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The modelling of an efficient CPS is emphasis with the origin of novel functionality over 

the applications with various design elements. These elements are generally uncertain 

where these elements include sensors, scheduling, resources, and optimization process. 

Here, an extensive analysis is carried out with the modelling of CPS element-driven 

problem formulation. The formulated problems are resolved using a multi-objective 

evolutionary (MOEA) algorithm to show the intelligence of the optimization approach in 

the CPS design level. The proposed MOEA shows the viability of the CPS element-driven 

problem in an explicit manner. The feasibility of the uncertain CPS is measured with the 

suitability measures in diverse perspectives. The efficiency of the MOEA is examined over 

the MATLAB 2020a simulation environment. The proposed MOEA model gives better 

trade-off in contrary to prevailing optimization approaches. 
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1. INTRODUCTION

Throughout Cyber-Physical System (CPS) is a physical 

facility with integrated sensor devices that can be managed and 

evaluated remotely by electronic methods, which we imagine 

are scattered virtual servers agents executed by Virtual 

Network Functions (VNFs), the majority of which are 

positioned at the edge nodes [1]. Logical control loops over 

actual lines of communication are used to manage and control 

CPS. Between the sensors/actuators and the VNFs, these 

channels are generated. The channel carries data on the 

facility’s state as well as reaches the audience for changing the 

operating mode. Power grids, smart buildings, next-generation 

cellular telecommunication networks, healthcare systems, and 

accurate agricultural systems are just a few examples of where 

CPSs are being used [2]. CPSs have become increasingly 

important in our daily lives in recent years. As a result, the 

effective gathering and processing of the information 

generated at each CPS's physical portion become critical. To 

facilitate the efficient extraction of actionable insight from the 

generated CPS data, multiple study fields and approaches must 

be merged in the contemporary effort [3]. SDN and NFV, edge 

computing, system modeling, and machine learning are some 

of these technologies. The harvesting of despite appropriate 

may enable proactive CPS supervision by either a high-level 

layer or even a cross-layer component responsible for 

implementing coordinated organizational structures in 

networked use cases involving several administrative 

subdomains [4]. Because of the non-centralized nature of a 

CPS, it is managed by numerous virtualized (i.e. VNF) actors. 

As a result, each VNF agent is in charge of overseeing and 

controlling a certain section of the CPS [5]. As a result, a 

specific VNF agent should make individual judgments 

depending on certain relevant information from the local 

system. Nonetheless, each VNF agent has specific contextual 

information that may differ from what is provided to others for 

a variety of reasons, namely geography. As a result, any VNF 

agent could make strategic decisions that were compatible 

with those of others. Compared to centralized decision-making, 

the CPS may have sub-optimal performances when mitigating 

the flexibility of a distributed NFV strategy [6]. This 

centralized management optimization inefficiency is akin to an 

operating cost, signifying a drop in CPS performance. The 

investigators propose the use of a term is used to describe to 

reward collaboration and enable efficient method to alleviate 

this productivity decrease. 

CPS's robustness refers to its capacity to tolerate a known 

band of unpredictable disruptions, whereas its privacy refers 

to its design to sustain and safeguard against unplanned and 

malevolent occurrences. These two characteristics are 

preventative: the CPS is built to be durable and secure. It is 

exceedingly expensive to build a secure and reliable CPS, and 

endpoint protection and robustness are difficult to achieve [7]. 

As a result, it is vital to assess the system's endurance (post-

event) is defined as the model’s capacity to recover from 

disruptive occurrences. CPS is a complicated system with 

several operational loops operating at various time and space 

scales [8]. The dependability of the parts involved may (often) 

be used to estimate the whole overall system performance. The 

frequency of a structure with no relay nodes is higher than the 

false alarm rate of any of the program's independent units. 

Both the qualities of the components and the interface design 

influence the attributes of a CPS [9]. Dependable and 

availability analysis is a topic that generalizes fundamental 

insights and puts them into useful frameworks. CPS reliability 

and trustworthiness study is often based on established system 

reliability analysis methods [10]. Some of the approaches are 

CPS composite reliability as depicted by author [11]. A 

comprehensive study on the unreliability of CPS needs to 

anticipate reliability and develop techniques to optimize it. 
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This is where typical convergent validity and modeling 

approaches must be used or enhanced. 

Some reliability researches are performed to discover faults 

in network connectivity and to establish the specific 

robustness requirements of a network. In the planning stage, 

viability modeling comes before analysis [12]. Later in the 

design process, when we know more detailed data associated 

with the implementation, we do a viability study. The building 

of a model to anticipate the dependability or vulnerabilities of 

a system based on existing data is known as reliability 

modeling. We can determine trustworthiness measures for a 

system using reliability modeling. Algorithmic frameworks 

like RBD, FT, and others can be used, as well as state-based 

stochastic models like MC and SPN [13]. Algorithmic models 

give closed-form calculations that facilitate system 

dependability directly. The complexity of these systems grows 

as more components are added (e.g., state-space explosion). 

As a result, for increasingly complicated systems, alternative 

models are required. Probabilistic stochastic models, such as 

Bayesian Networks (BNs), have lately been used to describe 

dependability, either immediately or via importing fault trees 

[14]. 

When a model has been created, it may be tested using 

either classic quantitative modeling approaches or simulation 

software. Formal techniques are increasingly being recognized 

as a helpful tool for designing and assessing models. 

Academic systems depend on the complicated system's 

generalization, simplicity, and unreasonable assumptions. 

This can render them prone to errors, especially in highly 

complicated systems. In comparison to standard quantitative 

and simulated approaches, formal methods provide a more 

severe manner of assessment [14]. The scope of this study does 

not include network reliability evaluation, assessment, or 

modeling. Complete research on dependability analysis may 

be found in a work [14]. Boolean logic, crisp categorization, 

causality, and mathematical modeling are all used in 

traditional modeling and reasoning procedures. CPS is meant 

to contain all of the necessary information to address the issue. 

Relevant information is important in the actual world. Soft 

computing approaches are a collection of adaptable computing 

tools that can cope with ambiguous data and seek 

approximations. In cyber-physical and other complicated 

processes, a variety of evolutionary computation approaches 

may be employed to increase system faithfulness or model 

durability. CPS, unlike IoT systems, undertakes physical 

activities defined by global control loops that get critical input 

from the respondents. In addition, CPS has a wide range of 

node counts and network control. A hybrid system emerges 

from this ecosystem of sophisticated smart systems, which 

uses fuzzy sets, NNs, and SA in various phases [15]. 

Physical state and computer operations are linked through 

CPSs and Smart objects. Approaches such as application 

programming interfaces can be used to specify this connection 

(APIs). APIs can offer two-way communications between 

virtual and real plants in broad: the physical state can be 

detected and form part of the cyberspace state, and the cyber 

status can trigger the right things to modify the physical state. 

The defect and hazard models for the virtual and real 

subsystems are also linked by this cyber-physical connection. 

Changes in the behavior of the main facility, particularly 

due to faults or malicious intent can affect the status of the 

computer unit. 

The physical state can be affected by changes to input in the 

cyber sub-systems. This link is significant in and of itself since 

it expands both the cyber and physical components' fault and 

danger models. However, several other factors make this new 

sort of connection particularly riskier. For starters, because 

actual plants are attentive to time, just altering the timing of 

data in the cyber subsystem might cause difficulties in the 

physical facilities. Delays in control actuation in a controlled 

system, for example, will alter the system's reaction, possibly 

causing the physical plant to become unstable. Second, our 

segmentation models in computer systems are idealized [15]. 

In recent decades, several security issues in both software and 

hardware have been discovered. Session hijacking attacks, 

which use timing, power usage, electromagnetic signals, and 

even disc drive noises to reveal the condition of the computer 

network, are adequate. Side channels in CPSs and IoT systems 

also jeopardize safety, data security, and privacy. In a power 

system, for example, side channels may allow customer data 

to escape, which is usually unrelated to plant activity; yet, 

those same side channels might be used to target the core 

infrastructure. The explanations of information systems 

partition metaphors are idealized in the same way that 

effectiveness and performance and zero coupling variables are 

idealized in complex processes [15]. However, this work 

concentrates on handling all these issues with the adoption of 

local and global intrusion detection processes using a deep 

network model. 

The work is organized as: Section 2 provides a detailed 

analysis with the proposed hierarchical model for local and 

global intrusion detection. The numerical outcomes acquired 

from the proposed multi-objective evolutionary (MOEA) 

algorithm are provided and discussed in section 3 which is 

followed by the research summary in section 4. 

 

 

2. METHODOLOGY 

 

This section describes the detailed explanation regarding 

the design model of CPS to fulfill security and improve the 

system model. It is composed of three phases: pre-processing, 

global and local intrusion detection, and a hierarchical model 

is used for classification. Finally, some metrics like accuracy, 

F-score, recall, error rate, confusion matrix are evaluated to 

show the significance of the MOEA model. Figure 1 depicts 

the block diagram of the anticipated MOEA model. 

 

2.1 NSL-KDD dataset 

 

NSL-KDD is an improved version of KDD'99 dataset to 

resolve inherent problems. It is a benchmark dataset used to 

help the investigators to analyze the threats that occur over the 

generic system model. It has some set of records with 

reasonable training and testing sets. The preliminary 

advantage of using this dataset is its competency to run the 

experiments without selecting any smaller set of the dataset. 

The evaluation outcomes of these research works are more 

comparable and consistent. It may not hold any redundancy of 

records over the available training sets. Therefore, the 

classifier does not bias with any recurrent records. It may not 

have any duplicate records and therefore the learner’s 

performances are biased with better prediction rates. The 

numbers of chosen records are inversely proportional to the 

original dataset percentages. As an outcome, the classification 

rate changes extensively which is proficient for accurate 

computation. The number of training and testing sets records 

are sensible. 
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2.2 System model 

 

Assume, a multi-objective evolutionary model as depicted 

in Figure 1. The model is composed of multiple edge servers 

and global servers. Generally, edge servers accomplish pre-

processing and local intrusion detection (LID) of various 

device-based data patterns. The edge server forwards the data 

and processes it over the cloud and it performs global intrusion 

detection with higher computational capacity. The intelligent 

hierarchical model includes three stages: 

Stage 1: The server is armed with higher computational 

capacity than servers and this server offloads the processed 

data to the server for global edge servers with the correlated 

data patterns over the data space, i.e. among the IoT devices. 

Global intrusion detection adopts learning methods that are 

commonly applied over natural language processing.  

Stage 2: Multiple edge servers achieve processing and local 

intrusion detection among the CPS. The data is normalized and 

reframed over the heterogeneous devices. The servers adopt 

PCA for reducing the dimensionality and adopt mapping for 

diminishing the computational complexity for intrusion 

detection. The server uses a sequential prediction approach to 

identify anomalies of every device based on the historical data 

patterns.  

Stage 3: IoT devices produce data over the servers. 

 
 

Figure 1. Block diagram of MOEA model 

 

Table 1. Redundant records in KDD testing set 

 
Attacks 250,436 29,378 88.26% 

Normal 60,591 47,911 20.92% 

Total 311,027 77,289 75.15% 

 

Table 2. Redundant records in KDD training set 

 
Attacks 3,925,650 262,178 93.32% 

Normal 972,781 812,814 16.44% 

Total 4,898,431 1,074,992 78.05% 

 

Table 3. NSL-KDD dataset attributes 

 
S. 

No 
Label Attributes 

S. 

No 
Label Attributes 

S. 

No 
Label Attributes 

S. 

No 
Label Attributes 

1 B Duration 10 C Hot 23 T Count 32 H dst_host_count 

2 B Protocol_type 11 C 
Num_failed_ 

Logins 
24 T serror_rate 33 H dst_host_srv_count 

3 B Service 12 C Logged_in 25 T reerror_rate 34 H dst_host_same_srv_rate 

4 B src_byte 13 C Num_Compromised 26 T same_srv_rate 35 H dst_host_diff_srv_rate 

5 B src_bytes 14 C Root_shell 27 T diff_srv_rate 36 H dst_host_same_src_port_rate 

6 B dat_bytes 15 C su_attempted 28 T srv_count 37 H dst_host_diff_src_port_rate 

7 B Flag 16 C Num_root 29 T 
srv_serror_ 

rate 
38 H dst_host_serror_rate 

8 B Land 17 C 
Num_file_ 
Creations 

30 T 
srv_rerror_ 

rate 
39 H dst_host_srv_serror_ 

9 B wrong_fragments 18 C Num_Shells 31 T 
srv_diff_host_ 

rate 
40 H dst_host_srv_reerror_rate 

  Urgent 19 C Num_access_Files 
 

41 H dst_host_srv_reerror_rate 

 

20 C Num_outbound_Cmds 42 - Class 

21 C is_hot_login 
 

22 C is_guest_login 

 

The Table 1 and 2 describes the dataset attributes with 42 

attributes in which 41 attributes are categorized into four 

diverse classes as shown below: 

(1) Basic (B) Features are individual TCP connection 

attributes. 

(2) Content (C) Features are connection recommended 

using domain knowledge attributes. 

(3) Traffic (T) Features are evaluated two-second time 

window attributes. 

(4) Host (H) Features are attacks that lack for two seconds. 

 

2.3 Intrusion detection framework 

 

This section offers an outline of the anticipated framework 

for intrusion detection (ID) in the context of incoming data. 

The flow chart is anticipated in Figure 2 which possesses three 

data processing stages: 1) pre-processing; 2) local intrusion 

detection (LID) and 3) global intrusion detection (GID). The 

description of the three-stage model is provided as below: 

Stage 1: Pre-processing is the preliminary stage of the 

proposed hierarchical intelligent model which uses the NSL-

KDD dataset as the input to the hierarchical CPS system. The 

preliminary process is executed over the server-side which is 

composed of three pre-processing steps: 1) normalization, 

dimensionality reduction, and mapping. As the CPS is 

heterogeneous, the processing unit requires data reframing in 

the same format and the device payloads vary from one 

another. Some device payloads are qualitative and quantitative 

where various payloads are normalized to execute the 

intrusion detection process. Some indicators of the CPS data 

over the heterogeneous environment remain the same and 

therefore it is redundant in the intrusion detection process. 

Therefore, the redundant indicators are discarded to reduce the 

computational complexity. This work adopts PCA for 

dimensionality reduction over heterogeneous data. The CPS is 

a typical appliance with some specific functions and its 

behavior patterns are static relatively and limited. Therefore, 

the hierarchical framework is competent to capture the 

probable benign nature of the IoT devices where benign 

patterns if every device is computed easily. The reduced data 
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vectors are categorized with diverse classes in correspondence 

to the data behaviors. Every class is mapped to a certain data 

symbol 𝑆𝑡
𝑖 where i specifies the device index and t specifies 

the time slot. Further, symbol mapping diminishes the multi-

dimensionality vector computation improves the global and 

local intrusion detection feasibility.  

Stage 2: The data processing is performed over the local 

intrusion detection through the deep network model which is 

carried out over the edge server. The data vector classification 

i, specifies the symbol sequences 𝑆𝑖 = [𝑆1
𝑖 , 𝑆2

𝑖 , … , 𝑆𝑡
𝑖]  are 

recorded over the local server where the symbol sequence 

specifies the device pattern. Here, the anomalies are predicted 

based on the probability of the symbol occurrence over the 

cyber-physical systems as the data devices generally follow 

certain historical patterns. The deep network model is used 

because of its time series prediction for tuning the parameters 

(less) compared to the existing LSTM.  

Stage 3: The successive stage is the GID with the 

conditional random field which shows the identity of its 

sequential data patterns over the local server and every symbol 

is provided to the server for global prediction, i.e. every 

symbol is tested and its likelihood occurrence of every data 

symbol is analyzed based on the symbol correlation. Therefore, 

the conditional field is used for prediction purposes in the 

context of the global symbol space. 

The KDD-test set is composed of 25192 instances and the 

KDD-training set is composed of 22544 instances. The 

attribute labeled 42 in the dataset is 'class attribute' specifies 

Table 3 that the given instances are normal or attack. 

 

 
 

Figure 2. Overall framework of MOEA 

 

2.4 Data model 

 

With the provided raw dataset of CPS ⅅ = {𝐷𝑡
𝑖  ∈  ℝ𝑙𝑖  |𝑡 =

1,2, … , 𝑇, 𝑖 = 1,2, … , 𝑁}  where N specifies the number of 

devices and li specifies the data vector length of the device i 

where ⅅ is normalized, re-framed, and mapped to the symbol 

set 𝕊 = {𝑆𝑡
𝑖|𝑡 = 1,2, … , 𝑇, 𝑖 = 1,2, … , 𝑁}  where 𝑆𝑡

𝑖  ∈

{1,2, … , 𝐽𝑖} and Ji specifies the number of data classes, i.e. 

number of data symbols of provided i. Thus, the data is an 

index using the available devices and time. 

 

2.5 Element driven-problem definition 

 

This work intends to evaluate the anomalous score of the 

CPS to determine the abnormality which is depicted globally 

and locally using the edge server. The symbol 𝑆𝑡
𝑖 is related to 

the device i at t time determined as the local intrusion where 

the probability of the occurrence is below the local threshold 

θl is depicted as in Eq. (1): 

 

𝐴𝑙𝑡
𝑖 = {

1 𝑃𝑙𝑡
𝑖 = 𝑃(𝑆𝑡

𝑖  |𝑆𝑡−1
𝑖 , 𝑆𝑡−2

𝑖 , … , 𝑆𝑡−𝑘
𝑖 ) < 𝜃_𝑙

0 𝑒𝑙𝑠𝑒
 (1) 

 

where, 𝑃𝑙𝑡
𝑖  specifies the 𝑆𝑡

𝑖  likelihood of historical device 

patterns and 𝐴𝑙𝑡
𝑖  specifies local anomalous. The device symbol 

𝑆𝑡
𝑖 of the device at 𝑡 time is specified as the global intrusion 

when the global probability occurrence 𝑃𝑔𝑡
𝑡  is below the 

threshold level θg where the computation is mathematically 

expressed as in Eq. (2): 

 

𝐴𝑔𝑡
𝑖 = {

1 𝑃𝑔𝑡
𝑖 = 𝑃 (𝑆𝑡

𝑖  |𝑆𝑡
1, 𝑆𝑡

2, … , 𝑆𝑡
𝑁) < 𝜃_𝑔 

0 𝑒𝑙𝑠𝑒
 (2) 

 

where, 𝐴𝑔𝑡
𝑖  specifies the 𝑆𝑡

𝑖  as a global intrusion. In overall 

anomaly computation, whether 𝑆𝑡
𝑖 is an intrusion or not and it 

is provided as the Boolean outcome of 𝐴𝑙𝑡
𝑖  and 𝐴𝑔𝑡

𝑖  is 

expressed as in Eq. (3): 

 

𝐴𝑡
𝑖 = {

1 𝐴𝑔𝑡
𝑖  ||𝐴𝑙𝑡

𝑖 = = 1

0 𝑒𝑙𝑠𝑒
 (3) 

 

where, 𝐴𝑡
𝑖 = 1 specifies the 𝑆𝑡

𝑖 intrusion. 

 

2.6 Refining data vectors 

 

This section initiates the data refinement process where the 

data packets (raw) 𝐷𝑡
𝑖  over the sequential data packet 

𝐷𝑖
𝑙 , 𝐷𝑖

2, … , 𝐷𝑖
𝑡  of 𝑖 devices are normalized and reframed to 𝐶𝑡

𝑖 

based on the dataset features with specific characteristics (c1, 

c2, …, c8). The data is diminished to 𝑋𝑡
𝑖  through PCA and 

mapped as data symbols 𝑆𝑡
𝑖. 

 

2.7 Normalizing and reframing 

 

The reframed data packet normalized is based on the chosen 

features as depicted. The features are chosen based on the PCA 

technique where the data values c1, c2, …, c8 are linearly 

normalized from 0→1 about the maximal and minimal feature 

values (binary values). Therefore, all the features are 

normalized among 0 and 1 to attain generic processing over 

the packets received on the CPS devices. It is expressed as in 

Eq. (4): 

 

[𝐶1, 𝐶2, … , 𝐶𝑁]
𝑡𝑟 = [

𝐶𝑡
1 𝐶𝑡−1

1 …
… … …
𝐶𝑡
𝑁 𝐶𝑡−1

𝑁 …
  
𝐶𝑡−𝑘
𝑙

…
𝐶𝑡−𝑘
𝑁
] (4) 

 

where, 𝐶𝑖 = [𝐶𝑡
𝑖, 𝐶𝑡−1

𝑖 , … , 𝐶𝑡−𝑘
𝑖 ]

𝑡𝑟
 specifies the sequential data 

of device i with window k time slots and Atr specifies the 

transposition matric of A. 
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2.8 Dimensionality reduction 

 

The normalized and reframed data from 𝐷𝑡
𝑖  to 𝐶𝑡

𝑖 specifies 

the data refinement by filtering the redundant features through 

the PCA. Here, 𝐶𝑡
𝑖  specifies the value transformed linearly 

with zero mean and it is expressed as in Eq. (5): 

 

𝐶�̅�
𝑖 = 𝐶𝑡

𝑖 −
1

8
∑ 𝐶𝑡

𝑖,𝑗8
𝑗=1   (5) 

 

where, m=1, 2, …, 8 specifies the entry index 𝐶𝑡
𝑖. Therefore, 

the square sum of every entry specifies the 𝐶�̅�
𝑖  where 

covariance matrix is expressed as in Eq. (6): 

 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = 𝐶̅𝑖(𝐶̅𝑖)𝑡𝑟 (6) 

 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖

= [
𝐶�̅�
𝑖(𝐶�̅�

𝑖)
𝑡𝑟

𝐶�̅�
𝑖(𝐶�̅�−1

𝑖 )
𝑡𝑟

…
… … . …

𝐶�̅�−𝑘
𝑖 (𝐶�̅�

𝑖)
𝑡𝑟

𝐶�̅�−𝑘
𝑖 (𝐶�̅�−1

𝑖 )
𝑡𝑟

…

  
𝐶�̅�
𝑖(𝐶�̅�−𝑘

𝑖 )
𝑡𝑟

…

𝐶�̅�−𝑘
𝑖 (𝐶�̅�−𝑘

𝑖 )
𝑡𝑟
] 

(7) 

 

where, 𝐶̅𝑖 = [𝐶�̅�
𝑖, 𝐶�̅�−1

𝑖 , … , 𝐶�̅�−𝑘
𝑖 ]

𝑡𝑟
. The covi specifies the real-

diagonalizable matrix and it is expressed as in Eq. (8): 

 

𝐴𝑖 = [

𝜆𝑖,1 … 𝜆𝑖,𝑛
⋮ ⋱ ⋮
⋯ ⋯ 𝜆𝑖,𝑘+1

] (8) 

 

where, λi,j specifies the jth Eigenvalue of covi. The redundant 

Eigenvectors are related to the small eigenvalues that are 

discarded from another sequence. Thus, the analysis from 𝐶̅𝑖 
to Xi with dimensionality reduction and 𝐶�̅�

𝑖 is converted to 𝑋𝑡
𝑖.. 

 

2.9 Mapping symbol 

 

For every row vector Xi specifies 𝑋𝑡
𝑖 which is related to the 

device data at t. The objective is to evaluate data from vectors, 

i.e. mapping. The model adopts clustering algorithm for data 

device clustering into Ji classes. Thus, the device set is 

specified as 𝕊𝑖 = {𝑆𝑡
𝑖|1,2, … , 𝐽𝑖}  where 𝕊𝑖  ⊂  𝕊, 𝐽𝑖  specifies 

the correlation coefficient to compute the data cluster using 

various parameters. The mapped data towards the symbol set 

and the CPS data volume is dimensioned further. The noise 

data interference is smoothed as the data over the provided 

cluster is specified using the cluster center and the data 

variations of the clusters are eliminated. Figure 3 depicts the 

MOEA framework for security establishment in CPS. 

 

 
 

Figure 3. MOEA framework 

2.10 Intelligent hierarchical model for global and local 

intrusion detection 

 

The anticipated model anticipates an approach for anomaly 

detection in the CPS system by determining the global and 

local intrusion models. Here, a novel deep network model is 

used for performing local intrusion detection over the local 

servers. The existing network model merges the input and 

forget gate as the simple gate format. The recurrent unit 

captures the dependencies adaptively over certain time scales. 

Therefore, the enabling of the deep network model is revealed 

based on the symbol correlation of various CPS devices with 

the provided time. The learning ability of the network model 

is preserved and the provided deep structure diminishes the 

computational cost. The proposed intelligent hierarchical 

model is applied where xt provides the present input state 𝑆𝑡
𝑖 

and 𝑦�̂�
𝑖
 specifies the probability of the occurrence and the 

weighted coefficient matrices of the deep network model. Wr 

and Wz specify the trained data samples. In the proposed 

MOEA framework, the sensing data of CPS is considered as 

the sentence where tth is used for training the system model. 

The sentences are processed individually over the CPS server 

over 𝑡 time slot where the network unit evaluates the input, 

output, and prior memory content through the above-

mentioned equations. The input and output parameters are 

expressed as in Eq. (9): 

 

{
  
 

  
 

𝑥𝑖 = [𝑆1
𝑖 , 𝑆2

𝑖 , … , 𝑆𝑡
𝑖 𝑙 ∈  ℝ1∗𝑇

�̂�𝑡
𝑖 = [𝑝(1), 𝑝(2), … , 𝑝(𝐽𝑖)] ∈ ℝ

1∗𝐽𝑖

𝑊𝑧
𝑖 .𝑊𝑟

𝑖 ,𝑊𝑖  ∈  ℝ𝑘∗(𝑘+1)

ℎ𝑡
𝑖 , 𝑟𝑡

𝑖 , 𝑍𝑡
𝑖  ∈  ℝ𝑘∗1

𝑉𝑖  ∈  ℝ𝐽𝑖∗𝑘

𝑦𝑡
𝑖  ∈  ℝ𝐽𝑖∗1

 (9) 

 

where, k specifies the internal network memory, �̂�𝑖
𝑡 specifies 

the probability vector and 𝑦𝑖
𝑡 specifies the ground-truth value 

at 𝑡 time. The cross-entropy 𝐿𝑖
𝑡 is mathematically expressed as 

in Eq. (10): 

 

𝐿𝑡
𝑖 = −𝑦�̂�

𝑖(log 𝑦𝑡
𝑖) (10) 

 

where, the log specifies the logarithm (element-wise) function. 

The total cross-entropy loss is expressed as in Eq. (11): 

 

𝛩𝑖∗ = argmin
𝛩𝑖
𝐿𝑖  (11) 

 

where, 𝛩𝑖 = {𝑊𝑧
𝑖 ,𝑊𝑟

𝑖 ,𝑊𝑖 , 𝑉𝑖}. The trained network model is 

used for computing the probability vector 𝑦�̂�
𝑡
 is provided to 

predict the local intrusion of every device i. The input data 

probability is evaluated and the threshold probability θl is 

adjusted automatically from 1 to 0 by the server. The detection 

metrics like TPR, FPR, accuracy, precision, and F-score are 

evaluated. The threshold model is analyzed based on maximal 

precision. The threshold and parameters are trained and the 

network model is used for local intrusion detection. The nature 

of network traffic is changed and the trained and parameters 

are re-trained. 

 

2.11 Global intrusion detection 

 

Here, a conditional random field is adopted for measuring 

global intrusion detection where the conditional distributions 
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of hidden states are evaluated based on the provided 

observations. In the proposed MOEA model, the conditional 

random field model is used for constructing the probability 

distribution of every state and measures the labeling of every 

CPS-based data. Assume, the global intrusion state of the CPS 

system at 𝑡  tie which is represented as [𝐴𝑔𝑡
1 , 𝐴𝑔𝑡

2 , … , 𝐴𝑔𝑡
𝑁 ] 

which is known as Markov-chain, and the input is provided in 

a sequential form 𝑥𝑡 = [𝑆1
𝑡 , … , 𝑆𝑁

𝑡 ]  which is adopted for 

language processing. The conditional random fields (CRF) are 

appropriate for categorizing and modeling CPS data as the data 

is intrinsically considered based on the t time slot. The data 

produced by the device 𝑖 at 𝑡 time is based on the probability 

distribution of variables modeled through the random field 

which provides the probability factorized into functional 

product over intrinsic features. The probability of the variable 

state intrusion 𝐴𝑔𝑡 = [𝐴𝑔𝑡
1 , 𝐴𝑔𝑡

2 , … , 𝐴𝑔𝑡
𝑁 ] which is provided as 

in Eq. (12): 

 

𝑃(𝐴𝑔𝑡  |𝑥𝑡  )

=
1

𝑍(𝑥𝑡)
exp {∑∑ 𝜇𝑤𝑓𝑤 (𝑖, 𝐴𝑔𝑡

𝑖 , 𝐴𝑔𝑡
𝑖−1, 𝑥𝑡)

𝑊

𝑤=1

𝑁

𝑖=1

} 
(12) 

 

where, fw specifies the feature function and its weight factor μw. 

Z(xt). It is expressed as in Eq. (13): 

 

𝑍(𝑥𝑡) =∑exp {∑∑ 𝜇𝑤𝑓𝑤 (𝑖, 𝐴𝑔𝑡
𝑖 , 𝐴𝑔𝑡

𝑖−1

𝑊

𝑤=1

, 𝑥𝑡

𝑁

𝑖=1

)}

𝐴𝑔𝑡
′

 (13) 

 

where, 𝐴𝑔𝑡
𝑖  specifies the probability vector of the state vector 

[𝐴𝑔𝑡
𝑖 , 𝐴𝑔𝑡

2 , … , 𝐴𝑔𝑡
𝑁 ] at t time. The feature function is an 

indication that demonstrates the adjacent state pair and the 

random field is completely characterized by the weighted 

factor/feature set, i.e. (f, μ). It is a supervised model which 

intends to process the training stage and it evaluates the model 

parameters based on the labeled data samples. The objective 

function is expressed as in Eq. (14): 

 

∑ log 𝑃(𝐴𝑔𝑡|𝑥𝑡) =  ∑ ∑ ∑ 𝜇𝑤𝑓𝑤 (𝑖, 𝐴𝑔𝑡
𝑖 ,𝑊

𝑤=1
𝑁
𝑖=1

𝑇
𝑡=1

𝑇
𝑡=1

𝑥𝑡 , 𝐴𝑔𝑡
𝑖−1) − ∑ log 𝑍 (𝑥𝑡)

𝑇
𝑡=1   

(14) 

 

To train the model parameters, the value of the objective 

function needs to be maximized as it is due to the convex 

nature of the objective function. The optimization is 

guaranteed to attain a global solution. The random field model 

is trained and it is functional to identify the input data state xt 

at time t through the proposed hierarchical model. It is 

expressed as in Eq. (15): 

 

𝐴𝑔𝑡
∗ = argmax

𝐴𝑔𝑡
𝑃(𝐴𝑔𝑡|𝑥𝑡) (15) 

 

where, 𝐴𝑔𝑡
∗  specifies the intrusion detection mechanism with 

maximal likelihood. The training process of the local intrusion 

detection is based on the probability of acquired input, 

threshold probability which is adjusted automatically from 1 – 

0 using the CPS server model. The threshold value is acquired 

based on the maximal precision value. The network-changing 

nature relies on the proposed hierarchical model. The 

algorithm of the anticipated intelligent hierarchical model is 

depicted in Algorithm 1: 

 

Algorithm 1 MOEA model 

Input: ⅅ = {𝐷𝑡
𝑖  ∈ 𝑅𝑙𝑖  | 𝑡 = 1, 2, … , 𝑇, 𝑖 = 1,2, … , 𝑁} 

Output: {𝐴𝑡
𝑖  ∈ {0,1}| 𝑡 = 𝑇 + 1, 𝑇 + 2,… . , 𝑇′, 𝑖 =

1,2, … , 𝑁 

1. ⅅ → 𝐶, 𝐶 → 𝑋, 𝑋 → 𝑆, 𝛩 = {𝑊𝑧 ,𝑊𝑟 ,𝑊, 𝑉}; //data 

normalization, dimensionality reduction, mapping, and 

parameter initialization, 

2. for all i=1 to N do 

3. While the model does not converge do 

4. Evaluate forward and backpropagation; 

5. Perform parameter updation; 

6. end while 

7. end for 

8. for all i=1 to N do 

9. for all t=T→T' do 

10. compute �̂�𝑡
′ 𝑎𝑛𝑑 𝐴𝑙𝑡

𝑖 ; 

11. end for 

12. end for 

13. Initialize μ parameter; 

14. While the model does not converge do 

15. Compute U, gradient value, and μ; 

16. end while 

17. for t=T to T' do 

18. compute 𝐴𝑔𝑡
𝑖 ; 

19. Predict global intrusion; 

20. end for 

 

 

3. EXPERIMENTAL OUTCOMES 

 

The proposed MOEA model performance is compared with 

various existing approaches for predicting anomaly 

hierarchically over the CPS system. The preliminary stages 

include pre-processing and local intrusion detection simulated 

under i7 processor at 2.3 GHz and 8 GB RAM where 

MATLAB 2020a is used as a simulator. The design-based 

optimization is used to identify the threat that consumes the 

cyber system resources, consumes more energy, and causes 

the error. These factors lead to system performance 

degradation. 

True positive (TP): The proposed classifier needs to 

determine accurately the class feature to predict where the 

attack is identified.  

True Negative (TN): The classifier needs to determine the 

class features are negative accurately. 

False Positive (FP): The classifier inaccurately determines 

the normal traffic as an attack pattern. 

False Negative (FN): The proposed classifier incorrectly 

classifies the attack as normal traffic.  

With these measures, various metrics are evaluated 

efficiently. They are ROC, False Positive Rate (FPR), 

accuracy, precision, F-measure, and recall with error rate 

computation. Accuracy is defined as the probability of 

predicting the occurrence of an attack or normal traffic 

accurately. It is mathematically expressed as in Eq. (16)-(22): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (16) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (18) 

 

𝐴𝑈𝐶 = ∫𝑅𝑂𝐶 (𝑡)𝑑𝑡

1

0

 (19) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 (20) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (21) 

 

𝑅𝑀𝑆𝐸 = √[∑(𝑦𝑖 − 𝑥𝑖)
2/𝑁

𝑁

𝑖=1

] (22) 

 

Table 4. Accuracy comparison 

 
Iterations 100 300 500 800 1000 

MOEA 85 87 92 97 99.5 

DB 79.45 82.33 90.25 95.6 99 

Deep learning RNN 

[5] 
60.35 68.9 72.55 81.96 86.9 

federated self-

learning [10] 
70.11 76.25 81.22 86.99 99.09 

federated transfer 

learning [14] 
73.14 79.88 85.2 91.2 99.13 

Deep FED [15] 75.55 80.36 87.48 92.33 99.20 

 

Table 5. Precision comparison 

 
Iterations 100 300 500 800 1000 

MOEA 85.9 92.65 95.45 97.89 100 

DB [15] 83.65 88.74 92.44 96.87 100 

Deep RNN [5] 71 76 82 90 98 

federated self-

learning [16] 
71.44 76.2 82.51 90.66 98.86 

federated transfer 

learning [17] 
76.02 79.2 88.99 93.5 99.34 

Deep FED [18] 81.06 83.99 87.25 93.65 98.86 

 
Table 6. Recall comparison 

 
Iterations 100 300 500 800 1000 

MOEA 85 89 94 85 99.6 

DB [15] 81.45 82.33 89.96 91.25 99.5 

Deep RNN [5] 71 78 82 89 86 

federated self-

learning [16] 
71.25 78.54 82.69 89.41 96.76 

federated transfer 

learning [17] 
73.89 78.88 83.94 93.89 96.82 

Deep FED [18] 76.58 80.11 85.62 89.7 97.36 

 
Table 7. F-Measure comparison 

 
Iterations 100 300 500 800 1000 

MOEA 83 92 95 97 99.8 

DB [15] 81.22 87.88 92.15 96.64 99.7 

Deep RNN [5] 71 73 81 92 97 

federated self-

learning [16] 
71.10 73.55 81.25 92.85 97.78 

federated transfer 

learning [17] 
73.25 78.5 86.9 93.2 98.03 

Deep FED [18] 80.05 83.97 91.24 94.55 98.10 

 

 
 

Figure 4. Accuracy comparison 
 

 
 

Figure 5. Precision comparison 

 

 
 

Figure 6. Recall comparison 
 

 
 

Figure 7. F1-measure comparison 
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Figure 8. Confusion matrix 

 

 
 

Figure 9. ROC computation 

 

The proposed MOEA model is compared with various 

existing approaches like DB, Deep RNN, Federated self-

learning, federated transfer learning and deep FED model. The 

major drawbacks rely on the existing approaches are discussed 

to project its failure in intrusion detection. The deep RNN 

faces some serious issues like exploding and gradient 

vanishing problems, complex training and fails to process the 

long sequential incoming data. The drawbacks with federated 

self and transfer learning are the complexity towards the 

understanding of the model and they consume huge time for 

execution. Similarly, with the deep federated relies on the 

evaluation with the feature learning and analysis. Without 

proper feature learning, no further classification is done for 

predicting the intrusion. 

The evaluation is performed for various iterations, i.e. 100, 

300, 500, 800, and 1000 respectively. The accuracy of the 

anticipated MOEA is measured for the 1000th iteration (See 

Figure 4) where the accuracy is 99% which is 12.6%, 12.5%, 

0.31%, 0.27%, and 0.10% higher than DB, DL-RNN, 

federated self-learning, transfer learning, and Deep FED 

models as depicted in Table 4. Table 5 depicts the evaluation 

of the MOEA model over prevailing approaches. The 

precision of MOEA is 100% which is 1.14%, 0.66%, and 

1.14% when compared to federated self-learning, federated 

transfer learning, and deep FED (See Figure 5). Table 6 

demonstrates the recall comparison of MOEA over other 

models and attains 99.6% which is 2.75%, 2.74%, 2.68%, and 

2.14% higher than other approaches (See Figure 6). Table 7 

depicts the comparison of F-measure comparison of the 

MOEA model which is 99.8% which is 1.93%, 1.92%, 1.67%, 

and 1.6% higher than other approaches (See Figure 7). The 

error rate of anticipated MOEA is 0.04 and the time consumed 

for evaluation is 16.85 seconds. Figure 8 shows the confusion 

matrix generated for actual value and targeted value. 

Similarly, Figure 9 shows the ROC curve plotting for TPR and 

FPR rate with class 1-5 respectively. 

 

 

4. CONCLUSIONS 

 

This research proposes a novel MOEA method used for 

predicting cyber-attacks over CPS using the deep network 

model. The prediction process is the combination of both 

reconstruction and discrimination loss which is needed for 

data sample mapping. The mapping process is performed for 

accelerating the loss function and time consumed during the 

execution process. Some preliminary steps like refining, 

normalizing, re-framing, and mapping are done to make the 

model more appropriate for classification purposes. Here, the 

NSL-KDD dataset is used for computation and various metrics 

like accuracy, recall, precision, and F-measure is examined. 

The simulation is done in MATLAB 2020a environment 

where the performance of the model is compared with existing 

DB, federated self and transfer learning, and Deep Fed 

learning model. The metrics comparison with these 

approaches shows the significance of the proposed MOEA 

model. However, the major research constraint is the lack of 

analysis with the prediction latency of cyber-attacks in CPS. 

However, in the future, this is addressed with the adoption of 

deep auto-encoders for cyber-attack prediction and intends to 

reduce the detection latency of the proposed IDS. 
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