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In this article, the results from three-dimensional numerical simulation of compressible 

turbulent spatial mixing layers for the vapor flow in a solar producer at Convective Mach 

number of 0.64, using the Large Eddy Simulation (LES) are presented. The governing 

equations and LES simulation method are combined to form of a three dimensional computer 

program on the base of finite volume. The purpose of this research is realizing of LES 

technique in the compressible turbulent spatial mixing layer in supersonic flows. The dynamic 

eddy viscosity model is applied for modeling of sub-grid scales. Compressible LES not only 

require the modeling of the sub-grid terms in the momentum equation, but also the modeling 

of the sub-grid terms in the energy equation which play the main role at supersonic flows. The 

present numerical simulation results are compared with experimental and DNS and other LES 

results in the same convective Mach number. In addition, the rate of total kinetic energy 

dissipation into heat in sub-grid scales is investigated. The present simulation results are 

predicted that by increasing convective Mach number, the mixing layers growth rate 

decreases. Finally, the vorticity during the mixing and shocks occur in the flow field is 

investigated and discussed in the more details. 
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1. INTRODUCTION

Large Eddy simulation (LES) is an outstanding technique in 

numerical simulation of turbulent flows. In LES, at first the 

Navier-Stokes equations should be filtered, in this way it is 

possible to separate the large and sub-grid scale eddies from 

each other. After filtering, in addition to filtered terms, the 

unknown terms are added to the equations. Filtered terms, 

indicating that the filtered Navier-Stokes equations have been 

solved using a numerical algorithm and the results of this 

solution are the filtered variables which show large scales flow 

fields. The unknown terms are sub-grid scales terms that 

should be modeled. The modeling of sub-grid scales terms 

called sub-grid scales modeling. These terms indicate the 

effect of sub-grid scales flow. The dynamic eddy viscosity 

model has been formulated by Germano et al. [1]. Based on 

this model, the amount of flow kinetic energy by eddy 

viscosity at sub-grid scales is lost to heat. In this model, the 

square of constant coefficient in Smagorinsky’s [2] base 

model has been replaced by the dynamic coefficient, 

controlling the amount of flow turbulence. This coefficient 

varies locally to determine the order of eddy viscosity in the 

flow and subsequently after a time step or several steps by 

reviewing the flow field, the new value for dynamic 

coefficient at any point in flow field is achieved again. Thus 

the value of this coefficient is continually modified. Thus, the 

correct amount of kinetic energy dissipation in to heat can be 

produced. The dynamic eddy viscosity model uses Filtering 

test that its filter width is twice that of the original filter. 

Free compressible shear layer in many industrial complex 

issues is important. One type of shear flows is compressible 

mixing layers. Mixing layers are examined within the temporal 

and spatial. Because the temporal frame to show all the 

features of the growth rate of mixing layer is incapable, 

framework of spatial mixing layers is used to illustrate 

characteristics of mixing layers. Spatial mixing layers are 

made of two parallel flow directions with different speeds. 

One of the basic parameters of the mixing layers simulation is 

convective Mach number which has been presented by 

Bognadoff [3] that represents the intrinsic compressibility 

effects in mixing layers. Doris et al. [4] has been showed the 

mixing layer growth rate at convective Mach number of 0.64, 

with LES. Numerical Simulation of spatial mixing layers, by 

Bruin [5], at Mach number of 0.2, with LES and DNS has been 

performed. Large eddy simulation of a droplet laden turbulent 

mixing layer has been studied by Jones et al. [6]. The 

experimental data of Goebel & Dutton [7] have been predicted 

that with increasing convective Mach number, compressible 

mixing layer growth rate is reduced. Numerical Simulation of 

the temporal mixing layers, by Verman [8], in different 

convective Mach numbers, has been performed with LES and 

DNS. He compared sub-grid scales models in his own 

simulation. Also, Pantano & Sarkar [9] presented numerical 

simulation results of temporal mixing layers, using DNS, at 

different convective Mach numbers. Kourta & Sauvage [10] 

simulated supersonic mixing layers with direct numerical 

simulations to study the flow structures. To study 

compressibility effects on turbulence, Freud et al. [11] 

investigated direct numerical simulations of time evolving of 

angular mixing layers.  

In this article, results from three dimensional numerical 

simulation of compressible turbulent spatial mixing layers at 

convective Mach number of 0.64 using LES are presented. The 

objective of this study is to perform LES of spatially evolving 
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mixing layers and to see if the LES is able to predict the 

compressibility effects, such as the reduced growth rate and of 

the dissipated kinetic energy. Finally, Results are compared 

with experimental data and with the DNS results and other 

LES results in the same of convective Mach number. 

 

 

2. FILTERING IN LES 

 

Filtering is performed due to decompose sub-grid scales 

from large scales. The arbitrary variable 𝑓 is filtered by the 

following spatial integration: 

 

𝑓(̅𝑥) = ∫ 𝑓(𝑥′
𝐷

)𝐺(𝑥, 𝑥′)𝑑𝑥′                                               (1) 

 

where, 𝑓 ̅is the filtered part of 𝑓 which representing the large 

scales. In Eq. 1, D and G are computational domain and 

filtering function, respectively. In this study, the top-hat filter 

is applied which is defined as: 

 

𝐺(𝑥) = {
1

∆
      𝐼𝑓  |𝑥| ≤ ∆/2 

0          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
                                               (2) 

 

where, Δ is the filtering width, which indicates the resolved 

scales. The Favre filtering is used in compressible flows, 

which is suitable for LES. This filtering is denoted by a 

symbol  ̃  which is related to ̅  filtering by the following 

relationship: 

 

𝑓 = 
𝜌𝑓̅̅ ̅̅

�̅�
                                                                                    (3) 

 

After the Favre filtering, the 𝑓 is expressed as: 

 

 𝑓 = 𝑓 + 𝑓′′                                                                          (4) 

   

𝑓  and 𝑓′′ represent the large and sub-grid scales, 

respectively. So, the total filtering width is obtained by  ∆=

(∆1∆2∆3)
1

3.  

 

 

3. GOVERNING EQUATIONS 

 

The governing equations of LES are filtered Navier-Stokes 

equations can be written as continuity, momentum and energy 

equations for compressible flows as:  

 

∂tρ̅ + ∂j(ρ̅ũj) = 0                                                                (5) 

 

𝜕𝑡(�̅��̃�𝑖) + 𝜕𝑗(�̅��̃�𝑖�̃�𝑗) + 𝜕𝑖�̅�– 𝜕𝑗�̌�𝑖𝑗 = −𝜕𝑗(�̅�𝜏𝑖𝑗) + 𝜕𝑗(𝜎𝑖𝑗 −

�̌�𝑖𝑗)                                                                                       (6) 

 

𝜕𝑡�̌� + 𝜕𝑗((�̌� + �̅�)�̃�𝑖) − 𝜕𝑗(�̌�𝑖𝑗�̃�𝑖) + 𝜕𝑗�̌�𝑗 = −𝛼1 − 𝛼2 − 𝛼3 +

𝛼4 + 𝛼5 + 𝛼6                                                                        (7) 

 

𝛼1 = �̃�𝑖𝜕𝑗(�̅�𝜏𝑖𝑗)                                                                   (8) 

 

𝛼2 = 𝜕𝑗(𝑝𝑢𝑗̅̅ ̅̅ − �̅��̃�𝑗)/ (𝛾 − 1)                                                (9) 

 

𝛼3 = 𝑝𝜕𝑗𝑢𝑗
̅̅ ̅̅ ̅̅ ̅ − �̅�𝜕𝑗�̃�𝑗                                                            (10) 

 

𝛼4 = 𝜎𝑖𝑗𝜕𝑗𝑢𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜎𝑖𝑗𝜕𝑗�̃�𝑖                                                       (11) 

 

𝛼5 = 𝜕𝑗(𝜎𝑖𝑗�̃�𝑖 − �̌�𝑖𝑗�̃�𝑖)                                                       (12) 

 

𝛼6 = 𝜕𝑗(𝑞�̅� − �̌�𝑗)                                                                (13) 

 

where, σ̌ij is filtered viscous stress tensor, q̌j  is filtered heat 

flux and ě is filtered total energy density. The filtered viscous 

stress tensor is related to filtered strain rate tensor that is given 

by: 

 

σ̌ij = Fij(ũ, T̃) = μ(T̃)Sij(ũ)/Re                                       (14) 

 

sij(ũ) = ∂jũi + ∂iũj −
2

3
δij ∂kũk                                        (15) 

 

The filtered total energy density and filtered heat flux are 

expressed as: 

 

ě = E(ρ̅, ũ, p̅) =
p̅

γ−1
+

1

2
ρ̅ũiũi                                           (16) 

 

q̌j = Qj(T̃) = −
μ(T̃)

(γ−1)Re Pr M2 ∂jT̃                                       (17) 

 

The left sides of the Eq. 5 to 7 are similar to laminar Navier-

Stokes equations by using of Favre filtering. The filtered 

Navier-Stokes equations are solved using a numerical 

algorithm and its result shows the large eddy flow field. The 

right sides of the Eq. 5 to 7 contain the sub-grid terms which 

are added after the filtering. They represent the effect of sub-

grid scales on resolved scales which should be modelled by the 

sub-grid scale modelling. 

The first sub-grid scale term of momentum equation is 

turbulent stress tensor which is the most important one in 

governing equations. It results from the nonlinearity of 

convective term which is described as: 

 

ρ̅τij = ρuiuj̅̅ ̅̅ ̅̅ ̅ − ρui̅̅ ̅̅  ρuj̅̅ ̅̅ /ρ̅ = ρ̅(uiuj̃ − uĩuj̃)                       (18) 

 

The second sub-grid scale term of momentum equation 

resulting from the nonlinearity of viscous term is such smaller 

than the turbulent stress tensor. It can be neglected in high 

Reynolds number flows.  

The sub-grid scale terms of energy equation are α1  to α6 

which are expressed by the Eq. 8 to 13. α1  represents the 

kinetic energy transfer from resolved scales to sub-grid scales. 

α2 and α3 denote heat conduction in the sub-grid scales and 

compressibility effect of the sub-grid scales, respectively. α4 

represents the kinetic energy dissipated by eddy viscosity in 

sub-grid scales. α5 and α6 are created from the nonlinearity in 

the viscous stress and heat flux, respectively. Since α5 and α6 

are small compared to the other sub-grid terms, they can be 

neglected in high Reynolds number flows. Because of 

supersonic flow, in addition to the sub-grid scale terms of 

momentum equation, the sub-grid scale terms of energy 

equation must be modeled. 

 

 

4. MODELING OF SUB-GRID SCALES TERMS 

 

Since the implementation of Smagorinsky model causes 

some problems, the dynamic eddy viscosity model is applied 

in order to modeling of sub-grid scale terms in momentum and 
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energy equations. In the Smagorinsky model [2], the 

Smagorinsky coefficient as an experimental coefficient should 

be assumed constant entire the flow filed. This coefficient is 

the controller of turbulence scale which depends on flow 

regimes. For solving this problem, the dynamic model was 

proposed by Germano. In this method Cs
2  is replaced by 

dynamic coefficient  Cd . The dynamic coefficient changes 

locally to determine the order of eddy viscosity in the flow. 

Subsequently, by the review of the flow field after one or many 

time steps the new value of Cd is again determined in the entire 

flow field. So, the value of Cd  is corrected continuously to 

provide the correct energy dissipation. For this purpose, the 

test filter is applied for dynamic model which has a width 

twice the main width. This filter is represented by the 

symbol ̂ . 

 

4.1. Modeling of sub-grid scales in momentum equation 

 

Since the second sub-grid scale term of momentum equation 

(nonlinearity of viscous term) at high Reynolds number flows 

is neglected, the turbulent stress tensor is only modeled by the 

following equation: 

 

mij = −ρ̅Cd∆2|S(ũ)|Sij(ũ)                                                (19) 

                      

where, Cd is the dynamic coefficient which changes locally in 

order to determine the order of eddy viscosity in the flow, 

defined as: 

 

Cd =
<MijLij>

<MijMij>
                                                                      (20) 

where, 

 

Mij = −ρ̂̅(2∆)2|S(v)|Sij(v) + (ρ̅∆2|S(ũ)|Sij(ũ)) ̂           (21) 

 

vi = ρui̅̅ ̅̂̅ /ρ̂̅                                                                          (22) 

 

|S(v)|2 =
1

2
Sij

2(v)                                                              (23) 

 

Lij = (ρui̅̅ ̅̅  ρuj̅̅ ̅̅ /ρ̅) ̂ − ρui̅̅ ̅̅  ̂ ρuj ̅̅ ̅̅ ̅̂/ρ̂̅                                       (24) 

 

In order to prevent numerical instability, Cd  should be 

greater than and equal to zero. The symbol <> is used for 

prevention of being negative which is an averaging in the 

homogeneous directions. If it will be negative, it is replaced 

by zero. Rearranging in Eq. 19:  

 

mij = −νeSij(ũ)                                                                 (25) 

 

where, νe is the eddy viscosity which is described as: 

 

νe = ρ̅Cd∆2|S(ũ)|                                                              (26) 

 

The eddy viscosity correlates the sub-grid scales turbulent 

stress tensor model with the strain field of large scales to sub-

grid scales. In fact, Eq. 25 indicates that the transferred kinetic 

energy form large eddies to small eddies is converted to heat 

by eddy viscosity. 

 

4.2. Modeling of sub-grid scales in energy equation 

 

Since α5 and α6 can be neglected in high Reynolds number 

flows, α1 to α4 are only modeled. 

The modeling of α1 is the same as the modeling of turbulent 

stress tensor (Eq. 19). These two sub-grid scale terms are 

modeled as a α2 + α3 using the following equation: 

 

mij = − ∂j (
ρ̅Cd∆2S(ũ)

(γ−1)PrtM2 ∂jT̃)                                                (27) 

 

where, Prt  is the dynamic turbulent Prandtl number, γ  is 

specific heat ratio and M is the Mach number. The Prandtl 

number is calculated using the following equations: 

 
1

Prt
=

∫ LfMfdx

∫ Mf
2dx

                                                                       (28) 

 

Mf = − ∂j (
ρ̂̅Cd(2∆)2S(v)

(γ−1)M2 ∂jG(ρ̂̅, P̂̅)) + (∂j(
ρ̅Cd∆2S(ũ)

(γ−1)M2 ∂jT̃)) ̂        

                                                                                            (29) 

 

Lf = (ρui̅̅ ̅̅  ρuj̅̅ ̅̅ /ρ̅) ̂ − ρui̅̅ ̅̅  ̂ ρuj ̅̅ ̅̅ ̅̂/ρ̂̅                                        (30) 

 

In Eq. 29, G  indicates temperature which is related to 

pressure and density based on the ideal gas law. 

 

T̂̅ = G(ρ̂̅, P̂̅) = γM2 P̂̅

ρ̂̅
                                                         (31) 

 

The modeling of α4is using the following equation: 

 

mij = Cϵρ̅
k

3
2⁄

∆
                                                                     (32) 

 

where, k =
1

2
τii is the sub-grid turbulent kinetic energy and Cϵ 

as a dynamic coefficient which is assumed to be a function of 

time only. Cϵ is calculated by: 

 

Cϵ =
∫(α1+α3−∂t(ρ̅k))dx

∫(ρ̅
k

3
2⁄

∆
)dx

                                                        (33) 

 

 

5. NUMERICAL ALGORITHM 

 

In LES the filtered Navier-Stokes equations are solved 

using a numerical algorithm. Since the flow is compressible, 

there are five coupled equations (continuum, x-momentum, y-

momentum, z-momentum, energy and idea gas equations). 

Five unknown variables (u, v, w, T, p and ρ) are obtained by 

solving simultaneous equations. The left sides of Eq. 5 to 7 can 

be written as: 

 

 ∂tu + ∂jfi = 0                                                                   (34) 

 

where, u = (ρ,̅ ρ̅ũi, ě) T and fi  indicates total flux. First the 

spatial discretization and then temporal discretization are 

applied in order to discretization of the Eq.34. 

 

5.1 Spatial discretization 

 

The convective terms are separated from viscous terms in 

order to discretization. The discretization is done for both 

viscous and convective flux using the second order cell center 

finite volume method on a structured uniform Cartesian mesh. 

The derivative inside a computational cell can be converted to 

surface integral over the cell surfaces for calculating 
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convective fluxes.  

 

∇ fi = ∂jfi =
1

v
∫ ∂j fidv =

1

v
∮ fi . njds                                (35) 

 

In the above equation, njds is the vector component of cell 

surface along the Jth spatial coordinate. The second order 

derivatives should be calculated in the same way for viscous 

fluxes. The second order derivative inside the cell can be 

converted to first order derivative over the cell surfaces.  

 

∆φ = 1/V ∫ ∆φ dv = 1/V ∮(∇φ) ds  = 1/V ∑ (∇φ) ds faces            

                                                                                                                                             (36) 

 

With the aid of Eq. 35, the first order derivatives over the 

cell surfaces can be converted to surface integral over the 

control surfaces which are related to cell surfaces. This control 

volume is used for each staggered cell surface. Fig. 1 shows 

two neighbor uniform Cartesian cells (i, j, k) and (i, j, k+1). 

The calculation of convective and viscous fluxes is carried out 

between two cells. The convective flux which is contained first 

order derivatives can be written based on the averaged values 

of arbitrary flow variable on the cell surface. 

 

 
 

Figure 1. Computational cells (i, j, k) and (i, j, k+1) [—] and 

the staggered grid for the cell surface between two cells [----] 

in three dimensions 

 

Ũ = (
U(i,j,k)+U(i,j,k+1)

2
)                                                         (37) 

 

where Ũ indicates the average value of U. In order to calculate 

viscous fluxes between two cells (i, j, k) and (i, j, k+1) based 

on eq. 36, the flow variables gradient should be computed in 

separated surfaces. These gradients can be computed based on 

the average values of flow variables on the staggered cell 

surface. For arbitrary flow variable ∅: 

 

∅face high k ≈ ∅i,j,k+1                                                           (38) 

 

∅face low k ≈ ∅i,j,k                                                               (39) 

 

∅face high j ≈
∅i,j+1,k+1+∅i,j+1,k+∅i,j,k+1+∅i,j,k

4
                           (40) 

 

∅face low  j ≈
∅i,j−1,k+1+∅i,j−1,k+∅i,j,k+1+∅i,j,k

4
                           (41) 

 

∅face high i ≈
∅i+1,j,k+1+∅i+1,j,k+∅i,j,k+1+∅i,j,k

4
                           (42) 

 

∅face low i ≈
∅i−1,j,k+1+∅i−1,j,k+∅i,j,k+1+∅i,j,k

4
                            (43) 

For instance 𝜕x∅ over the surface between cells: 

 

(𝑉staggered cell) (
∂∅

∂x
)

face k,k+1
≈ 𝐴1 + 𝐴2 + 𝐴3                  (44) 

 

𝐴1 = (∅𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑘)(∆𝑆𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑘)𝑛𝑥 −

(∅𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑘)(∆𝑆𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑘)𝑛𝑥                                             (45) 

  

𝐴2 = (∅𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑗)(∆𝑆𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑗)𝑛𝑥 −

(∅𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑗)(∆𝑆𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑗)𝑛𝑥                                              (46)  

                       

𝐴3 = (∅𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑖)(∆𝑆𝑓𝑎𝑐𝑒 ℎ𝑖𝑔ℎ 𝑖)𝑛𝑥 −

(∅𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑖)(∆𝑆𝑓𝑎𝑐𝑒 𝑙𝑜𝑤 𝑖)𝑛𝑥                                               (47)  

                        

where, 𝑛𝑥 indicates the surface vector component along the x 

axis. 

 

5.2. Temporal discretization 

 

The second order implicit method is applied for time 

discretization. For arbitrary flow variable ∅: 

 

3∅n+1 = ∅n + 4∅n − ∅n−1 + 2∆𝑡𝐹(∅n+1)                       (48) 

 

where, the superscripts n-1 and n and n+1 indicate time steps 

t-∆t, t, t+∆t, respectively.  

 

 

6. RESULTS AND DISCUSSION 

 

In this study, the geometry is a rectangular cube that its 

length, height and width are L, H, W, respectively as displayed 

in Fig. 2. So:  

 
𝐿

𝐻
=

𝐿

𝑊
= 2                                                                          (49) 

 

𝐻 = 𝑊                                                                                (50)   

 

 
 

Figure 2. Computational domain and boundary conditions 

 

Boundary conditions in the streamwise direction are inflow 

and outflow. Periodic and free-slip walls conditions are 

imposed in the normal direction and spanwise, respectively 

(Fig.2). A rectangular uniform structured mesh is built in the 

Cartesian coordinate as shown in Fig.3 two dimensionally. 
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The mesh size is 128×64×64 along the x, y and z axes, 

respectively. Non-dimensional parameters along the x, y, z and 

time denoted by X*, Y*, Z* and t* which are defined as: 

 

𝑋∗ =
100𝑀C𝑋

L
                                                                       (51)   

 

𝑌∗ =
50𝑀C𝑌

H
                                                                         (52) 

 

𝑍∗ =
50𝑀C𝑍

W
                                                                         (53) 

 

𝑡∗ =
0.1𝑀C𝑡

∆t
                                                                          (54) 

 

where, 𝑀𝐶 is convective Mach number, defined as: 

 

𝑀𝐶 =
U1−U2

a1+a2
                                                                        (55) 

 

In Eq. 55, U1  and U2  is the upstream and downstream 

velocity, respectively. a1  and a2  are the upstream and 

downstream sound speed, respectively.  

 

 
 

Figure 3. Rectangular uniform structured mesh in two 

dimensional 

 

Air is considered as a working fluid and ideal gas in both 

mixing layers. Since in the compressible flow the energy 

equation is coupled with the momentum equation, ideal gas 

law should be applied to solve these equations. The thermal 

conductivity and specific heat capacity at constant pressure are 

assumed to be constant and equal to 1006.43(j/kg) and 

0.0242(w/mk), respectively. The specific heat ratio for air is 

equal to 1.4. Sound speed in air as an ideal gas is calculated 

from: 

 

𝑎 = √𝛾𝑅𝑇                                                                          (56)                                

 

where 𝑅  for air is equal to 287(j kg/k). Since the flow is 

supersonic and high speed, viscosity is determined through 

Sutherland's’ law based on three coefficients ( S ,  T0 ,  𝜇0 ). 

Sutherland's’ law is written as: 

 

𝜇 = 𝜇0(
T

T0
)

3
2⁄ T0+S

T+S
                                                              (57)  

 

where, T  is temperature, 𝜇  is viscosity, T0  is reference 

temperature and 𝜇0 is reference viscosity. 𝜇0 and T0 for the air 

are 1.716e-05(kg m/s), 273.11(k), respectively. S is a constant 

used in Sutherland's’ law which is 110.56 for the air.  

Simulation details in convective Mach number of 0.64 

shown in Table 1. Subscripts 1 and 2 in the following table are 

indicating characteristics of upper and lower speed of flows, 

respectively.  

 

Table 1. Simulation details in 𝑀𝑐 = 0.64 

 
air-air Composition 

1041.57,651.62 (m/s) 2,U1U 

347.19,262.75 (m/s)2,a1a 

0.62 1/U2r=U 

3,2.48 2,M1M 

0.64 cM 

101325,101325 (pa)2,P1P 

1 1/P2P 

1.177,2.06 )3(kg/m2,ρ1ρ 

1.75 1/ρ2S= ρ 

0.57 1/T2T 

300,171.43 (K)2,T1T 

1,1 (cm)2,δ1δ 

40.16×10 Reynolds 

 

Vorticity thickness is one of the significant parameters in 

analyzing of mixing layers which describes how the layers are 

mixed, described as: 

 

𝛿ω =
∆U

(
∂u

∂y
)max

                                                                       (58) 

 

 
 

Figure 4. Variation of vorticity thickness along the x-axis 

 

where, ∆U and 𝛿ω  indicate velocity difference of upper and 

lower speed of flows and vorticity thickness, respectively. 

Fig.4 illustrates the variations of vorticity thickness versus 

spatial coordinate along the streamwise direction (x). Fig.4 

indicates that with increase in x, vorticity thickness increases 

linearly to x=0.15 and then increases nonlinearly. The increase 

37



 

of vorticity thickness along the x-axis is due to the decrease of 

slope in velocity profiles. The results of the present simulation 

are compared with the results of LES obtained by Doris et al. 

[4]. The results of Doris are obtained at the convective Mach 

number of 0.64 which is equal to the Mach number of present 

simulation. Fig. 4 demonstrates a good agreement between the 

results of present simulation and Doris. The result of vorticity 

thickness is done for two different meshes (128×64×64) and 

(192×96×96). 

The velocity profiles are drawn in the xy plane. Fig. 5 shows 

the velocity profiles of mixing layers at different sections 

along streamwise direction. In addition, the velocity profiles 

of present simulation are compared with the velocity profiles 

obtained by Doris et al. [4] different sections of the flow. The 

border of two layers (Y*=16) is shown by dashed lines where 

is the starting place of mixing of layers. It is clear from 

velocity profiles, by approaching to the end of flow boundaries, 

the slope of velocity profiles in the mixing region decreases. 

The intersection point of border of two layers and velocity 

profiles at 𝑥∗ = 60 is an inflection point.  

 

 
 

Figure 5. Velocity profiles 

 

Another important parameter in order to analyze mixing 

layers is mixing layers growth rate (mixing rate) which 

indicates mixing characteristics and the compressibility effects 

which can be written as: 

 
𝑑𝛿

dx
= −

4

(𝑈1+𝑈2)𝜌1∆𝑈2 ∫(𝜌u′′
1u′′

2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∂2ũ1)dy                          (59) 

                       

In addition to the layers velocity, this parameter depends on 

layers density. For this purpose, Fig. 6 demonstrates the 

variations of growth rate of mixing layers versus convective 

Mach number. Mach number has significant role in simulation 

of mixing layers. Fig. 6 shows the comparison of the present 

simulation results with the experimental data obtained by 

Goebel & Dutton [7] and the results of DNS obtained by 

Pantano & Sarkar [9] for the variations of the growth rate 

versus the convective Mach number ranging from 0 to 1. In 

present simulation, the value of growth rate at convective 

Mach number of 0.64 is equal to 0.55 which is in good 

agreement with the experimental data and DNS results. The 

comparison of the results of growth rate for three cases is 

shown in Table 2. Another important point can be found from 

Fig. 6 and Table 2, is that the mixing layers growth rate should 

decrease when the convective Mach number increases which 

is consistent with the physics of problem.  

 

 

Table 2. Comparison of mixing layers growth rate for 

three cases 

 
Growth Rate cM NAME 

0.55 0.64 Present Simulation 

0.575 0.58 Goebel & Dutton 
0.4 0.7 Pantano & Sarkar 

 

 
 

Figure 6. Variation of growth rate versus 𝑀𝑐 

 

In Fig. 7, the variation of 𝐶𝑑 versus 𝑡∗ is shown. Dynamic 

coefficient is a fundamental parameter in modeling of 

turbulent stress tensor and 𝛼1  based on the dynamic eddy 

viscosity model. As it is clear from the Fig. 7, in order to 

prevent instability, 𝐶𝑑 should be greater than and equal to zero. 

The dynamic coefficient indicates the flow turbulence as it is 

clear from Fig. 7, because of the turbulent nature of mixing 

layers, the flow turbulence occurs from the beginning of the 

flow. Fig. 7 illustrates the comparison of the values of this 

parameter in present simulation with the ones obtained by 

Verman [8] in temporal mixing layers at various times.  

 

 
 

Figure 7. Variation of 𝐶𝑑 versus 𝑡∗ 
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The inverse of the Prandtl number plays a significant role in 

the modeling of 𝛼2  and 𝛼3  based on the dynamic eddy 

viscosity model. Fig. 8 illustrates the comparison of the values 

of this parameter in present simulation with the ones obtained 

by Verman [8] in temporal mixing layers at various times. The 

value of this parameter within 0 < 𝑡∗ < 20 is zero and 

therefore, turbulent stress tensor and 𝛼1  should be only 

modeled at this interval. As shown in Fig. 8, this parameter 

should be greater than and equal to zero.  

 

 
 

Figure 8. Variation of 
1

𝑃𝑟𝑡
 versus 𝑡∗ 

 

 
 

Figure 9. Variation 𝐸∗ of versus 𝑡∗ 

 

Fig. 9. shows the variation of non-dimensional total kinetic 

energy versus time. The total kinetic energy and the non-

dimensional total kinetic energy are defined as: 

 

𝐸 = ∫
1

2
�̅�𝑢�̃�𝑢�̃�𝑑𝑥                                                                 (60) 

 

𝐸∗ =
17.5M1M2E

Ein
                                                                   (61) 

 

where, Ein indicates the initial kinetic energy. Fig.9. shows the 

comparison between the values of  𝐸∗ in this simulation using 

the dynamic eddy viscosity model and without sub-grid scales 

model with the results of dynamic eddy viscosity model and 

the results of filtered DNS obtained Verman [8]. The dynamic 

eddy viscosity model of present simulation is in good 

agreement with filtered DNS but the non sub-grid scales model 

is not. From Fig.9, it is found that with the increase 𝑡∗, the total 

kinetic energy decreases due to the transferred kinetic energy 

to heat by eddy viscosity in sub-grid scales. Fig. 9 shows that 

the total kinetic energy of 𝐸∗ = 27.2 is dissipated within 0 <
𝑡∗ < 100.  

The most important parameter in qualitative analysis of 

mixing layers is vorticity. Fig. 10 and Fig.11 demonstrate 

vorticity color contour and contour lines, respectively. Fig. 12 

shows the velocity vectors, which form the vortices in mixing 

layer. This contour shows how the mixing of layers and vortex 

formation across the flow field. The vorticity magnitude 

defined as: 

 

ω = √𝜔2
x + 𝜔2

y + 𝜔2
z                                                   (62) 

 

 

 
 

Figure 10. Contour of vorticity in two dimensional domains 

 

 
 

Figure 11. Contour of vorticity in two dimensional domains 

 

Fig. 10 shows that the vorticity form in the middle of the 

plane (at the border of two flows) and the mixing rate of layers 

and the values of vortices increase by approaching to the end 

of the flow. As seen from the Fig. 10, because of the turbulent 
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nature of mixing layers, the flow become turbulent quickly and 

vortex and vortices form. The vorticity values should be 

maximized in the center of vortexes and as seen from Fig. 10, 

the vorticity magnitude increases by approaching to the center 

of vortexes. Fig. 11 indicates that vortices divided into two 

parts after entering to flow and then these two parts divided 

into many parts and this process is continued. The kinetic 

energy transfer from large to small eddy and from small to 

smaller eddy is the reason of eddy divisions. Finally, this 

energy is converted to heat by eddy viscosity. Fig. 12 shows 

the velocity vectors forming vortices. As it is clear from this 

Figure, the vortices form in the mixing region.  

 

 
 

Figure 12. Contour of vorticity in two dimensional 

domains 

 

 
 

Figure 13. Contour of pressure in three-dimensional domain 

 

A three-dimensional pressure in the aspect of quality is 

shown in Fig. 13. Since the flow is supersonic, it is expected 

to have shock in the pressure contour. Shocks are the sudden 

changes of pressure and formation of severe pressure gradients 

in the flow. The shock occurs in the flow is investigated in Fig. 

13. By approaching to the center of shock, Pressure increases 

and at the center of the shock the pressure reaches its 

maximum value while, it decreases far from the shock center. 

This shock occurs at 33 < 𝑋∗ < 45 and its center is at point 

of (39, 24, 16). The pressure lines forming the shock are shown 

clearly in Fig.14. Fig. 15 shows the pressure contour in the 

outlet plane. Two important points can be found from Fig.15. 

First, the shock is symmetric along the 𝑍∗ =16. Secondly, 

group of pressure gradient occur at 2 < 𝑌∗ < 15 in the outlet 

plane which are smaller than investigated shock. It is 

necessary to have the variation of pressure along the x axis in 

free slip flow (xy) in order to obtain the pressure gradient at 

the beginning of the shock occurrence to the center of shock. 

Fig. 16 indicates the non-dimensional pressure ( 𝑃∗ =
P

Pin
) 

versus x in the periodic and free slip wall planes where Pin is 

initial pressure. It is obtained from the figure that the value of 

pressure gradient at the beginning of shock occurrence to the 

center of shock is 0.45.  

 

 
 

Figure 14. Contour of pressure in two-dimensional domain 

 

 
 

Figure 15. Contour of pressure in two-dimensional domain 

 

 
 

Figure 16. Variation 𝑃∗ of versus 𝑋∗ 
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7. CONCLUSION 

 

In this article, the results of LES in the spatially developing 

compressible mixing layers in convective Mach number of 

0.64 are presented. The mixing layer is a fundamental case for 

the large eddy simulation of compressible flows. The dynamic 

eddy viscosity model is applied for modeling of sub-grid 

scales. The cell-centered finite volume method with second 

order of accuracy is used for spatial discretization. The viscous 

and convection terms are discretized separately by second 

order schemes. The second order implicit method is used in 

order to temporal discretization. Present simulation results are 

good agreement in comparison with available experimental 

and DNS and other LES results in the same convective Mach 

number. In present simulation, the value of growth rate at 

convective Mach number of 0.64 was equal to 0.55. The 

decrease of growth rate with the increase of convective Mach 

number in applied simulation is predicted. The total kinetic 

energy decreases due to the transferred kinetic energy to heat 

by eddy viscosity in sub-grid scales. The total kinetic energy 

of 27.2 is dissipated of the flow field. Finally, the shock occurs 

in the flow are investigated. This shock occurs at 33 < X∗ <
45 and its center is at point of (39, 24, 16). The value of 

pressure gradient at the beginning of shock occurrence to the 

center of shock is 0.45. 
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