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The diagnosis of students’ pre-class hands-on operation capacity helps to group the students 

scientifically to facilitate the teaching for experimental training of skill training courses, 

and benefits the capacity complementation and team spirit cultivation. Practically speaking, 

the relevant results have rarely been implemented in the practical teaching of skill training 

courses. No literature has analyzed the correlation between grouped teaching for 

experimental training, and the key competences of students for skill training courses. To 

solve the problem, this paper constructs a grouped teaching strategy for experimental 

training based on deep learning. The key competences of students for skill training courses 

were evaluated from four aspects, namely, general training objective, thinking training, 

practical training, and scientific literacy training. The evaluation results were used to 

diagnose the students’ pre-class hands-on operation capacity, and reasonably group the 

students participating in experimental training. The deep learning model was called to group 

students of different majors for experimental training courses. The attention mechanism was 

added to prevent over fitting, when there are a few samples for capacity diagnosis. The 

proposed model was proved effective through experiments. 
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1. INTRODUCTION

Experimental teaching underpins skill training courses. The 

teaching for experimental training of skill training courses is 

an essential link of improving students’ skills, abilities, and 

key competencies [1-6]. It directly relies on group teaching of 

the students. Grouped teaching for experimental training 

facilitates students to understand the concepts and teaching 

rules of skill training courses [7-14]. The diagnosis of students’ 

pre-class hands-on operation capacity helps to group the 

students scientifically to facilitate the teaching for 

experimental training of skill training courses, and benefits the 

capacity complementation and team spirit cultivation [15-22]. 

The main difficulty of the diagnosis is how to accurately judge 

the key competencies of different types of students in the 

experimental training of skill training courses, and to divide 

these students into reasonable groups [23, 24]. 

The traditional experimental teaching of management 

emphasizes teaching over learning, and stresses knowledge 

over practice. It no longer meets the development needs of 

innovative society in the context of new media. In the new 

media environment, the experimental courses of management 

are badly in need of collaborative innovation of the teaching 

system. Drawing on the new media environment, Xia et al. [25] 

carried out collaborative innovative design of the teaching 

system for the experimental courses of management, from the 

aspects of overall design, teaching method, and teaching 

evaluation. Through practice and application, the experience 

and shortcomings were summarized, and the improvement 

measures were presented. Wen et al. [26] put forward a 

lightweight collaborative experimental teaching method, 

including computer simulation, teaching guidance, and class 

reflection. Thirty-three grade 8 students were recruited to 

explore how the teaching method affects the exploratory 

scores and scientific knowledge of students. However, further 

research is needed to verify whether a series of lightweight 

experiments can improve student performance. Girouard and 

Kang [27] created an innovative usability training called 

collaborative learning of usability experiences program for 

students majoring in human-computer interaction (HCI) of 

different grades, and detailed the components of the unique 

experiential training, namely, internship, short-term courses, 

symposium, and knowledge transfer. In addition, the 

employment and academic performance of graduates were 

evaluated, and the five key skills of interns were checked. 

Kerpen et al. [28] proposed a problem-based lab-centered 

college course. The course teaching has a high demand for 

virtual collaboration. The students used various tools to draw 

a preliminary design plan, which could be realized in future 

physical prototypes. 

The existing literature shows that grouped learning and pre-

class hands-on operation capacity are necessary and important 

to the teaching for experimental training of skill training 

courses. Practically speaking, the relevant results have rarely 

been implemented in the practical teaching of skill training 

courses. No literature has analyzed the correlation between 

grouped teaching for experimental training, and the key 

competences of students for skill training courses. To make up 
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for the gap, this paper constructs a grouped teaching strategy 

for experimental training based on deep learning. The main 

contents are as follows: Section 2 evaluates the key 

competences of students for skill training courses from four 

aspects, namely, general training objective, thinking training, 

practical training, and scientific literacy training. The 

evaluation results can be used to diagnose the students’ pre-

class hands-on operation capacity, and reasonably group the 

students participating in experimental training. Section 3 calls 

the deep learning model to group students of different majors 

for experimental training courses, combined meta learning 

with transfer learning, and introduced the attention mechanism 

to prevent over fitting, when there are a few samples for 

capacity diagnosis. The proposed model was proved effective 

through experiments. 
 

 

2. CAPACITY DIAGNOSIS 
 

The key competences of students for skill training courses 

can be evaluated from four aspects: general training objective, 

thinking training, practical training, and scientific literacy 

training. The evaluation results can be used to diagnose the 

students’ pre-class hands-on operation capacity, and 

reasonably group the students participating in experimental 

training. 

If a student possesses the key competencies of skill training 

courses, he/she should be able to construct the knowledge 

system of skill training courses, design the experimental 

training plan based on the learned basic knowledge or 

experimental principles, participate in grouped experimental 

training, and finally acquire valuable experimental 

conclusions or experience of skill training. The mastery of 

course knowledge and experimental conclusions measures the 

degree of realization of the general training objective of the 

courses. Therefore, the general training objective of skill 

training courses was further divided into basic knowledge or 

experimental principles, and valuable experimental 

conclusions or experience of skill training. 

To evaluate the key competences of students for skill 

training courses, it is necessary to examine the student 

capacity for problem analysis, reasoning, innovative thinking, 

and problem solving in the skill training course scenes closely 

associated with practical application. Grouped discussion can 

effectively optimize or renovate the ideas. Therefore, the 

thinking training of skill training courses was further split into 

problem analysis, reasoning, innovative thinking, and problem 

solving. 

The key competences of students for skill training courses 

highlight that the students must be able to combine, control, 

and operate experimental training equipment, and to generate 

experimental data. The entire flow cannot be completed by one 

student. Normally, the experiments are carried out 

collaboratively by several groups of students. Each group is 

assigned a specific task. Therefore, the practical training of 

skill training courses was further divided into combination 

training (grouped), control training (grouped), operation 

training (grouped), experimental phenomenon observation, 

data collation, as well as communication and discussion. 

The key competences of students for skill training courses 

also require students to have a good research spirit and 

learning attitude. Therefore, the scientific literacy training of 

skill training courses is further divided into the curiosity about 

training topics, scientific reasoning, and sustained scientific 

spirit. 

3. GROUPING STRATEGY 

 

Based on deep learning model, this paper groups students in 

different majors for experimental training courses. The 

students in different majors need to complete different skill 

training courses, and acquire different key competencies. As a 

result, there are a few samples for the diagnosis of students’ 

pre-class hands-on operation capacity. 

The small sample set can be improved by data enhancement, 

transfer learning, or meta learning. This paper combines meta 

learning with transfer learning, and introduces the attention 

mechanism to prevent over fitting, when there are a few 

samples for capacity diagnosis. 

As shown in Figure 1, the overall framework of our model 

consists of a dense residual module, an attention module in 

global channel and local space, and an attention module 

between spatial channels. Firstly, the proposed model is 

trained by the set of original capacity diagnosis samples. The 

weights of the trained model are finetuned to adapt to the 

grouping of students for experimental training courses, in the 

presence of a small sample set. 

 

 
 

Figure 1. Learning structure of our model 

 

To overcome vanishing or exploding gradients, this paper 

introduces a skip connection to the ResNet in the dense 

residual module of our model. Then, the nonlinear operation 

can be skipped, once the optimal solution is obtained. Let 

Fk(ak-1) be the residual obtained through nonlinear operation; 

ak-1 be the optimal solution before executing the nonlinear 

operation. Then, we have:  

 

( )1 1k k k ka F a a− −= +  (1) 

 

The DenseNet in the dense residual module adopts a new 

connection mode to promote the gradient transmission 

between layers, i.e., the output of each layer is directly 

transmitted to all subsequent layers. That is, the input of the k-

th layer contains the feature maps from the 0-th layer to the k-

1-th layer. Let [a0,a1,...,ak-1] be the splicing of the eigenvectors 

from the 0-th layer to the k-1-th layer. Then, we have: 

 

 ( )0 1 1, , ,k k ka g a a a −=  (2) 

 

To enhance the feature transfer of capacity diagnosis 

samples in network training, this paper embeds the dense 

connection mode of DenseNet to ResNet. Let ak-10, and ak-11 be 
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the medians of each dense residual block. Taking the residual 

block structure of ResNet as the basis, the dense residual 

blocks can be calculated with skip connection as network 

mapping: 

 

( )

( )  ( )
1 1

1 1 10 11, ,

k k k

k k k k

a G a a

G a G a a a

− −

− − − −

= +

=
 (3) 

 

The purpose of the attention module in global channel and 

local space, and the attention module between spatial channels 

is to improve the quality of feature representation, i.e., 

highlight the features of important capacity diagnosis samples, 

and weaken the features of unimportant samples. Figure 2 

illustrates the structure of an attention module. 

Let ARF*Q*Z be the eigenvector outputted by the 

convolutional layer after the input capacity diagnosis sample 

passes through that layer; [a1,a2,...,aZ] be channels a1-aZ; 

AiRF*Q*1 be the feature information in the i-th channel; 

U=[a1,a2,...,aZ] be the filter group for learning; ui be the i-th 

filter; Fk be the function of the deep convolutional layer; ui be 

the two-dimensional (2D) spatial convolutional filter. The 

spatial statistics in a channel can be generated by Fk, and used 

to generate the output eigenvector Bk:Bk=[bk,1,bk,2,...,bk,z]: 

 

( ), , *k i k i i i ib F a u a u= =  (4) 

 

Let Fh be the modeling of the correlation between global 

channel features; ξ be the rectified linear unit (ReLU). Suppose 

parameters T1 and T2 satisfy T1R1*1*Z*Z/4, and T2R1*1*Z/4*Z, 

respectively. Then, the output eigenvector BhRF*Q*Z can be 

obtained by: 

 

( ) ( )1 2, * *h hB F A Q T T A= =  (5) 

 

The compression mechanism and the relationship between 

global channel indices can be obtained through the 

dimensionality reduction of channels with T1. Let Fhk be 

element-by-element multiplication. By sigmoid function, Bk 

and Bh derive the activation value for re-calibration or 

activating the feature information: 

 

( ) ( )( ) ( ) ( ), ,hk hk k h k hB F A B B A B B   = = • •  (6) 

 

Let bRZ be the feature of each capacity diagnosis sample 

passing through the global average pooling. The channel 

attention mechanism can be given by: 

 

( )*Q b =  (7) 

 

Let Q be the Z*Z parameter matrix; Ql be the band matrix. 

The band matrix provides the basis for the learning of channel 

information attention. The matrix can be expressed as: 

 
1,1 1,

1,2 2, 1
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0 0 0

0 0 0

0 0 0

l
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q q
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− +

 
 
 
 
 
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(8) 

 

Formula (25) shows that Ql contains l*Z parameters. It is 

only necessary to consider the interaction between bi and its l 

adjacent channels. Let Ψl
i be the set of bi and its l adjacent 

channels. Then, the weight of bi can be calculated by: 

1

,
l

j j j l

i i i i i

j

q b b Ψ 
=

 
=  

 
  (9) 

 

To improve the effectiveness of model learning, the 

learning parameters of all channels should be unified. Thus, 

formula (26) can be updated as: 

 

1

,
l

j j l

i i i i i

j

q b b Ψ 
=

 
=  

 
  (10) 

 

To keep the learning parameters of all channels consistent, 

a fast one-dimensional (1D) convolution CONFO-l can be 

implemented with a kernel size of l: 

 

( )( )FO lCON b  −=  (11) 

 

The above formula is the way to compute the attention 

between channels, and to effectively capture the local 

information exchange between channels. The computation is 

of a low complexity, involving only l parameters. 

To realize the attention mechanism between channels, it is 

necessary to determine the kernel size l, and obtain a relatively 

suitable coverage of adjacent channels. The possible mappings 

Φ between l and Z can be nonlinearized: 

 

( ) *2 l yZ Φ l  −= =  (12) 

 

Let |x|odd be the odd number the closest to x. If the channel 

dimension Z is given, then l can be adaptively calculated by: 

 

( )
( )2

odd

log Z y
l Ω Z

 
= = +

 
(13) 

 

To prevent our model from over fitting, meta learning was 

integrated with transfer learning, which contains lightweight 

operations like scaling and translation, to initialize neural 

network parameters on deep layers. The integration enables 

meta learning to converge quickly facing a few capacity 

diagnosis samples, thereby reducing the computing load. 

Figure 3 shows the flow of the proposed meta-transfer learning 

model. 

During model learning, the first step is to train the capacity 

diagnosis sample set on multiple task levels. Let TT be the 

training task; δ1, δ2 and δ{1,2} be the scaling operation, 

translation operation, and the combination between the two 

operations, respectively. Facing a small set of diagnosis 

samples, the student grouping classifier can be optimized by: 

  

   ( )1,2
' , ,TTK Π    = −   (14) 

 

δ1 and δ2 can be iteratively updated by: 

 

   ( )( )1,2
, , 1,2

ii i TTK Π i    = −  =  (15) 

 

Let Π be the trained feature extractor of capacity diagnosis 

samples. Suppose the network layer of Π contains n pairs of 

weights and thresholds {(Qi,n,yi,n)}. Let  be the point 

multiplication operation. Then, the combined operation of 

scaling and translation can be expressed as:  

 

 ( ) ( ) ( )1 21,2
, , ;RR A Q y Q A y  =  + +  (16) 
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Figure 2. Structure of an attention module 

 

 
 

Figure 3. Flow of meta-transfer learning model 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

This paper evaluates the key competences of students for 

skill training courses from four main aspects: general training 

objective, thinking training, practical training, and scientific 

literacy training. The proposed method was verified 

experimentally on the evaluation dataset of students from 

different majors and colleges. The results can be applied to 

diagnose students’ pre-class hands-on operation capacity, and 

group the students participating in experimental training 

scientifically. The grouping rule is to allocate the students with 

different levels of pre- class hands-on operation capacity to the 

same group. 

A comparative experiment of feature extraction effects was 

designed to verify the effectiveness of our model. Figure 4 

reports the experimental results. The proposed model was 

tested at different number of parameters. In the absence of the 

attention mechanism, the transfer learning effect was 

significantly affected by the number of parameters. Our model 

converged faster and achieved better results than the 

traditional transfer learning model. As shown in Figure 4, 

when the sample set of students’ pre-class hands-on operation 

capacity was very small, the mean classification accuracy on 

sample set 2 was slightly lower (-5%) than that on sample set 

1, for many group features and samples are missing in that 

sample set. Therefore, our model has a high robustness in the 

student grouping for experimental training. 

To further verify its effectiveness, our model was compared 

with 9 models, including k-nearest neighbors (KNN), 

Bayesian, decision tree, random forest, support vector 

machine (SVM), logistic probability regression, discriminant 

analysis, neural network, and ensemble boosting. The KNN is 

only applicable to easily explainable models, sensitive to 

abnormal values, and susceptible of data imbalance. Bayesian 

works well on the data with weak correlations between 

dimensions, and gains popularity in the handling of spam 

emails. Decision tree can handle different types of data 

simultaneously, but is vulnerable to attacks. Random forest is 

not so vulnerable to attacks, and suitable for high accuracy 

recognition of low-dimensional data. The SVM can withstand 

attacks effectively. As a linear classifier, logistic probability 

regression does not apply to strongly correlated features. 

Discriminant analysis is usually adopted as a dimensionality 

reduction tool. The neural network is fit for large volumes of 

data. Ensemble boosting can automatically detect effective 

features, facilitating the understanding of high-dimensional 

data. 

Table 1 compares the classification accuracies of different 

models. Obviously, discriminant analysis, neural network, 

ensemble boosting, and our model achieved relatively good 

classification results. The best results were realized by our 

model, because the attention mechanism is suitable for the 

diagnosis of a few capacity samples. 

In addition, the losses of discriminant analysis, neural 

network, ensemble boosting, and our model after 300 

iterations were counted. As shown in Figure 5, our model 

outperformed the other three models: the loss dropped by 0.6 

at the most. The result further confirms that our model can 

highlight the features of important capacity samples, thanks to 

the introduction of the attention mechanism. During the 

training, our model saw a faster decline of the loss function, 

i.e., a faster convergence, than the other three models. Figure 

6 visually displays the grouping effect of experimental training 

on the sample sets. The effectiveness of our grouped teaching 

strategy for experimental training was further validated. 

 

Table 1. Classification accuracies of different models 

 

 KNN Bayesian 
Decision 

tree 

Random 

forest 
SVM 

Dataset 1 82.05±0.02 86.58±0.63 81.47±0.14 80.85±0.38 87.62±0.32 

Dataset 2 85.14±0.75 88.51±0.49 86.39±0.41 83.68±1.35 81.48±0.74 

 

Logistic 

probability 

regression 

Discriminant 

analysis 

Neural 

network 

Ensemble 

boosting 
Our model 

Dataset 1 86.83±0.53 91.48±0.42 96.52±0.19 91.71±0.62 93.68±0.47 

Dataset 2 89.28±0.38 97.42±0.24 91.36±0.18 96.58±0.36 97.42±0.51 

 

 
 

Figure 4. Feature extraction effects on different capacity 

evaluation samples 
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Figure 5. Losses of different models 
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Figure 6. Grouping effect of experimental training on the 

sample sets 

 

 

5. CONCLUSIONS 

 

This paper tries to build a grouped teaching strategy for 

experimental training based on deep learning. The key 

competences of students for skill training courses were 

evaluated from four aspects, namely, general training 

objective, thinking training, practical training, and scientific 

literacy training. The evaluation results can be used to 

diagnose the students’ pre-class hands-on operation capacity, 

and reasonably group the students participating in 

experimental training. Based on the deep learning model, the 

students of different majors were grouped for experimental 

training courses, and the attention mechanism was introduced 

to prevent over fitting in the face of a sample set. Then, the 

feature extraction effects on different capacity evaluation 

samples were compared experimentally. The results show that 

our model has a high robustness in the student grouping for 

experimental training. In addition, our model was compared 

with 9 models, including KNN, Bayesian, decision tree, 

random forest, SVM, logistic probability regression, 

discriminant analysis, neural network, and ensemble boosting. 

It was observed that discriminant analysis, neural network, 

ensemble boosting, and our model achieved relatively good 

classification results. The best results were realized by our 

model. In addition, the losses of discriminant analysis, neural 

network, ensemble boosting, and our model after 300 

iterations were counted. During the training, our model saw a 

faster decline of the loss function, i.e., a faster convergence, 

than the other three models. Finally, the authors displayed the 

grouping effect of experimental training on the sample sets. 
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