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The measure of efficiency for the supply chain is necessary to show productivity and how 

it uses its resources. One of the most important efficiency measurements is Data 

Envelopment Analysis (DEA). The traditional DEA model treats the decision-making units 

(DMUs) as a black box. It considers only the initial inputs and the final outputs. But the 

internal interactions between subsystems are neglected. This type of DEA is used for 

straightforward systems, but the complex multistage systems like supply chains, traditional 

DEA get inaccurate efficiency indicators. As well as, one of the main challenges is the 

uncertainty of data. The inputs and outputs values are usually required to be deterministic 

in traditional DEA. Although, this is not a case of real-life problems. Therefore, we develop 

a mixed innovative approach from Two-stage DEA and rough set theory to produce a 

modified Two-stage RDEA. The proposed model can measure the efficiency of DMUs 

comprehensively by considering the internal structure of any supply chain and treating with 

incomplete and imprecise data. We applied the Two-stage RDEA model in a three-level 

supply chain to show its applicability to measure the efficiency for both a whole supply 

chain and all levels comprehensively. 
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1. INTRODUCTION

In the era of globalization, supply chain management (SCM) 

plays an important role in the business administration field due 

to the increase in the number of competitors in market 

globalization. At the beginning of the 1990s, SCM appeared 

and was concerned with the planning of supply and demand, 

managing the production and manufacturing, controlling the 

inventory level, and distributing the products. Performance 

evaluation is the ability of a firm to produce maximum outputs 

by using a set of available inputs. The firm is efficient if it 

achieves maximum output with a set of inputs [1]. The 

measure of efficiency is depended on the objective of the 

government, e.g., minimizing the use of resources (input-

oriented), minimizing cost, maximizing productivity (output-

oriented), or maximizing profit. from this perspective, supply 

chain efficiency is how the firm utilizes the resources to 

achieve its goal in the whole supply chain and it’s all levels.  

Data Envelopment Analysis is one of the most popular 

methods in performance efficiency evaluation. DEA is a data-

oriented approach. It is a nonparametric mathematical-based 

tool that transforms multiple inputs into multiple outputs to 

evaluate the efficiency and performance of a set of entities 

DMUs. The result from the DEA study is classified all DMUs 

as either “efficient” or “inefficient”. Efficiency is defined 

simply as a ratio when the case has a single input and output. 

However, in real-life, any organization have multiple inputs 

and output. The efficiency of a DMU is measured relative to 

all other DMUs. Each DMU is calculated and analyzed to get 

the maximum performance for each unit separately. 

Chames, Cooper, and Rhodes, (CCR model) [2] consider 

the fundamental DEA model, built to measure the efficiency 

of DMUs. The obtained efficiency is not absolute efficiency 

but relative efficiency to other DMUs which are measured. 

CCR model is considered the birth of DEA and is still the most 

widely used type of DEA model. After that, Banker, Charnes, 

& Cooper 1984 [3] developed the BCC model which is VRS. 

It uses only when required to check for increasing or 

decreasing returns because its interpretations for results are 

complicated. On the contrary, the CCR model is most 

commonly used because it is easy and better in interpreting 

results. Recently, the DEA models are becoming popular for 

evaluating the relative efficiency in different sectors (e.g., 

education, healthcare, economy, etc.). It determines the 

efficiency based on its inputs and outputs and compares it with 

the other DMUs involved in the analysis. 

In the traditional DEA, the supply chain is treated as a black 

box where the initial inputs from the first stage and the final 

outputs from the last stage only are considered. That is, all the 

intermediate stages are neglected which makes the efficiency 

evaluation not accurate and the results may not make sense. 

Therefore, the evaluation in the form of a network (i.e. 

evaluate the DMUs in multi-stages not evaluate all the 

processes as one stage, by considering only the initial inputs 

and final outputs) is considered a good solution for solving this 

problem. 

A two-stage DEA model was developed to measure the 

internal efficiency of any sub-systems [4]. The traditional 

DEA model was modified to can measure the efficiency of the 

series relationship of the two sub-processes within the whole 

process. In Two-stage DEA models, the first stage consumes 

some inputs and produces some outputs. The outputs of the 

Ingénierie des Systèmes d’Information 
Vol. 27, No. 2, April, 2022, pp. 275-283 

Journal homepage: http://iieta.org/journals/isi 

275

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270211&domain=pdf


 

first stage are used as the inputs of the second stage. These are 

called the intermediate variables.  

The anther limitation in applying traditional DEA to 

measure the efficiency of a supply chain is uncertainty. In the 

traditional DEA, all variables are required to be deterministic, 

and this is not the case in most real-life problems. 

Unfortunately, the most of observed data are vague, imprecise, 

and incomplete. Usually, data is vague like the production 

amount. Most of the time there is no exact amount of products 

produced, but it depends on estimations. In addition, data may 

be imprecise like time, cost of production, and cost of 

transportation. That makes the efficiency evaluation process 

results inaccurate and does not represent reality. After 

stochastic DEA and fuzzy DEA. Rough DEA is a new tool 

used to deal with uncertainty. So in our study, To overcome 

this problem. we use Rough DEA to can treat the rough 

uncertain environment in the supply chain. 

In this paper, we integrate two-stage DEA and rough set 

theory to produce a two-stage RDEA model that overcomes the 

most two popular problems faced by decision-makers in the 

efficiency evaluation of any system. That is the Uncertainty and 

vague data, and the multi-stage systems with dependent 

relations like supply chains. In the previous studies, the two-

stage DEA and rough DEA are used separately. This paper 

aims to develop a model that can open the black box and 

evaluate the complex systems (e.g. supply chain) with internal 

relations between its stages. As well as, can be treated with 

vague, uncertain, imprecise data for inputs and outputs values. 

In the two-stage RDEA, we use the α-optimistic and α-

pessimistic method which transforms rough variables into a 

deterministic form which is necessary for the DEA method. 

After that, we use Wang and chin [5] method to transform two-

stage into one stage to evaluate the efficiency of the whole 

system and all its subsystem comprehensively. Our proposed 

model will apply to a three-level supply chain of a cement 

company to show its ability to treat with multi-stage supply 

chain with rough inputs and outputs variables.  

The rest of the paper is represented as follows: section 2. 

shows a background about two-stage DEA and rough DEA. In 

section 3, we introduce the proposed model (i.e., Two-stage 

RDEA) in detail and show how merging Two-stage DEA and 

rough set theory to produce our proposed model. In section 4, 

we apply our proposed model on a three-level supply chain 

example to evaluate the efficiency of the whole supply chain 

and its two stages. Finally, section 5 concludes the work and 

discusses future works. 

 

 

2. BACKGROUND RESEARCH 

 

2.1 Rough data envelopment analysis (RDEA) 

 

As mentioned before the inputs and outputs values in the 

traditional measuring efficiency methods like DEA are usually 

required exact values. Although, the supply chains usually 

have uncertain inputs and outputs. The most of time, the data 

observed are ambiguous, not precise, or taken at a specific 

point in time, which considers an inaccurate representation of 

the distribution of all the data.  

The rough set theory is a new mathematical tool that was 

introduced by Pawlak [6]. After stochastic theory and fuzzy set 

theory [7]. While Liu [8] proposed rough variables for dealing 

with vague, imprecise, and uncertain data. As a general 

assumption, any object is described by information and in real 

life, this information may not be enough to describe it exactly 

so it can be approximated by sets. The lower and upper sets are 

used to define the rough variables (X̱,X̅). A rough variable ξ is 

represented by four parameters ([a,b],[c,d]) where c≤a<b≤d.In 

this study, we use the α-optimistic and α-pessimistic method to 

convert the rough variables to deterministic variables. Suppose 

there are 𝑛 DMUs (supply chains) each DMU has 𝑥 inputs and 

𝑦 outputs. The CCR DEA is represented by: 

 

𝑍0 = 𝑀𝑎𝑥∑𝑦𝑟0

𝑠

𝑟=1

𝑢𝑟 

s. t.∑𝑥𝑖0

𝑚

𝑖=1

𝑣𝑖 = 1 

∑𝑦𝑟𝑗

𝑠

𝑟=1

𝑢𝑟 −∑𝑥𝑖𝑗

𝑚

𝑖=1

𝑣𝑖 ≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

𝑢𝑟 , 𝑣𝑖 ≥ 0 

(1) 

 

where, i=1, 2, 3, …, m; r=1, 2, 3, …, s. 

The DEA with rough inputs values (x̂) and rough outputs 

values (𝑦 ) transform Eq. (1) to: 

 

𝑍0 = 𝑀𝑎𝑥∑𝑦 
𝑟0

𝑠

𝑟=1

𝑢𝑟 

s. t.∑𝑥 𝑖0

𝑚

𝑖=1

= 1 

∑𝑦 
𝑟𝑗

𝑠

𝑟=1

𝑢𝑟 −∑𝑥 𝑖𝑗

𝑚

𝑖=1

𝑣𝑖 ≤ 0    (𝑗 = 1,2,3,… , 𝑛) 

𝑣𝑖 , 𝑢𝑟 ≥ 0 

(2) 

 

where, i=1, 2, 3, …, m; r=1, 2, 3, …, s. 

A rough variable ξ has an α-optimistic value and α-

pessimistic value, upper bound and lower bound, respectively. 

They are donated as: 

• The α-optimistic value is: 

 
𝜉𝑠𝑢𝑝 (α)

=

{
  
 

  
 (1 − 2𝛼)𝑑 + 2𝛼𝑐, 𝛼 ≤ (

𝑑 − 𝑏

[2(𝑑 − 𝑐)]
)

2(1 − 𝛼)𝑑 + (2𝛼 − 1)𝑐, 𝛼 ≥ (
2𝑑 − 𝑎 − 𝑐

[2(𝑑 − 𝑐])
)

𝑑(𝑏 − 𝑎) + 𝑏(𝑑 − 𝑐) − 2𝛼(𝑏 − 𝑎)(𝑑 − 𝑐)

(𝑏 − 𝑎) + (𝑑 − 𝑐)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 (3) 

 

• The α-pessimistic value is: 

 
𝜉𝑖𝑛𝑓(α)

=

{
  
 

  
 (1 − 2𝛼)𝑐 + 2𝛼𝑑, 𝛼 ≤ (

𝑎 − 𝑐

[2(𝑑 − 𝑐)]
)

2(1 − 𝛼)𝑐 + (2𝛼 − 1)𝑑, 𝛼 ≥ (
𝑏 + 𝑑 − 2𝑐

[2(𝑑 − 𝑐])
)

𝑐(𝑏 − 𝑎) + 𝑎(𝑑 − 𝑐) + 2𝛼(𝑏 − 𝑎)(𝑑 − 𝑐)

(𝑏 − 𝑎) + (𝑑 − 𝑐)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

For a rough variable ξ: 

• When trust level 0.5˂𝛼 ≤1, then ξinf(α)≥ ξsup(α) and 

DMU will efficient only if (𝜃*)inf=1. 

• When trust level 0˂𝛼 ≤0.5, then ξinf(α)˂ξsup(α) and 

DMU will efficient only if (𝜃*)sup=1. 

 

2.2 Two-stage data envelopment analysis (Two-stage DEA) 

 

The main limitation of the traditional DEA model is the 

“black box” theory. It reflects inaccurate efficiency indicators 

about the supply chains which consist of complex structures. 
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Because it treats the production process like a black box, in 

which the input variables are transformed within this box to 

give the output variables. The traditional DEA model has only 

input and output variables and based on the relationship 

between these variables, the DEA indicates which DMUs are 

efficient. 

Therefore, recently many studies [9-11] have focused on the 

Two-stage DEA model, which allows to open the box and go 

internally. And divide the production process into 

subprocesses. each subprocess has its inputs and outputs. the 

efficiency evaluation in Two-stage DEA contains two steps. 

The first step, evaluate each subprocess separately. The second 

step, evaluate the whole process. Wherefore, Two-stage DEA 

gets a comprehensive efficiency and helps the decision-

makers to know which subprocess is inefficient and improves 

the efficiency of the whole system. 

In real-life, subsystems are connected as a network. There 

are two types of network structure. Type I (basic network) [9] 

consider the outputs from the first stage will be the only inputs 

for the second stage without external inputs entering in the 

intermediate stage as shown in Figure 1. Basic two-stage DEA 

is the simplest form for two-stage DEA. Type II (general 

network) [4] allowed external inputs to enter the second stage 

in addition to the outputs from the first stage Figure 2. 

In basic two-stage DEA (Figure 1) we can notice that for 

every DMUj there are a number of inputs xij entered to stage 1 

and produce a number of outputs zdj. The outputs zdj from stage 

1 enter to stage 2 as inputs this called intermediate values, then 

the intermediate values produce final outputs ydj from stage 2. 

But in general, in two-stage DEA, (Figure 2) there is an 

additional external input hmj (e.g.,” Technology level” in the 

practical example below) enter to stage 2. 

Seiford et al. [12] used a two-stage DEA model for 55 

commercial banks that contain the profitability and 

marketability as two separated stages and tried to measure the 

efficiency for each stage. In this model there is no serial 

relation between the two stages, the sub-processes are 

complete independently. 

Kao and Hwang [9] measured the efficiency of 24 non-life 

insurance companies in Taiwan by using constant return to 

scale (CRS) two-stage DEA, they modified the model [12] to 

contain a relation between the subprocesses by making the 

output from stage 1 is input for stage 2.  

In (2010) Wang and Chin [5] developed a model by adding 

relative weights for the two stages of processes to can treated 

with a CRS and a variable return to scale (VRS) models. In 

this paper, we use Wang and Chin model. The model of Wang 

and Chin assigned two weights λ1≥0 and λ2≥0, where  λ1+λ2=1 

to Kao and Hwang’s model to be general and can use to 

calculate the efficiency of CRS and VRS models. Therefore, 

to get the efficiency for every DMUJ, in stage 1 and stage 2 

respectively will be: 

 
𝜃𝑗
1∗ = ∑ 𝜂𝑑

1𝐷
𝑑=1 𝑧𝑑𝑗 / ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 , 𝜃𝑗

2∗ = ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑗/∑ 𝜂𝑑

2𝑧𝑑𝑗
𝐷
𝑑=1  

 

where, 

• xij: refer to i input for j DMU in stage1; 

• zdj: refer to d output in stage1 and d input in stage2 for 

j DMU; 

• yrj: refer to r output for j DMU in stage2; 

• vi: refer to a coefficient of i input in stage1;  

• 𝜂𝑑
1 : refer to a coefficient of d output in stage1;  

• 𝜂𝑑
2: refer to a coefficient of d input coefficient in the 

stage2;  

• Assume 𝜂𝑑
1 = 𝜂𝑑

2 = 𝜂𝑑; 

• ur: refer to a coefficient of r output in stage 2. 

The total efficiency for the two-stage DEA model is defined 

by: 

 
𝜃0
∗ = 𝜆1𝜃0

1∗ + 𝜆2𝜃0
2∗ 

𝜃0
∗ = 𝑀𝑎𝑥𝜆1∑𝜂𝑑

𝐷

𝑑=1

𝑧𝑑0 + 𝜆2∑𝑢𝑟𝑦𝑟0

𝑠

𝑟=1

 

s. t 𝜆1∑𝑣𝑖

𝑚

𝑖=1

𝑥𝑖0 + 𝜆2∑𝜂𝑑𝑧𝑑0

𝐷

𝑑=1

= 1 

∑𝜂𝑑

𝐷

𝑑=1

𝑧𝑑𝑗 −∑𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

∑𝑢𝑟

𝑠

𝑟=1

𝑦𝑟𝑗 −∑𝜂𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

𝑣𝑖 , 𝜂𝑑 , 𝑢𝑟 ≥ 0 

(5) 

 

where, i=1, 2, 3, …, m, d=1, 2, 3, …, D, r=1, 2, 3, …, s. 

 

 
 

Figure 1. A basic structure for the two-stage DEA 

 

 
 

Figure 2. A general structure for two-stage DEA 

 

 

3. THE PROPOSED MODEL: A TWO-STAGE RDEA 

TO EVALUATE MULTI-LEVEL SUPPLY CHAIN 

 

3.1 The combination of two-stage DEA and rough set 

theory 

 

In the section, we show how can merge two-stage DEA and 

rough set theory. The combined model can use to solve the 

problem of black-box efficiency evaluation and uncertain data 

in inputs and outputs. By evaluating the whole system and its 

subsystems with considering vague and incomplete data. 

A two-stage RDEA consists of merging Eq. (2) and Eq. (5) 

to produce:  

 

𝜃0
∗ = 𝑀𝑎𝑥𝜆1∑𝜂𝑑

𝐷

𝑑=1

ẑ𝑑0 + 𝜆2∑𝑢𝑟ŷ𝑟0

𝑠

𝑟=1

 

s. t. 

 𝜆1∑𝑣𝑖

𝑚

𝑖=1

𝑥 𝑖0 + 𝜆2∑𝜂𝑑ẑ𝑑0

𝐷

𝑑=1

= 1 

(6) 
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∑𝜂𝑑

𝐷

𝑑=1

ẑ𝑑𝑗 −∑𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

∑𝑢𝑟

𝑠

𝑟=1

ŷ𝑟𝑗 −∑𝜂𝑑ẑ𝑑𝑗

𝐷

𝑑=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

𝑣𝑖 , 𝜂𝑑 , 𝑢𝑟 ≥ 0 
 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s. 

We use the 𝛼 -optimistic and 𝛼 -pessimistic method to 

convert the rough variables 𝑋̂ 𝑗, 𝑌̂ 𝑗, Ẑ𝑗 to deterministic 

variables, this is done through two steps. 

In the first step, where 0.5˂𝛼≤1, then 𝜃0
inf (𝛼)

≥𝜃0
sup (𝛼)

. 

Therefore, Eq. (6) will convert to an interval programming 

model: 

 

𝜃0
∗ = 𝑀𝑎𝑥𝜆1∑𝜂𝑑 

𝐷

𝑑=1

[𝑍𝑑0
sup (𝛼)

, 𝑍𝑑0
inf (𝛼)

]

+ 𝜆2∑𝑢𝑟[𝑌̂𝑟0
sup (𝛼)

, 𝑌̂𝑟0
inf (𝛼)

]

𝑠

𝑟=1

 

s. t. 𝜆1∑𝑣𝑖 [𝑋̂𝑖0
sup (𝛼)

, 𝑋̂𝑖0
inf (𝛼)

]

𝑚

𝑖=1

+ 𝜆2∑𝜂𝑑  [𝑍𝑑0
sup (𝛼)

, 𝑍𝑑0
inf (𝛼)

]

𝐷

𝑑=1

= 1 

∑𝜂𝑑

𝐷

𝑑=1

[𝑍𝑑𝑗
sup (𝛼)

, 𝑍𝑑𝑗
inf (𝛼)

] −∑𝑣𝑖[𝑋̂𝑖𝑗
sup(𝛼)

, 𝑋̂𝑖𝑗
inf(𝛼)]

𝑚

𝑖=1

≤ 0 

∑𝑢𝑟

𝑠

𝑟=1

[𝑌̂𝑟𝑗
sup(𝛼)

, 𝑌̂𝑟𝑗
inf(𝛼)] −∑𝜂𝑑[𝑍𝑑𝑗

sup(𝛼)
, 𝑍𝑑𝑗

inf(𝛼)]

𝐷

𝑑=1

≤ 0 

𝑣𝑖 , 𝜂𝑑 , 𝑢𝑟 ≥ 0 

(7) 

 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s; j=1, 

2, 3, …, n. 

The second step, convert the interval programming Eq. (7) 

to a deterministic linear programming model. Consequently, 

Eq. (7) divide into two deterministic linear programming to get 

the lower bound (𝜃0
sup (𝛼)

) and upper bound (𝜃0
inf(𝛼)

). 
To get the minimum linear programming of Eq. (7) 

(𝜃
0
sup (𝛼) ), under trust level 𝛼.  Let DMU0 be the evaluated 

DMU and will compare it with the rest of the DMUs. In the 

worst case, the inputs for DMU0 have maximum values and 

the outputs have the minimum values compared with the other 

DMUs. Consequently, the lower bound 𝜃0
sup (𝛼)

 donated as: 

 

𝜃0
sup(𝛼)

= 𝑀𝑎𝑥𝜆1∑𝜂𝑑 

𝐷

𝑑=1

𝑍𝑑0
sup (𝛼)

+ 𝜆2∑𝑢𝑟𝑌̂𝑟0
sup (𝛼)

𝑠

𝑟=1

 

s. t. 𝜆1∑𝑣𝑖 𝑋̂𝑖0
inf (𝛼)

𝑚

𝑖=1

+ 𝜆2∑𝜂𝑑  𝑍𝑑0
inf (𝛼)

𝐷

𝑑=1

= 1 

∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑0
sup (𝛼)

−∑𝑣𝑖𝑋̂𝑖0
inf(𝛼)

𝑚

𝑖=1

≤ 0 (𝑗 = 0) 

∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑𝑗
inf (𝛼)

−∑𝑣𝑖𝑋̂𝑖𝑗
sup(𝛼)

𝑚

𝑖=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

∑ 𝑢𝑟

𝑠

𝑟=𝑟𝑓1

𝑌̂𝑟0
sup(𝛼)

−∑𝜂𝑑 𝑍𝑑0
inf(𝛼)

𝐷

𝑑=1

≤ 0 (𝑗 = 0) 

∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟𝑗
inf (𝛼)

−∑𝜂𝑑 𝑍𝑑𝑗
sup(𝛼)

𝐷

𝑑=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

𝑣𝑖 , 𝜂𝑑 , 𝑢𝑟 ≥ 0 

(8) 

 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s. 

Furthermore, to get the maximum linear programming of Eq. 

(7) (𝜃0
inf (𝛼)

), under trust level 𝛼. Let DMU0 be the evaluated 

DMU and will compare it with the rest of the DMUs. In the 

best case, the inputs for DMU0 have minimum values and the 

outputs have the maximum values compared with the other 

DMUs. Consequently, the upper bound 𝜃0
inf (𝛼)

donated as: 

 

𝜃0
inf (𝛼)

= 𝑀𝑎𝑥𝜆1∑𝜂𝑑 

𝐷

𝑑=1

𝑍𝑑0
inf (𝛼)

+ 𝜆2∑𝑢𝑟𝑌̂𝑟0
inf (𝛼)

𝑠

𝑟=1

 

s. t. 𝜆1∑𝑣𝑖 𝑋̂𝑖0
sup (𝛼)

𝑚

𝑖=1

+ 𝜆2∑𝜂𝑑  𝑍𝑑0
sup (𝛼)

𝐷

𝑑=1

= 1 

∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑0
inf (𝛼)

−∑𝑣𝑖𝑋̂𝑖0
sup(𝛼)

𝑚

𝑖=1

≤ 0 (𝑗 = 0) 

∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑𝑗
sup (𝛼)

−∑𝑣𝑖𝑋̂𝑖𝑗
inf(𝛼)

𝑚

𝑖=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟0
inf (𝛼)

−∑𝜂𝑑 𝑍𝑑0
sup (𝛼)

𝐷

𝑑=1

≤ 0 (𝑗 = 0) 

∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟𝑗
sup (𝛼)

−∑𝜂𝑑 𝑍𝑑𝑗
inf(𝛼)

𝐷

𝑑=1

≤ 0 (𝑗 = 1,2,3,… , 𝑛) 

𝑣𝑖 , 𝜂𝑑 , 𝑢𝑟 ≥ 0 

(9) 

 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s. 

From solving linear programming (8) and (9), we obtain the 

relative efficiency interval [θsup(α),θinf(α) ] for DMU0 compared 

with the n-1 DMUs. 

 

3.2 A modified two-stage RDEA in measuring the 

efficiency for three-level supply chains 

 

This study aims to apply our proposed model that can use to 

get a comprehensive efficiency for the entire supply chain 

which contains multi-level subchains. We apply our model in 

three-level supply chains that contain suppliers, manufacturers, 

and distributors as shown in Figure 3. 

 

 
 

Figure 3. Three-level supply chain 

 

In the previous section, we discuss how to measure the 

efficiency of a supply chain that contains two stages and has 

some rough variables. Here, we introduce how we generalize 

model (6) to measure the efficiency of multi-level supply 

chains comprehensively with rough variables. The modified 

model will be as: 

 

𝜃0
∗ = 𝑀𝑎𝑥𝜆1 (∑𝜂𝑑

𝐷

𝑑=1

ẑ𝑑0 +∑𝑢𝑟ŷ𝑟0

𝑠

𝑟=1

) 

+ 𝜆2 (∑𝑢𝑟ŷ𝑟0

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

�̂�𝑡0) 

s. t. 𝜆1 (∑𝑣𝑖

𝑚

𝑖=1

𝑥 𝑖0 +∑𝜂𝑑ẑ𝑑0

𝐷

𝑑=1

) + 𝜆2 (∑𝜂𝑑ẑ𝑑0

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

ŷ𝑟0)

= 1 

(∑𝜂𝑑ẑ𝑑𝑗

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

ŷ𝑟𝑗)− (∑𝜂𝑑

𝐷

𝑑=1

ẑ𝑑𝑗 +∑𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

) ≤ 0 

(∑𝑢𝑟ŷ𝑟𝑗

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑤 𝑡𝑗) − (∑𝑢𝑟

𝑠

𝑟=1

ŷ𝑟𝑗 +∑𝜂𝑑ẑ𝑑𝑗

𝐷

𝑑=1

) ≤ 0 

𝑣𝑖 , 𝜂𝑑, 𝑢𝑟 , 𝛼𝑡 ≥ 0 

(10) 
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where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s; t=1, 

2, 3, …, T. 

Model (10) will transform into an interval programming 

model: 

 

𝜃0
∗ = 𝑀𝑎𝑥𝜆1 (∑𝜂𝑑

𝐷

𝑑=1

[𝑍𝑑0
sup (𝛼)

, 𝑍𝑑0
inf (𝛼)

]

+∑𝑢𝑟[𝑌̂𝑟0
sup (𝛼)

, 𝑌̂𝑟0
inf (𝛼)

]

𝑠

𝑟=1

) 

+ 𝜆2 (∑𝑢𝑟[𝑌̂𝑑0
sup (𝛼)

, 𝑌̂𝑑0
inf (𝛼)

]

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

[𝑊𝑡0
sup (𝛼)

,𝑊𝑡0
inf (𝛼)

]) 

s. t. 𝜆1 (∑ 𝑣𝑖

𝑚

𝑖=1

[𝑋̂
𝑖0

sup (𝛼), 𝑋̂𝑖0
inf (𝛼)

] +∑ 𝜂
𝑑
[𝑍

𝑑0

sup (𝛼), 𝑍𝑑0
inf (𝛼)

]

𝐷

𝑑=1

)

+ 𝜆2 (∑ 𝜂
𝑑
[𝑍
𝑑0

sup (𝛼), 𝑍𝑑0
inf (𝛼)

]

𝐷

𝑑=1

+∑ 𝑢𝑟

𝑚

𝑟=1

[𝑌̂
𝑟0

sup (𝛼), 𝑌̂𝑟0
inf (𝛼)

]) = 1  

(∑𝜂𝑑[𝑍𝑑𝑗
sup(𝛼)

, 𝑍𝑑𝑗
inf(𝛼)]

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

[𝑌̂𝑟𝑗
sup(𝛼)

, 𝑌̂𝑟𝑗
inf(𝛼)])

− (∑𝜂𝑑

𝐷

𝑑=1

[𝑍𝑑𝑗
sup(𝛼)

, 𝑍𝑑𝑗
inf(𝛼)]

+∑𝑣𝑖[𝑋̂𝑖𝑗
sup(𝛼)

, 𝑋̂𝑖𝑗
inf(𝛼)]

𝑚

𝑖=1

) ≤ 0 

(∑𝑢𝑟[𝑌̂𝑟𝑗
sup (𝛼)

, 𝑌̂𝑟𝑗
inf (𝛼)

]

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

[𝑊𝑡𝑗
sup (𝛼)

,𝑊𝑡𝑗
inf (𝛼)

])

− (∑𝑢𝑟

𝑠

𝑟=1

[𝑌̂𝑟𝑗
sup (𝛼)

, 𝑌̂𝑟𝑗
inf (𝛼)

]

+∑𝜂𝑑[𝑍𝑑𝑗
sup (𝛼)

, 𝑍𝑑𝑗
inf (𝛼)

]

𝐷

𝑑=1

) ≤ 0 

𝑣𝑖 , 𝜂𝑑, 𝑢𝑟 , 𝛼𝑡 ≥ 0 

(11) 

 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s; t=1, 

2, 3, …, T; j=1, 2, 3, …, n. 

Model (11) will convert into minimum linear programing 

and maximum linear programming. 

The 𝜃0
sup (𝛼)∗

 donated as: 

 

𝜃0
sup (𝛼)∗

= 𝑀𝑎𝑥𝜆1 (∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑0
sup (𝛼)

+∑𝑢𝑟𝑌̂𝑟0
sup (𝛼)

𝑠

𝑟=1

) 

+ 𝜆2 (∑𝑢𝑟𝑌̂𝑟0
sup (𝛼)

,

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑊𝑡0
sup (𝛼)

 ) 

s. t. 𝜆1 (∑𝑣𝑖

𝑚

𝑖=1

𝑋̂𝑖0
inf (𝛼)

+∑𝜂𝑑𝑍𝑑0
inf (𝛼)

𝐷

𝑑=1

)

+ 𝜆2 (∑𝜂𝑑 𝑍𝑑0
inf (𝛼)

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

𝑌̂𝑟0
inf (𝛼)

) = 1 

(∑𝜂𝑑𝑍𝑑0
sup(𝛼)

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

𝑌̂𝑟0
sup(𝛼)

)

− (∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑0
inf(𝛼) +∑𝑣𝑖𝑋̂𝑖0

inf(𝛼)

𝑚

𝑖=1

) ≤ 0 (𝑗

= 0) 

(∑𝜂𝑑 𝑍𝑑𝑗
inf(𝛼)

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

𝑌̂𝑟𝑗
inf(𝛼))

− (∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑𝑗
sup(𝛼)

+∑𝑣𝑖𝑋̂𝑖𝑗
sup(𝛼)

𝑚

𝑖=1

) ≤ 0 

(12) 

(∑𝑢𝑟𝑌̂𝑟0
sup (𝛼)

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑊𝑡0
sup (𝛼)

)

− (∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟0
inf(𝛼) +∑𝜂𝑑𝑍𝑑0

inf(𝛼)

𝐷

𝑑=1

) ≤ 0 (𝑗

= 0) 

(∑𝑢𝑟𝑌̂𝑟𝑗
inf (𝛼)

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑊𝑡𝑗
inf (𝛼)

)

− (∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟𝑗
sup (𝛼)

+∑𝜂𝑑𝑍𝑑𝑗
sup (𝛼)

𝐷

𝑑=1

) ≤ 0 

𝑣𝑖 , 𝜂𝑑, 𝑢𝑟 , 𝛼𝑡 ≥ 0 
 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s; t=1, 

2, 3, …, T; j=1, 2, 3, …, n. 

The 𝜃0
inf (𝛼)∗

 donated as: 

 

𝜃0
inf (𝛼)∗

= 𝑀𝑎𝑥𝜆1 (∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑0
inf(𝛼)

+∑𝑢𝑟𝑌̂𝑟0
inf(𝛼)

𝑠

𝑟=1

) 

+ 𝜆2 (∑𝑢𝑟𝑌̂𝑟0
inf (𝛼)

,

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑊𝑡0
inf(𝛼)

 ) 

s. t. 𝜆1 (∑𝑣𝑖

𝑚

𝑖=1

𝑋̂𝑖0
sup (𝛼)

+∑𝜂𝑑𝑍𝑑0
sup (𝛼)

𝐷

𝑑=1

)

+ 𝜆2 (∑𝜂𝑑  𝑍𝑑0
sup (𝛼)

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

𝑌̂𝑟0
sup (𝛼)

) = 1 

(∑ 𝜂𝑑𝑍𝑑0
inf(𝛼)𝐷

𝑑=1 +∑ 𝑢𝑟
𝑚
𝑟=1 𝑌̂𝑟0

inf(𝛼)) − (∑ 𝜂𝑑
𝐷
𝑑=1 𝑍𝑑0

sup(𝛼)
+

∑ 𝑣𝑖𝑋̂𝑖0
sup(𝛼)𝑚

𝑖=1 ) ≤ 0(𝑗 = 0) 

(∑𝜂𝑑 𝑍𝑑𝑗
sup(𝛼)

𝐷

𝑑=1

+∑𝑢𝑟

𝑚

𝑟=1

𝑌̂𝑟𝑗
sup(𝛼)

)

− (∑𝜂𝑑

𝐷

𝑑=1

𝑍𝑑𝑗
inf(𝛼) +∑𝑣𝑖𝑋̂𝑖𝑗

inf(𝛼)

𝑚

𝑖=1

) ≤ 0  

(∑ 𝑢𝑟𝑌̂𝑡0
inf(𝛼)𝑠

𝑟=1 + ∑ 𝛼𝑡
𝑇
𝑡=1 𝑊𝑡0

inf(𝛼)) − (∑ 𝑢𝑟
𝑠
𝑟=1 𝑌̂𝑟0

sup(𝛼)
+

∑ 𝜂𝑑𝑍𝑑0
sup(𝛼)𝐷

𝑑=1 ) ≤ 0(𝑗 = 0) 

(∑𝑢𝑟𝑌̂𝑟𝑗
sup (𝛼)

𝑠

𝑟=1

+∑𝛼𝑡

𝑇

𝑡=1

𝑊𝑡𝑗
sup(𝛼)

)

− (∑𝑢𝑟

𝑠

𝑟=1

𝑌̂𝑟𝑗
inf (𝛼)

+∑𝜂𝑑𝑍𝑑𝑗
inf (𝛼)

𝐷

𝑑=1

) ≤ 0 

𝑣𝑖 , 𝜂𝑑, 𝑢𝑟 , 𝛼𝑡 ≥ 0 

(13) 

 

where, i=1, 2, 3, …, m; d=1, 2, 3, …, D; r=1, 2, 3, …, s; t=1, 

2, 3, …, T; j=1, 2, 3, …, n. 

The comprehensive evaluation process for the three-level 

supply chain in Figure 3 will be summarized in three steps: 

• First step: split the three-level supply chain into two 

subchains (suppliers-manufacturers) and 

(manufacturers- distributors). In this step, we evaluate 

the efficiency of each subchain separately. Figure 4 

and Figure 5 are the transformations for the suppliers-

manufacturers subchain and manufacturers-

distributors subchain, respectively. Then evaluate each 

subchain independently by using Eq. (8) and (9), 

respectively. 

• Second step: transform the whole three-level supply 

chain into one stage Figure 6. Then evaluate the whole 

supply chain by using Eq. (12) and (13). 

Based on the results from step one (i.e., efficiency 

evaluation for each subchain) and step two (i.e., 

efficiency evaluation for the whole supply chain), we 

can get a comprehensive efficiency evaluation for 

each DMUs and determine which DMU is the best. 

• Third step: is to rank all DMUs (supply chains) 

according to the MRA method will discuss in  the next 

section. 
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max(ri)=
𝑚𝑎𝑥
𝑗 ≠ 1{𝜃𝑗

inf (𝛼)
} − 𝜃𝑖

sup (𝛼)
 

 

 
 

Figure 4. Two-stage supplier and manufacturer supply chain 

converted into the one-stage supply chain 

 

 
 

Figure 5. Two-stage manufacturer and distributors supply 

chain converted into the one-stage supply chain 

 
 

Figure 6. Three-level suppliers, manufacturers, and 

distributors supply chain converted into the one-stage supply 

chain 

 

3.3 The ranking method for efficiency DMUs 

 

After we get the efficiency interval for all DMUs, we should 

rank the efficiency intervals for DMUs. Because in case 

having more than one DMU is efficient, we can determine 

which DMU is the most efficient, and order the rest efficient 

DMUs based on the difference between its upper and lower 

bound intervals. In this study, we use the MRA approach 

introduced by Wang et al. [13] to rank the efficient DMUs 

intervals. In the beginning, we should notice that the three-

level supply chain will be efficient only if: 

• The upper limit (𝜃0
inf (𝛼)∗

) for all sub-chains=1. 

• The upper limit (𝜃0
inf (𝛼)∗

) for the whole supply chain 

=1. 

The MRA approach is introduced as follows: 

Compute the maximum loss of efficiency for each efficient 

DMUs and choose the maximum loss of efficiency (regret). 

 

• Compare the regret function for all efficiency intervals 

and order the DMUs from the minimum regret (no loss 

of efficiency) to the maximum regret.  

 

{𝑚𝑎𝑥(𝑟𝑖)}𝑖
𝑚𝑖𝑛 = {𝑚𝑎𝑥 [

𝑚𝑎𝑥
𝑗 ≠ 1 (𝛼𝑗

𝑖𝑛𝑓(𝛼)
) − 𝜃𝑖

𝑠𝑢𝑝(𝛼)
, 0]}

𝑖

𝑚𝑖𝑛

 

 

 

4. PRACTICAL EXAMPLE 

 

We apply a two-stage RDEA which is discussed in section 

3 on a three-level supply chain for seven cement companies. 

The three stages of the supply chain are suppliers, 

manufacturers, and distributors Figure 7. Figures 8-10 show 

how the whole supply chain and its sub-chains are converted 

to one stage. Eq. (8) and (9) are used two times to get the 

efficiency intervals for rough data. First time for the suppliers-

manufacturers and the second time for manufacturers- 

distributors stage. Thereafter, Eq. (12) and (13) are used for a 

whole supply chain (suppliers-manufacturers-distributors) to 

compute the efficiency intervals for 7 DMUs. Table 1 shows 

the inputs and the outputs for suppliers, manufacturers, and 

distributors (hint: Cooperation Experience is as a qualitative 

variable, we measure it by years of experience). 

Tables 2 and 3 show the values of all inputs and outputs for 

the seven DMUs. 

We discussed before that, in real life the supply chain 

usually contains uncertain and vague data. In our example, the 

rough variables are cost, timely delivery, and order amount. 

To apply two-stage RDEA in a three-level supply chain 

containing rough variables, we assume that: 

• Cost, timely delivery, and order amount timely are 

assumed as rough variables. 

• The rest of the variables are assumed as deterministic 

variables. 

• Our model is the CRS model. 

There is external input in the manufacturers' stage, so the 

structure for the two-stage RDEA is a general network. 

 

 
 

Figure 7. Three-level supply chain 
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Table 1. The inputs and outputs for a Three-level supply chain 

 
Factors Name of index Unit of index 

suppliers’ inputs 

Capital Million dollars 

Cooperation experience Years 

Cost Hundred thousand dollars 

suppliers’ outputs (manufacturers’ inputs) Timely delivery % 

manufacturers’ inputs (external input) Technology level % 

manufacturers’ outputs/distributors’ inputs 
Amount of the order 1/day 

Inventory 1/day 

distributors’ outputs Profit Million dollars 

 

Table 2. Input variables 

 
DMU Capital Cooperation experience Cost Timely delivery Technology level 

1 14 3 (8,9), (6,12) (82,85), (80,92) 86 

2 12 2 (13,14), (11,17) (55,58), (53,65) 75 

3 10 3 (31,32), (28,35) (78,81), (76,88) 73 

4 1.6 2 (14,15), (12,18) (67,70), (65,77) 83 

5 10 2 (24,5), (22,28) (61,64), (59,71) 90 

6 7 3 (51,52), (49,55) (70,73), (68,80) 84 

7 3 3 (36,37), (34,40) (74,77), (72,84) 90 

 

Table 3. Output variables 

 
DMU Timely delivery Technology level Inventory Order amount profit 

1 (82,85), (80,92) 86 53 (65,67), (60,72) 20 

2 (55,58), (53,65) 75 74 (72,75), (70,83) 18 

3 (78,81), (76,88) 73 82 (83,88), (80,95) 16 

4 (67,70), (65,77) 83 62 (58,67), (55,70) 5 

5 (61,64), (59,71) 90 79 (75,80), (73,85) 17 

6 (70,73), (68,80) 84 90 (95,98), (90,100) 14 

7 (74,77), (72,84) 90 55 (60,65), (58,70) 10 

 

We solved the numerical example under trust level α=0.9 

and λ1=λ2=0.5 in two ways: the traditional DEA model and our 

proposed model (two-stage RDEA). Table 4 represents the 

results from applying the traditional DEA (CCR model) in a 

multi-stage supply chain containing rough variables. Table 5 

represents the efficiencies intervals for all DMUs obtained 

from applying the two-stage RDEA model. We visualize the 

upper bound (θinf(α)) for all supply chains to be easy to compare 

between the supply chains and their Figure 11. 
 

 
 

Figure 8. Suppliers-manufacturers two stages converted to 

one-stage 
 

 
Figure 9. Manufacturers-distributors two-stage converted to 

one stage 

 
 

Figure 10. Suppliers-manufacturers- distributors three stages 

converted to one stage 
 

From the results from Tables 4 and 5, we can notice that: 

• In traditional DEA, DMU2 is the only relatively 

efficient DMU compared with the rest of the DMUs. 

• However, in Two-stage RDEA DMU2 is inefficient. 

Because the upper bound for the whole supply chain 

(i.e., suppliers-manufacturers- distributors) is less than 

1 (i.e., inefficient). Although the suppliers-

manufacturers subchain and manufacturers-

distributors subchain are both efficient. 

• The supplier-manufacturer-distributors three-level 

supply chain will be efficient only if the supplier-

manufacturer stage and the manufacturer-distributors 

stage are both efficient (θinf(α)=1) This is shown in 

DMU3. 

• The whole supply chain will be inefficient. If any stage 

in the supply chain is inefficient. For example, DMU5 

and DMU6 are efficient in the supplier-manufactures 

stage only so the all-supply chain (suppliers-

manufacturers-distributors) will be inefficient.  
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Now, we use the MRA method to rank the efficient DMUs. 

But in this example when using two-stage RDEA we can see 

that DMU3 is the only one that is efficient relative to the rest 

of the DMUs. Because it's upper bound in the suppliers-

manufacturers subchain, manufacturers-distributors subchain, 

and the whole suppliers-manufacturers-distributors supply 

chain equal 1. so, there is no need to compute the regret 

function. 

By comparing the results from traditional DEA and our 

model, we can notice that the traditional DEA rank the DMUs 

as DMU2>DMU3>DMU5>DMU7>DMU6>DMU4>DMU1, 

and DMU2 is the efficient DMU relative to the rest of the 

DMUs. In the reality, DMU3 is the most efficient DMU 

compared to the seven DMUs. 
 

Table 4. The results from traditional DEA 

 
DMU Supplier-Manufacturers stage Relatively efficient 

1 0.6023 No 

2 1 Yes 

3 0.9865 No 

4 0.7621 No 

5 0.9530 No 

6 0.8453 No 

7 0.8471 No 

 

Table 5. The result of applying modified two-stage RDEA 

 

DMU 
Supplier-Manufacturer 

stage 

Manufacturer-distributors 

stage 

Whole supply chain (Supplier-Manufacturer-

distributors) 

Relatively 

efficient 

1 [0.7271,0.8639] [0.7473,0.8406] [0.7084,0.8469] No 

2 [0.8898.1] [0.7884,1] [0.8630,0.9879] No 

3 [1.1] [0.8521,1] [0.7592,1] Yes 

4 [0.7992,0.9290] [0.4947,0.6137] [0.6213,0.7519] No 

5 [0.8483,1] [0.7300,0.8989] [0.7961,0.8109] No 

6 [0.9538,1] [0.7068,0.7486] [0.67801,0.7539] No 

7 [0.5999,0.7935] [0.5332,0.6922] [0.5597,0.7320] No 

 

 
 

Figure 11. The upper bound θinf(α) under trust level α=0.9 

 

 

5. CONCLUSIONS 

 

In supply chains, the collected data usually be uncertain and 

insufficient. As well, most of the supply chains are structured 

as a network, with dependent relations between its stages. In 

this network, the outputs from any stage may be the inputs to 

another stage. The traditional DEA can’t treat the nature of the 

supply chain, because it requires deterministic data. In 

addition, DEA treats the supply chain as a black box with 

considering only the initial inputs and final outputs only and 

ignoring all internal levels in it. Therefore, we developed a 

modified two-stage RDEA to deal with uncertain multi-stages 

supply chains. 

The proposed model enables to deal with vague and 

imprecise data (rough variables). by using α-optimistic and α- 

pessimistic method to convert this rough data to deterministic 

data, which is required in DEA. In addition, the Two-stage 

RDEA opens the black box and evaluates the efficiency for 

every stage in the supply chain not only the whole supply chain. 

The aim of our study is allowing to evaluate multi-level 

supply chains and their all sub-chains comprehensively, with 

rough inputs and outputs. In our model, we used the α-

optimistic and α-pessimistic method to transform the rough 

variables into deterministic values to get the efficiency 

intervals [𝜃sup (𝛼), 𝜃inf (𝛼)] for all DMUs.After that, ranking 

the efficient DMUs according to the MRA model. 

We verified our model by applying it to a three-level supply 

chain, From the results, we can show that the modified two-

stage RDEA can get a comprehensive efficiency not only for 

supply chains containing two stages but also for multi-level 

supply chains. We indicate that the whole supply chain will be 

efficient if and only if the whole supply chain and all its parts 

are efficient (𝜃inf(𝛼) = 1). 
As future work, the current work can depend on the VRS 

model instead of the CRS model. 
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