
CAPTCHA Robustness- AI Approach Using to Web Security

Abhishek Sharma1, Shilpi Sharma2*, Saksham Gulati3, Tanupriya Choudhury4

1 My Concierge Private Limited, 08-71, Vertex Tower, Singapore
2 Department of Computer Science and Engineering, Amity University, Uttar Pradesh 201313, India
3 Illinois Institute of Technology, Chicago, Illinois, IL 60616, US
4 Informatics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun 248007,

Uttarakhand, India

Corresponding Author Email: ssharma22@amity.edu

https://doi.org/10.18280/isi.270214 ABSTRACT

Received: 7 January 2022

Accepted: 14 April 2022

Human verification is important to avoid spamming over the internet. Internet has grown

tremendously in the last decade. Introduction to preference personalization make the users

experience and attract more people. This has deemed it necessary to verify that some of the

actions are carried out by a human rather than a computer program to generation of invalid

traffic and prevent fraudulence. Methods like Captcha and ReCaptcha have extensively

used to overcome this challenge but with the advancements in machine leaning and artificial

intelligence, these techniques have started to become obsolete. So, to address this issue we

are proposing a phase based human verification process using a combination of neural

network and machine learning.

Keywords:

human verification, CAPTCHA, neural

engine, gesture recognition

1. INTRODUCTION

Verifying a user to be human has been a long requirement

in the computer world and information technology.

Advancements in technology have eased the process to create

automation scripts and programs that can perform varied

operations. Automation makes the process doing tedious and

repetitive tasks quick, error free and accurate, but it can often

be used for malicious purposes. An automation program can

be executed to sign up a lot of accounts on some social

networking platform and use them to grow someone’s

followers. Hence it is vital to detect if an action or a transaction

is being caried out by a machine or a human.

Several strategies have been invented over the years to

verify if the user is a human or a bot. The most popular of those

is CAPTCHA which distinguishes bot from humans by

creating words in camouflage in an image that can only be

understood by a person. Another variation of it is called

reCAPTCHA, which used images to realize the same target

but using asking users to select images of a particular object or

thing.

Although effective but these techniques have now started to

become outdated and can be outsmarted by the modern bots.

There are already many tutorials and videos posted by various

people on how these verification programs can be bypassed.

Also, the significant growth in artificial intelligence and

machine learning in the last decade, will rendered these

methods obsolete in not-so-distant future and will need to be

replaced.

There have been some inventions to create alternatives to

the existing human verification methods. The author [1] lists

down the difficulties with the exiting Captcha methods and

also discusses other techniques of human verification. One

such techniques called is called rtCAPTCHA [2], that uses

facial and voice to distinguish a genuine user from a program.

In this paper we propose a new method for human

verification through digital image processing. We aim build a

method to confirm that the interaction is taking place with a

human by leveraging the cameras and webcams on their

devices.

2. LITERATURE REVIEW

Firstly, we aim to study and understand how the current

version in actually attacked. The concept of captcha was

introduced in 2000 and technology has taken a massive leap

since then. Even before the machine learning era, all that was

needed to overcome a traditional text-based captcha was a

decent enough OCR.

An attack on Microsoft’s captcha was conducted to test its

strength [3]. It was found that it can be attacked using a cheap

attack based on segmenting. A more efficient attack on the

yahoo captcha is described in the reference [4]. Although the

attack specified in this publication is performed on the captcha

from one provider, the concept can be applied to another

captcha provides like google and Microsoft.

The only way captchas are able to defend against these

attacks is applying background noise and make the characters

more unreadable. This might work against a simple OCR but

against a program that leverages machine learning, even these

enhancements may not be enough. An experimental study is

done conducted by Alqahtani & Alsulaiman [5], where attacks

using machine learning were performed on Google

reCAPTCHA. The experiment showed how easily machine

learning can be used to attack existing captcha. Wang et al. [6]

show how a deep CNN program can be trained to identify

different variation of a captcha. The most complete solution is

presented in Wang et al. [7]. The neural network developed by

this method was tested on 20+ captcha variations and yielded

Ingénierie des Systèmes d’Information
Vol. 27, No. 2, April, 2022, pp. 303-311

Journal homepage: http://iieta.org/journals/isi

303

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270214&domain=pdf

a result of over 95%.

As mentioned before there have been techniques developed

to overcome this challenge. Another attempt for captcha is

mentioned by Almazyad et al. [8], where a combination of an

image and text are used to make the process difficult for a bot.

Another variation is designed to use characters in 3D shapes

in reference [9]. Although it may be effective against an OCR

but a NN can easily be designed to beat this variation.

A text-based captcha are basically testing the user’s ability

to comprehend distorted text, but a some other implementation

have been proposed to test a user’s cognitive skills. The

captcha requires a user to solve a simple jigsaw puzzle [10].

The user is asked to map semantically similar images [11]. A

user is asked to select face of real person from a set of pictures

that also included animated and cartoon faces [12].

Our implementation will be using the face/hand detection

for human verification. It will consist of two phases - Human

Detection Phase and Verification Phase. For the Human

Detection Phase, one layer will be implemented using HAAR

cascades and another later with a Neural Network. One of the

most effective implementations of face detection is MTCNN

[13], which is able to simultaneously also detect face features

with high performance. The authors [14] test 4 different CNN

algorithms for face detection. An RCNN is used in Sun et al.

[15] and Jiang & Learned-Miller [16], that yields quick results

for face detection. A different approach is described by

Farfade et al. [17], which does not rely on face feature to detect

faces, in fact it only requires a single model to be able to detect

face in different orientations.

For gesture recognition, instead of using a library we will

be designing our own model. A survey was conducted on the

many techniques available for gesture detection that can be

used for a number of applications [18]. They looked primarily

at four methods – HMMs, FSMs, particle filtering and

condensation algorithm. The proposed solution is a hybrid of

FSMs and HMMs, which will result in a system that is highly

reliable and accurate.

In reference [19], the authors achieve gesture recognition

using Scale Invariance Feature Transform (SIFT). SIFT

provides a faster processing speed which allow for a much

better result in detection. A similar implementation to what we

do in our detection phase is used in Ismail et al. [20] for gesture

detection. The pitfall of this method is that each gesture needs

to be fed into the system separately, even for different skin

color and palm size.

So, to bring efficiency to the system, a neural network is

deployed. Once such type of execution [21] used Artificial

Neural Network that required little computational cost. But

one limitation of this technique was its incompetence to

differentiate similar looking gestures. For example, it often

confused letter 'G’ with ‘A’ or ‘D’. A similar solution is

implemented [22] that is able to recognize gestures in real time.

It describes a new way for extraction of features from an image.

A method to carry out hand gesture recognition using a

Convolution Neural Network (CNN) is discussed by Nagi et

al. [23]. The proposed method yielded a success percentage of

almost 96%. Gaussian Mixture model (GMM) is used to train

the skin model and achieve robustness. In reference [24], a

CNN is implemented but in a combination with stacked

denoising encoder (SDAE). In reference [25], the author used

a Micro-Doppler CNN (DCNN) and was able to achieve the

required solution but not to great affect because the signature

of the gesture varied according to the distance and angle of the

radar. A comparative study on the different techniques for

gesture recognition is conducted by Sonkusare et al. [26]. In

their study they underlined that rate of recognition is trade-off

with the time rate.

3. METHODOLOGY

The technique put forward in this paper has been contains

two phases namely - Detection Phase and Verification Phase.

The image will be captured frame by frame through a

computer connected camera and will be sent to detection and

verification engine in a live environment. Detection phase uses

HAAR cascade methodology of line and edge detection

through xml files. HAAR cascade xml files faces are prepared

and stored before pushing the data into the detection engine.

Details on HAAR cascade detection are given below.

Figure 1. System flowchart

Proposed Method for Human Verification [Figure 1]:

1. Human Detection - In this phase intense digital image

processing will be used to detect the object in camera to be a

human through facial recognition.

2. Human Verification – In this phase we will ask the user

to make a hand sign. Once the user makes that gesture, we will

run it against our model to see if it’s the same gesture that was

requested.

3.1 Human detection phase

Detection phase will consist of multiple layers of detection

304

and initial face verification [Figure 2]. It will consist of two

mandatory layers through which each captured frame must

pass through with a certain threshold to qualify for the next

phase. The thresholds are chosen at each stage as per

algorithms implemented on that stage. For HAAR cascade the

comparison is done through html and the threshold is generally

above 90% while in neural engine face detection.

In human detection phase we will be verifying a human face

using digital image processing using the following process:

3.1.1 HAAR face detector

In this phase, a face will be detected on screen using a

HAAR cascade face detector. We will use the trained

classifiers that is provided by OpenCV for face detection that

has been trained with positive and negative images to build a

classifier based on the learning algorithm.

We capture images from the user source input and then

convert them to grayscale and then analyze them with HAAR

cascades for a face [Figure 3]. These images are converted to

greyscale because they are easier to process computationally.

Grayscale images contain single-channel and the total process

of human verification can be reduced greatly using grayscale

images.

To understand the implementation of HAAR cascades we

first need to understand the Viola-Jones Face Detection

Technique. The first part we need to extract feature from the

image. This is achieved using the HAAR features [Figure 4].

These features help us to recognize changes in pixels intensity

that corresponds to an edge in the image. The integer matrix

corresponding to the feature is determined if the feature is an

edge or not. In haarcascade this detection matrix is usually

manual.

Figure 2. Detection phase flowchart

Figure 3. Flowchart for HAAR cascades face detection

Figure 4. HAAR Features. Image Downloaded from

https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08

Below is an example on how these HAAR features are made

use of. All pixel’s values are converted to a range from 0.0 to

1.0 with 0 being completely white and 1 being completely

black using the following formula.

𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑛𝑒𝑤 =
(255 − 𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑜𝑙𝑑)

255

We calculate the avg intensity of pixels in the dark and light

region of the HAAR feature once it is plotted on the image

[Figure 5]. If the deviation of the intensity is approximately to

1, it means that it is an edge. In the below example since the

deviation is close to 0, hence it is not an edge.

305

Figure 5. HAAR Feature Calculation. Image Downloaded from https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08

Figure 6. Calculations using Integral Image. Image downloaded from https://towardsdatascience.com/face-detection-with-haar-

cascade-727f68dafd08

All 5 HAAR features are used to identify different kind of

features in an image. The HAAR feature is used to identify a

vertical edge [Figure 6]. Each feature is running through the

complete input image to recognize as many features as

possible to be able to recognize and object. But doing this

needs a lot of computation since there are a huge number of

pixels in any image. Hence to make this algorithm more

efficient, the image is converted to an Integral image before

feature calculation. In an Integral image value for each pixel

is calculated as sum of intensity values at top and before that

pixel. We start with the pixel at (0,0) and move sequentially to

other pixels in the same row, computing the value of each pixel

as the sum of its own value and value of the pixel to its left.

Once all the values of the first row are computed we move to

the next to row. This time to calculate the value the pixel we

add the value of the pixel above. This process is continued till

the last pixel. The value of the last pixel will be the sum of all

pixel values in the image.

Once we have the integral image. The calculation of

variation in intensities for each transversal becomes much

faster since the addition operation has already been performed

as show in image above.

3.1.2 Face detection using neural engine

Detection phase will consist of multiple layers of detection

and initial face verification. Ife will consist of two mandatory

layers through which each captured frame must pass through

with a certain threshold to qualify for the next phase.

In human detection phase we will be verifying a human face

using digital image processing using the following process:

Figure 7. Image Pyramid. Image downloaded from

https://towardsdatascience.com/how-does-a-face-detection-

program-work-using-neural-networks-17896df8e6ff

Firstly we create an image pyramid by resizing the image to

different scales [Figure 7]. Once we have images in different

scales, a cropped section of 12x12 pixels from the beginning

of the image at (0,0) is captured from each scaled image and

passed to the P-Net. The P-net’s job is to calculate the

probability of how much this cropped image passed matches a

face. It then returns a value of confidence reaching from 0 and

1 and the relative coordinates of a rectangle enclosing the face

in the cropped image [Figure 8].

This process is carried out on the complete image for each

scaled image by moving the filter by a stride of 2. After all the

transversal is done, we get a list of coordinates of filters on the

image that has some probability of containing a face. But right

now, these coordinates are not equivalent since they most

probably have been captured on the different scaled images.

Hence to make them consistent, the coordinates are scaled up

to the size of the original image.

306

Figure 8. Image transversal by MTCNN. Image downloaded

from https://medium.com/dummykoders/face-detection-

using-mtcnn-part-1-c35c4ad9c542

Now that we have a list of probable locations of faces in the

image, we need a process to get one single accurate result. This

is achieved by an elimination process. The coordinate with the

highest probability value is taken for image of each scale and

are weighed up against the other coordinates in the same scale.

If the overlapping area is high enough then the coordinate is

eliminated. This step is repeated for the surviving coordinates

from each scaled image.

The last surviving coordinates are then sent to the R-net,

which works in very similar to the P-net, but it consists of a

fully connected CNN that detects faces more accurately than

R-net [Figure 8]. The results from the R-net are, which are

coordinates of faces in the image, are then padded if need and

then passed to the O-net. The O-net in the end detects the face

features in the passed coordinates.

The outputs of O-Net are slightly different from that of P-

Net and R-Net [Figure 8]. O-Net provides 3 outputs: the

coordinates of the bounding box (out[0]), the coordinates of

the 5 facial landmarks (out[1]), and the confidence level of

each box (out[2]).

Once again, we get rid of the boxes with lower confidence

levels, and standardize both the bounding box coordinates and

the facial landmark coordinates. Finally, we run them through

the last NMS. At this point, there should only be one bounding

box for every face in the image.

3.2 Human verification phase

The human verification phase [Figure 9] will be as follows

1. An arbitrary hand gesture will be picked up from a list of

gestures which will be shown on to the user to copy.

2. One notified, we will check the check frames from the

video capture to check for hand gestures.

3. Gesture picked pseudo randomly from the list will be

compared with a gesture made by the user in camera

through neural network comparison.

Figure 9. Flowchart for verification phase

Figure 10. American sign language gestures. Image

downloaded from https://analyticsindiamag.com/hands-on-

guide-to-sign-language-classification-using-cnn/

In order to perform gesture recognition, we will build a

CNN model using TensorFlow. This model was taught on the

24 static gestures in the American sign language [Figure 10],

on a cluster of 21000+ images.

4. RESULTS

4.1 Model for gesture recognition

To build our model using the Keras API in python.

4.1.1 Data pre-processing

We have a dataset of almost 35000 samples, out of which

7000 are reserved for testing the model. The dataset is in csv

format, so our first step is to augment the data from the csv so

that it can be passed to our model. The csv contains 785

columns where the first column is for the label of the image

and rest of the column represent the pixel value of a 28x28

image. The label of the image is a number ranging from 0 to

307

24 representing alphabets from A to Y, with an exclusion of 9

which represents 9. The model we created excludes the

alphabet J and Z since they are not static hand gestures.

Now that we understand our dataset. The next step is to

transform the data in a form in which it can be processed. To

achieve that, we remove the first column from our dataset

which is the ‘Label’ column and store it in a separate array.

After that the dataset is transformed into an array of 28x28

matrix. Right now, the pixel values are in the range of 0-255.

We rescale it to a range of 0-1 which make the processing of

image during the learning phase easier. Lastly, we binarize our

labels array by using LabelBinarizer. This transforms each

element in the labels array into an array that contains 24 values

representing each alphabet in our model. All the values in this

array are 0, except the value for the alphabet that corresponds

to the label of the image. The value of this alphabet is

represented by 1.

This process is applied to both the test and training data.

4.1.2 Data augmentation

We use data augmentation to improve the performance of

our model. The idea is to train the model on data which is a

slight modification of our existing dataset. For example, we

can apply rotation, zooming, vertical/ horizontal flips etc. to

improve our database. This helps the model to generalize it’s

leaning and prevent overfitting. We use the

‘ImageDataGenerator’ from the Keras api to achieve this.

Figure 11. Code snippet for data augmentation

The code in [Figure 11] is used to augment our data.

4.1.3 Building model

Figure 12. CNN layers

Figure 12 represents our sequential model. We start with a

convolution layer with 75 filters, a kernel of size 3x3 and stride

of 1. Our model contains 3 convolutional layers and all three

have a same parameters except the number of filters which we

decrease by 25 in each layer. The first one is followed by a

Batch Normalization and a MaxPool2D layer of size 2x2 and

stride 1 after which the output is transformed to 14x14. The

first 3 layer are repeated with an inclusion of a Dropout layer

to exclude some filters. And our third repetition of the

convolutional layer we add a dense layer. Our last layer is a

Dense layer with 24 units, one for each gesture.

4.1.4 Training model

We use ‘adam’ as our optimizing function and ‘categorical

crossentropy’ as loss function [Figure 13].

Figure 13. Code Snippet for training model

We define our learning rate as a plateau that reduces the

learning rate if the metric has stopped improving [Figure 14].

Figure 14. Code Snippet for learning rate

We train the model using 20 Epocs. Once the model is

created it is able to evaluate the test data with an 100%

accuracy.

4.2 Implementation

Firstly, we implement face detection using OpenCV. We

used the “haarcascade_frontalface_default.xml” provided by

the OpenCV library [Figure 15]. Before passing for human

face detection, we convert the image to grayscale. It is then

passed for processing, which returns the coordinates of the

face with respect to the input frame.

Figure 15. Code snippet for HAAR cascades face detection

Figure 16. Code snippet for MTCNN face detection

308

Figure 17. Code Snippet for gesture recognition

In the next step, we similarly pass a grey image from the

user input source to the MTCNN library [Figure 16]. It returns

the face coordinates as well as the face feature coordinates, but

we only make use of the face coordinates.

We use our model created earlier for getting match for the

gesture made by the user on the screen [Figure 17]. We leave

out the signs of alphabet ‘J’ and ‘Z’ because they require hand

movements.

Now that we have our 3 implementations, we put them

together to create a complete flow for human verification.

Figure 18 shows the screenshots from the program. The blue

and red boxes on the face represent the detection by MTCNN

and HAAR cascades respectively. Once we have verified, we

move to the verification phase. We present a red box on the

camera screen and ask the user to their hand in that box making

the required random gesture. The program completed once it

identifies the required gesture.

Figure 18. Screenshots from Program

5. CONCLUSION

The program developed is able to successfully identify a

person. For a computer program to bypass this test, it will be

required to replace the camera stream with a video. Although

that maybe easy but to get the required gesture at the required

location will be very though. And to make it even tougher, we

can ask the user to perform 2 or 3 different gestures at different

locations on the screen.

Although the program realizes its goal, but the performance

is not very good in the detection phase, particularly in the

MTCNN detection. It could just be down to the environment.

But it can easily be changes with some other more mature and

advance method of face detection CNN. The gesture

recognition on the other hand performs decently due to the fact

that we ask the user to place the gesture in a box instead of

trying to detect it on the complete frame.

6. FUTURE WORK

This test has a lot of potential for improvement. For instance,

to improve the detection phase we can ask a user to do some

head movements to confirm a live subject. In the verification

phase we can add face gesture recognition. In the verification

phase, we can also add face gestures to our model. Also, we

can develop model for dynamic hand gestures.

As mentioned above there is a need to improve the

309

execution of the face detection techniques implemented using

MTCNN. Right now, the models can only give their

predictions as true or false. They can be enhanced to give a

result of the percentage match, and then based on that

percentage, we can choose whether to pass the test or not.

REFERENCES

[1] Moradi, M., Keyvanpour, M. (2015). CAPTCHA and its

alternatives: A review. Security and Communication

Networks, 8(12): 2135-2156.

https://doi.org/10.1002/sec.1157

[2] Uzun, E., Chung, S.P.H., Essa, I., Lee, W. (2018).

rtCaptcha: A real-time CAPTCHA based liveness

detection system. In NDSS. 1-15.

http://dx.doi.org/10.14722/ndss.2018.23253

[3] Yan, J., El Ahmad, A.S. (2008). A low-cost attack on a

Microsoft CAPTCHA. In Proceedings of the 15th ACM

Conference on Computer and Communications Security,

pp. 543-554. https://doi.org/10.1145/1455770.1455839

[4] Gao, H., Wang, W., Fan, Y. (2012). Divide and conquer:

An efficient attack on Yahoo! CAPTCHA. In 2012 IEEE

11th International Conference on Trust, Security and

Privacy in Computing and Communications, pp. 9-16.

https://doi.org/10.1109/TrustCom.2012.131

[5] Alqahtani, F.H., Alsulaiman, F.A. (2020). Is image-

based CAPTCHA secure against attacks based on

machine learning? An experimental study. Computers &

Security, 88: 101635.

https://doi.org/10.1016/j.cose.2019.101635

[6] Wang, J., Qin, J., Xiang, X., Tan, Y., Pan, N. (2019).

CAPTCHA recognition based on deep convolutional

neural network. Math. Biosci. Eng, 16(5): 5851-5861.

https://doi.org/10.3934/mbe.2019292

[7] Wang, P., Gao, H., Shi, Z., Yuan, Z., Hu, J. (2020).

Simple and easy: Transfer learning-based attacks to text

CAPTCHA. IEEE Access, 8: 59044-59058.

https://doi.org/10.1109/ACCESS.2020.2982945

[8] Almazyad, A.S., Ahmad, Y., Kouchay, S.A. (2011).

Multi-modal captcha: A user verification scheme. In

2011 International Conference on Information Science

and Applications, pp. 1-7.

https://doi.org/10.1109/ICISA.2011.5772421

[9] Imsamai, M., Phimoltares, S. (2010). 3D CAPTCHA: A

next generation of the CAPTCHA. In 2010 International

Conference on Information Science and Applications, pp.

1-8. https://doi.org/10.1109/ICISA.2010.5480258

[10] Gao, H., Yao, D., Liu, H., Liu, X., Wang, L. (2010). A

novel image based CAPTCHA using jigsaw puzzle. In

2010 13th IEEE International Conference on

Computational Science and Engineering, pp. 351-356.

https://doi.org/10.1109/CSE.2010.53

[11] Vikram, S., Fan, Y., Gu, G. (2011). SEMAGE: A new

image-based two-factor CAPTCHA. In Proceedings of

the 27th Annual Computer Security Applications

Conference, pp. 237-246.

https://doi.org/10.1145/2076732.2076766

[12] Goswami, G., Powell, B.M., Vatsa, M., Singh, R., Noore,

A. (2014). FaceDCAPTCHA: Face detection based color

image CAPTCHA. Future Generation Computer

Systems, 31: 59-68.

https://doi.org/10.1016/j.future.2012.08.013

[13] Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face

detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10): 1499-1503.

https://doi.org/10.1109/LSP.2016.2603342

[14] Navabifar, F., Emadi, M., Yusof, R., Khalid, M. (2011).

A short review paper on Face detection using machine

learning. In Proceedings of the International Conference

on Image Processing, Computer Vision, and Pattern

Recognition (IPCV), 1.

[15] Sun, X., Wu, P., Hoi, S.C. (2018). Face detection using

deep learning: An improved faster RCNN approach.

Neurocomputing, 299: 42-50.

https://doi.org/10.1016/j.neucom.2018.03.030

[16] Jiang, H., Learned-Miller, E. (2017). Face detection with

the faster R-CNN. In 2017 12th IEEE International

Conference on Automatic Face & Gesture Recognition

(FG 2017), pp. 650-657.

https://doi.org/10.1109/FG.2017.82

[17] Farfade, S.S., Saberian, M.J., Li, L.J. (2015). Multi-view

face detection using deep convolutional neural networks.

In Proceedings of the 5th ACM on International

Conference on Multimedia Retrieval, pp. 643-650.

https://doi.org/10.1145/2671188.2749408

[18] Mitra, S., Acharya, T. (2007). Systems man and

cybernetics part C: Applications and reviews. IEEE

Transactions on Gesture Recognition, 37(2007): 311-324.

https://doi.org/10.1109/TSMCC.2007.893280

[19] More, S.P., Sattar, A. (2016). Hand gesture recognition

system using image processing. In 2016 International

Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), pp. 671-675.

https://doi.org/10.1109/ICEEOT.2016.7754766

[20] Ismail, A.P., Abd Aziz, F.A., Kasim, N.M., Daud, K.

(2021). Hand gesture recognition on python and OpenCV.

In IOP Conference Series: Materials Science and

Engineering, 1045(1): 012043.

https://doi.org/10.1088/1757-899X/1045/1/012043

[21] Nguyen, T.N., Huynh, H.H., Meunier, J. (2013). Static

hand gesture recognition using artificial neural network.

Journal of Image and Graphics, 1(1): 34-38.

https://doi.org/10.12720/joig.1.1.34-38

[22] Ahmed, T. (2012). A neural network based real time

hand gesture recognition system. International Journal of

Computer Applications, 59(4): 17-22.

[23] Nagi, J., Ducatelle, F., Di Caro, G.A., Cireşan, D., Meier,

U., Giusti, A., Gambardella, L.M. (2011). Max-pooling

convolutional neural networks for vision-based hand

gesture recognition. In 2011 IEEE International

Conference on Signal and Image Processing

Applications (ICSIPA), pp. 342-347.

https://doi.org/10.1109/ICSIPA.2011.6144164

[24] Lin, H.I., Hsu, M.H., Chen, W.K. (2014). Human hand

gesture recognition using a convolution neural network.

In 2014 IEEE International Conference on Automation

Science and Engineering (CASE), pp. 1038-1043.

https://doi.org/10.1109/CoASE.2014.6899454

[25] Kim, Y., Toomajian, B. (2016). Hand gesture recognition

using micro-Doppler signatures with convolutional

neural network. IEEE Access, 4: 7125-7130.

https://doi.org/10.1109/ACCESS.2016.2617282

[26] Sonkusare, J.S., Chopade, N.B., Sor, R., Tade, S.L.

(2015). A review on hand gesture recognition system. In

2015 International Conference on Computing

Communication Control and Automation, pp. 790-794.

310

https://doi.org/10.1109/ICCUBEA.2015.158

NOMENCLATURE

OCR Optical Code Reader

CNN Convolutional Neural Network

NN Neural Network

MTCNN Multi-task Cascaded Convolutional

Networks

HMM Hidden Markov model

FMS Finite State Machine

SIFT Scale Invariance Feature Transform

GMM Gaussian Mixture model

SDAE stacked denoising encoder

DCNN Deep CNN

311

