augmentation 
 

The code in [Figure 11] is used to augment our data. 

 

4.1.3 Building model 
 

 
 

Figure 12. CNN layers 

Figure 12 represents our sequential model. We start with a 

convolution layer with 75 filters, a kernel of size 3x3 and stride 

of 1. Our model contains 3 convolutional layers and all three 

have a same parameters except the number of filters which we 

decrease by 25 in each layer. The first one is followed by a 

Batch Normalization and a MaxPool2D layer of size 2x2 and 

stride 1 after which the output is transformed to 14x14. The 

first 3 layer are repeated with an inclusion of a Dropout layer 

to exclude some filters. And our third repetition of the 

convolutional layer we add a dense layer. Our last layer is a 

Dense layer with 24 units, one for each gesture. 

 

4.1.4 Training model 

We use ‘adam’ as our optimizing function and ‘categorical 

crossentropy’ as loss function [Figure 13]. 

 

 
 

Figure 13. Code Snippet for training model 

 

We define our learning rate as a plateau that reduces the 

learning rate if the metric has stopped improving [Figure 14]. 

 

 
 

Figure 14. Code Snippet for learning rate 

 

We train the model using 20 Epocs. Once the model is 

created it is able to evaluate the test data with an 100% 

accuracy. 

 

4.2 Implementation 

 

Firstly, we implement face detection using OpenCV. We 

used the “haarcascade_frontalface_default.xml” provided by 

the OpenCV library [Figure 15]. Before passing for human 

face detection, we convert the image to grayscale. It is then 

passed for processing, which returns the coordinates of the 

face with respect to the input frame. 

 

 
 

Figure 15. Code snippet for HAAR cascades face detection 

 

 
 

Figure 16. Code snippet for MTCNN face detection 
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Figure 17. Code Snippet for gesture recognition 

 

In the next step, we similarly pass a grey image from the 

user input source to the MTCNN library [Figure 16]. It returns 

the face coordinates as well as the face feature coordinates, but 

we only make use of the face coordinates. 

We use our model created earlier for getting match for the 

gesture made by the user on the screen [Figure 17]. We leave 

out the signs of alphabet ‘J’ and ‘Z’ because they require hand 

movements. 

Now that we have our 3 implementations, we put them 

together to create a complete flow for human verification. 

Figure 18 shows the screenshots from the program. The blue 

and red boxes on the face represent the detection by MTCNN 

and HAAR cascades respectively. Once we have verified, we 

move to the verification phase. We present a red box on the 

camera screen and ask the user to their hand in that box making 

the required random gesture. The program completed once it 

identifies the required gesture. 

 

 

 
 

Figure 18. Screenshots from Program 

 

 

5. CONCLUSION 

 

The program developed is able to successfully identify a 

person. For a computer program to bypass this test, it will be 

required to replace the camera stream with a video. Although 

that maybe easy but to get the required gesture at the required 

location will be very though. And to make it even tougher, we 

can ask the user to perform 2 or 3 different gestures at different 

locations on the screen. 

Although the program realizes its goal, but the performance 

is not very good in the detection phase, particularly in the 

MTCNN detection. It could just be down to the environment. 

But it can easily be changes with some other more mature and 

advance method of face detection CNN. The gesture 

recognition on the other hand performs decently due to the fact 

that we ask the user to place the gesture in a box instead of 

trying to detect it on the complete frame. 

 

 

6. FUTURE WORK 

 

This test has a lot of potential for improvement. For instance, 

to improve the detection phase we can ask a user to do some 

head movements to confirm a live subject. In the verification 

phase we can add face gesture recognition. In the verification 

phase, we can also add face gestures to our model. Also, we 

can develop model for dynamic hand gestures. 

As mentioned above there is a need to improve the 
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execution of the face detection techniques implemented using 

MTCNN. Right now, the models can only give their 

predictions as true or false. They can be enhanced to give a 

result of the percentage match, and then based on that 

percentage, we can choose whether to pass the test or not. 
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NOMENCLATURE 

 

OCR Optical Code Reader 

CNN Convolutional Neural Network 

NN Neural Network 

MTCNN Multi-task Cascaded Convolutional 

Networks 

HMM Hidden Markov model 

FMS Finite State Machine 

SIFT Scale Invariance Feature Transform 

GMM Gaussian Mixture model  

SDAE stacked denoising encoder 

DCNN Deep CNN 
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