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The act of speaking takes place as a result of the joint use of both the senses of vision and 

hearing. The visual senses of the event of speech play an important role in lip-reading, 

especially when the sound is distorted or inaccessible. Visual-only-based lip-reading is a 

more difficult problem than audio-image-based lip-reading problems. In this study, three 

new spatial feature approaches to visual-only lip-reading are presented. To test the proposed 

feature extraction approaches, three datasets named AVLetters2 consisting of letters, 

AVDigits consisting of digits, and AVLetAVDig consisting of a combination of these two 

were used. First of all, the facial elements and lips were separated and the lip borders were 

marked with 20 points. Then, based on these spatial points, feature vectors were obtained 

with the feature approaches named Symmetric Euclidean Distance (SED), Central Euclidean 

Distance (CED), and Triple Points Angles (TPA). Extracted feature vectors were given to 

the CNN-LSTM network and 26 characters and 10 digits were tried to be estimated. As a 

result of the findings, the best success results for AVLetters2, AVDigits, and AVLetAVDig 

datasets were obtained by the SED+CNN+LSTM method as 53.2, 81.6, 59.8, respectively. 

When compared with the studies in the literature on the same data set, it was seen that very 

high and successful results were obtained.  
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1. INTRODUCTION

The act of speaking is not just an act of vocalization. It is a 

known fact for centuries that the speaker's facial movements 

contain useful information about speech [1]. During the speech, 

the shapes of the mouth can be observed with the eye, and thus 

lip reading can be performed. Lip-reading is a technique of 

understanding speech by analyzing the movement of lips, face, 

and tongue in situations where it is not possible to understand 

the sound. Therefore, lip-reading using only visual data 

emerges as a very important problem in cases where the voice 

is inaccessible or distorted or the perception functions are 

weakened in people with sensory loss due to various auditory 

disorders.  

In lip-reading problems, the detection of the lip area is one 

of the most critical operations. Because all operations for lip-

reading will be performed on this detected area, a possible 

error will directly affect the performance of the method. In 

early studies in this area, researchers often manually selected 

the lip area using lipstick or reflectors painted lip. With the 

developments in the field of face detection, the detection of 

lips has become possible thanks to various algorithms in 

computer systems. For example, in the study by Rao and 

Mersereau [2], the lip edge was extracted using the distinctive 

horizontal edge properties. However, this method is affected 

by light, shadow, and beard. Liévin and Luthon [3] used the 

color differences between skin and lips. Jun and Hua [4] used 

an adaptive lip detection algorithm based on chromaticity 

contrast. In this method, they used the HSV (Hue, Saturation, 

Value) color model to separate color and luminance. The 

method called Ensemble of Regression Trees, proposed by 

Kazemi and Sullivan [5], which was also used in this study, 

can locate landmark points by detecting faces and lips with 

HOG features combined with a linear-SVM classifier. 

Extracting the features of the detected lip area after the lip 

borders determination is an important part of the lip-reading 

process by using the localized area. Effective and robust 

characteristic values directly affect lip reading/recognition 

performance. Zhang et al. [6] applied the Expectation-

Maximization and Principal Component Analysis methods to 

the lip region to reduce the calculations. Morade and Patnaik 

[7] used the feature extraction method based on Discrete

Wavelet Transform (DWT) and Large-Scale Detection

Through Adaptation (LSDA). DWT was used only to extract

visual information about the prominent speakers from the lip

part. LSDA was used to reduce the feature size. Kawasaki et

al. [8] applied two adaptations, speaker and environmental, to

increase lip-reading performance. They stated that these two

adaptations greatly increased lip-reading performance. Lee [9]

used a temporal filtering technique called visual-speech pass

filtering, which is used to extract visual features for automatic

lip-reading. Lee used this filter to remove unwanted pixels

around the speaker's lip and increase lip-reading performance.

On the other hand, Kang et al. [10] extracted the facial

movement features of the persons using a system that captures

3D facial movement features. The Hidden Markov Model and

Viterbi algorithm were used for learning and recognizing each

syllable.

Lip-reading applications offer solutions that can improve 

the ability of people with hearing impairment to learn or 

understand normal language expressions. Studies on this 

subject include many fields such as artificial intelligence, 
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information engineering, and image processing systems. With 

the rapid developments in automatic speech recognition, 

human-computer interaction, and computer vision 

technologies, lip-reading applications are used not only to 

improve speech recognition but also in new areas such as 

human-machine and anti-terrorism [11]. 

In this study, three new spatial feature approaches to visual-

only lip-reading are presented. To test the proposed feature 

extraction approaches, three datasets named AVLetters2 

consisting of letters, AVDigits consisting of digits, and 

AVLetAVDig consisting of a combination of these two were 

used. The borders of the face and then the lip area of the 

speaker in each frame in these video images were determined 

and used to obtain the spatial landmark attributes placed on 

these borders. The deep learning method CNN-LSTM, which 

has Convolutional Neural Network (CNN) and LSTM layers, 

was used as the classifier method. As a result of the findings, 

the best success results for AVLetters2, AVDigits, and 

AVLetAVDig datasets were obtained by the 

SED+CNN+LSTM method as 53.2, 81.6, 59.8, respectively. 

The results obtained were also compared with the literature 

and it was seen that more successful results were obtained 

from the literature. 

The following sections of this study are organized as 

follows. In the next section, literature studies on visual-only 

lip-reading are summarized. Section 3 provides details on the 

datasets used in this study. In Chapter 4, the proposed feature 

extraction methods and classification model are described. In 

Chapter 5, the obtained experimental results are analyzed and 

discussed in detail. In the last section, the important results of 

the study are stated. 

 

 

2. LITERATURE STUDIES 

 

Frisky et al. [12] performed a study based on visual lip 

movement recognition by applying the video content analysis 

technique. In the study, they proposed a new visual-only 

speech recognition method using Non-Negative Matrix 

Factorization and Kernel Sparse Representation Classifier (K-

SRC). In this study, they extracted Local Binary Patterns 

(LBP) based features over Three Orthogonal Planes (TOP) by 

using Spatio-temporal feature descriptors related to both space 

and time from videos containing visual lip information. They 

used AVLetters and AVLetters2 datasets to measure the 

performance of their proposed method. 

Tian and Ji [13] conducted a study using the Auxiliary 

multimodal Long Short-Term Memory (Am-LSTM) method, 

which is an artificial recurrent neural network architecture 

used in the field of deep learning for Audio-visual Speech 

Recognition (AVSR). LSTM is a Recurrent Neural Network 

architecture designed to deal with long-term dependencies 

[14]. Unlike standard feedforward neural networks, LSTM has 

feedback connections [15]. It can process not only single data 

points but also entire data series. In this study, they performed 

an AVSR application using both video and audio data. For this 

purpose, the proposed method in the study was applied to 3 

different data sets, namely AVLetters, AVLetters2, and 

AVDigits.  

Bear et al. [16] developed a phoneme-clustering model for 

speaker-dependent and speaker-independent phoneme-to-

viseme mapping. These maps were used to reveal how the 

speech patterns are visually similar. The speakers' faces were 

tracked using Active Appearance Models (AAM), in which 

only lip-combined shape and appearance features were 

extracted. 

Mattos et al. [17] studied visual recognition improvement 

based on Convolutional Neural Networks using synthetic data. 

In this study, the problem of recognizing visemes, which are 

the visual equivalents of phonemes, is discussed. They solved 

this problem by creating a large-scale synthetic 2D dataset 

based on realistic 3D face models that were automatically 

labeled. In these studies, datasets named AVDigits, AVLetters, 

Cuave, and GRID corpus were used. 

Fernandez-Lopez and Sukno [18], on the other hand, carried 

out a very comprehensive study in terms of both the applied 

methods and the datasets related to automatic lip-reading in 

their studies using deep learning. In this study, researches in 

the field of automatic lip-reading in recent years are reviewed, 

and both previous approaches called traditional and recent 

developments in automatic lip-reading architectures are 

discussed. They considered many very large datasets such as 

words and phrases. 

 

 

3. DATA SETS 

 

In this study, three new spatial feature approaches to visual-

only lip-reading are presented. To test the proposed feature 

extraction approaches were used aligned audio-visual data 

consisting of isolated letters named AVletters2 and isolated 

digits named AVDigits. The AVletters2 dataset is an extension 

of the AVLetters [1] dataset created by Cox et al. [19]. This 

dataset contains 26 letters from the letter "A" to the letter "Z" 

sung by five people, with seven repetitions for each letter. 

AVDigits, on the other hand, were created by Hu and Li [20] 

and contain records of each of the 10 digits between 0 and 9 

being repeated 9 times by 6 people. Detailed information about 

both data sets is presented in Table 1 below. 

 

Table 1. Details on datasets 

 
 AVLetters2 AVDigits 

Video Recording 

content 

Letters between 'A' 

and 'Z' 

digits from '0' 

to '9' 

Number of Classes 26 10 

Number of Speakers 5 6 

Number of 

repetitions 
7 9 

Number of 

pronunciations 
910 540 

Frame Size 1920 × 1080 1920 × 1080 

 

 
 

Figure 1. Sample images of speakers in the AVLetter2 and 

AVDigits datasets 

 

Audio and video contents in the dataset are divided into raw 

data. The images in this dataset were recorded in color using 

1920*1080 RGB with high-definition cameras [21]. Example 

images of some speakers in the AVletters2 and AVDigits 

datasets are shown in Figure 1. 
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4. METHODS  

 

4.1 Lip-reading system scheme 

 

Lip-reading applications consist of various calculation 

processes. Therefore, by dividing the system into sections at 

various levels, evaluating the operations to be performed in 

each section separately defines the whole system better. The 

proposed system scheme for lip-reading within the scope of 

this study is shown in Figure 2. The proposed system consists 

of 4 stages. The procedures performed at each stage are 

summarized below. 

Stage 1: In each frame of the video images, the detection of 

the face and other elements on the face ((lip, eye, eyebrow, 

etc.) is realized at this stage. Since the data processed at this 

stage is video, a 3-dimensional matrix is produced, consisting 

of the image of the lip region cross-section, in the number of 

frames for each element. 

Stage 2: In the next stage, the marker points on the lip are 

determined from the regionally determined lip contours. At 

this stage, the inner and outer lip borders determined in each 

frame are marked with a total of 20 points. The data produced 

at this stage is a 2-dimensional matrix containing 20 marker 

points for each frame. 

Stage 3: At this stage, spatial information is calculated with 

three different proposed feature extraction methods using 

landmark points, and appropriate feature vectors are created 

for the classification methods. The data produced at this stage 

is a 1-dimensional vector containing the distance or angular 

metric values obtained from 20 marker points for each frame. 

Stage 4: At this stage, the classification process is carried 

out. By using the extracted features from stage 3, it is tried to 

predict the pronounced letter or number with the CNN-LSTM 

classification method, which is a deep learning method that is 

a combination of Convolutional Neural Network and LSTM. 

All operations were performed on a personal computer with 

AMD Ryzen 7 5800H processor and 16 GB RAM. Face 

detection from video images, detection of lip markings, feature 

extraction, and classification processes are all performed using 

Python programming language and DLib [22] and OpenCV 

libraries. TensorFlow Keras framework was used for the 

implementation of deep learning methods [23]. 

 

4.2 Detection of lip points 

 

To detect lip points, first of all, the face and then lips must 

be detected. Dlib face landmark detector and OpenCV python 

libraries were used to detect face and lips. Dlib is an open-

source library aimed at both engineers and scientists, aiming 

to provide a C++ environment [22]. Applications such as face 

recognition, face detection, and facial landmarks can be 

obtained through the dlib library. 

Detection of facial points requires an important step, such 

as detecting the face and facial regions in the image. For face 

detection, methods such as the Haar-cascade algorithm [24], 

Viola and Jones detector [25] or Histogram of Oriented 

Gradients [26], or deep learning-based algorithms can be used. 

The important thing here is to determine the borders that limit 

the face. In the second stage, it is necessary to mark the items 

on the face. There are various marker algorithms developed 

for this purpose. These algorithms mostly mark items such as 

mouth, right and left eyebrows, right and left eyes, nose, and 

chin. The most important element for us in this study is the 

mouth area. Because it is thought that the lip area takes various 

forms during the pronunciation of the letters and this varies for 

each letter. Therefore, during the pronunciation of the 

letters/digits, the spatial coordinates of the markers showing 

the mouth boundaries in each video frame change relative to 

each other, which can provide us with very useful features in 

classifying the letters/digits. For this purpose, in this study, the 

method called Ensemble of Regression Trees, proposed by 

Kazemi and Sullivan [5], was used to detect the points on the 

lip borders after face detection with HOG features combined 

with a linear-DVM classifier. In this method, a 

cascade/stepwise multiple regression structure was used. 

Details of the method proposed by Kazemi and Sullivan [5] 

are given below. 

In the Ensemble of Regression Trees (ERT) method, a 

training dataset is used in which the face elements are labeled 

manually (by marking the (x,y) coordinates). Then, an ERT is 

trained on based pixel intensities to detect facial markings by 

using a trained dataset. Each regressor 𝑟𝑡(∙,∙) in the cascade 

structure further improves the prediction by adding the update 

vector obtained from the I image and the current prediction 

�̂�(𝑡) to the current prediction �̂�(𝑡) [5]: 

 

�̂�(𝑡+1) = �̂�(𝑡) + 𝑟𝑡(𝐼, �̂�
(𝑡)) (1) 

 

where, 𝑥𝑖  specifies the (x, y) coordinates of the face sign in 

image I. Accordingly, the coordinates of p face signs-in the I 

image are Accordingly, the coordinates of p face signs in the I 

image are 𝑆 = (x1
𝑇 , x2

𝑇 , … , x𝑝
𝑇)

𝑇
∈ ℝ2𝑝 , with the current 

estimate of S with �̂�(𝑡) is expressed. 

The critical point in the cascade structure is that the 

𝑟𝑡  regressor makes its predictions based on properties such as 

pixel intensity values calculated from I and indexed against the 

current shape estimate �̂�(𝑡) . This introduces a kind of 

geometric invariance to the process, and as the cascade 

progresses, one can be more certain that a precise semantic 

position on the face is indexed. In this method, to train each 

𝑟𝑡  Hastie et al. As explained by Hastie et al. [27], the gradient 

tree boosting algorithm was used with a sum of squared error 

loss. Details about the method are explained in the study by 

Kazemi and Sullivan [5]. 

 

 
 

Figure 2. The steps used for lip reading 
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4.3 Spatial features 

 

The spatial features proposed within the scope of this study 

were obtained by using 20 points detected above the lip in the 

frames in each video image, as seen in Figure 3(a) below. 

These features obtained from the frames in the video image 

containing the pronunciation recording were brought together 

to create a feature vector for each recording. There are a total 

of 910 and 540 video recordings in the AVLetters2 and 

AVDigits datasets, respectively. The number of frames of the 

videos differs from each other. In the AVLetters2 and 

AVDigits datasets, the highest frame counts were 67 and 64 

frames, respectively, and the lengths of the feature vectors 

were made equal by repeating the last frame features of the 

records containing fewer frames. 

The feature extraction approaches detailed below were 

obtained according to the spatial landmark points in Figure 

3(a). There are a total of 20 points, 12 of which are on the outer 

lip (𝑃𝑖 , 𝑖 = 1, 2, … , 12) and 8 on the inner (𝑃𝑖 , 𝑖 = 13, 14, … ,
20). 

Symmetric Euclidean Distance (SED): In the SED feature 

extraction approach, as seen in Figure 3(b), the Euclidean-

Distance (Eq. (2)) [28] between the upper and lower vertical 

symmetrical landmarks of the lip was calculated and the 

feature vector was obtained. In addition, the horizontal 

distance between the outer edge (𝑷𝟏 with 𝑷𝟕) and the inner 

edge (𝑷𝟏𝟑 with 𝑷𝟏𝟕) reference points is calculated and added 

to this feature vector. A total of 67 x 10=670 and 64 x 10=640 

features were obtained for each video recording of the 

AVLetters2 and AVDigits datasets, respectively, 10 features 

for each frame, and these features were given to the classifier. 

 

𝑑(𝑖, 𝑗) = √∑(𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2

𝑝

𝑘=1

 (2) 

 

where, 𝑑(𝑖, 𝑗)  denotes the Euclidean distance between two 

points (points 𝑋𝑖 and 𝑋𝑗), each represented by the 𝑝 plane. 

Central Euclidean Distance (CED): In the CED feature 

extraction approach, the spatial coordinates of the midpoint 

between the left outer edge (𝑷𝟏) and the right outer edge (𝑷𝟕) 

landmark points, which are marked with red in Figure 3(c), are 

obtained. Then, the Euclidean-Distance (Eq. (2)) between the 

other lip landmarks and this reference point was calculated and 

the feature vector was obtained. A total of 67 x 20=1340 and 

64 x 20=1280 features were obtained for each video recording 

of AVLetters2 and AVDigits datasets, respectively, 20 

features for each frame, and these features were given to the 

classifier. 

Triple Points Angles (TPA): In the TPA feature approach, 

as seen in Figure 3(d), the angles formed between the 10 

landmarks on the outer borders of the lip and the left outer edge 

(𝑷𝟏) and the right outer edge (𝑷𝟕) were calculated in radians 

according to Eq. (3) and the feature vector has been obtained. 

In addition, radial angles calculated between the left inner 

edge (𝑷𝟏𝟑) and the right inner edge (𝑷𝟏𝟕) with the 6 marker 

points located on the inner borders of the lip are added to this 

feature vector. A total of 67 x 16=1072 and 64 x 16=1024 

features were obtained for each video recording of the 

AVLetters2 and AVDigits datasets, respectively, 16 features 

for each frame, and the obtained features were given to the 

classifier. 

The third feature extraction approach proposed in this study, 

TPA, uses the radial angle measure between three points. The 

angle θ between the two vectors (𝑨𝑩⃗⃗⃗⃗⃗⃗  and 𝑩𝑪⃗⃗⃗⃗⃗⃗ ) formed by the 

points A, B and C in Euclidean space can be calculated as 

follows, 

 

𝜃 = cos−1 (
𝐴𝐵⃗⃗⃗⃗  ⃗ ∙ 𝐵𝐶⃗⃗⃗⃗  ⃗

‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖
) (3) 

 

where, ⃗⃗  ⃗ denotes the Euclidean vector, ‖⃗⃗  ⃗‖ the length of the 

vector, and “∙” the inner product. 

 

 
 

Figure 3. 20 points and features detected on the lip borders 

 

 
 

Figure 4. CNN+LSTM deep learning structure (Conv1D:1D convolution layer, F: Filter, K: Kernel, BN: Batch normalization 

layer, MP-1D: 1D max pooling layer, Dout: Dropout, PS: Pool Size, Sout: Output Space, nC: Number of class) 
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4.4 CNN-LSTM  

 

In this study, a deep learning method called CNN-LSTM, 

which uses Convolutional Neural Network (CNN) layers and 

combined with LSTM, is used to compare the performances of 

the proposed feature approaches. Although the CNN model 

has capabilities such as automatically obtaining features with 

convolution layers, its capabilities are limited in modeling data 

with a consecutiveness relationship. For this, LSTM networks 

with the ability to use previous dependencies can be used 

together with CNN. For this purpose, in this study, a deep 

learning network called CNN-LSTM, which can take into 

account the sequential changes of the landmark points detected 

on the lip in each frame during the pronunciation of letters or 

digits, was used. The structure of the CNN-LSTM architecture 

used in this study is shown in Figure 4. 

As seen in Figure 4, there are various levels of 1D-

Convolution, max pooling and fully connected layers in the 

architecture. Depending on the type of input data, various sizes 

of convolution operation can be applied. Kernel size is 

determined accordingly. In this study, 1-dimensional CNNs 

are used for convolution operations in the models, since 

feature vectors based on the distance and angle criteria of the 

lip landmarks obtained from the image are used. Various 

activation functions can be applied to add non-linearity to the 

CNN, LSTM and fully connected layers in the architecture 

presented in Figure 4. In our study, RELU (Rectified Linear 

Unit) function was applied in all layers. Softmax is used as the 

activation function in the output layer, which is the last layer 

in the architecture. In addition, number of Class (nC), which 

determine the output size of the last layer, are taken as 26 and 

10, respectively, which are the class number values of 

AVLetters2 and AVDigits data sets. 

 

4.4.1 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) is a special type of 

multilayer perceptron based on Artificial Neural Networks 

(ANN). CNN, which is a widely used deep learning method 

and especially applied to images, provides automatic obtaining 

of features by applying various filters and convolution 

operations to the images. CNN can have convolutional, 

pooling and fully connected layers in varying numbers 

depending on the problem. In addition, after the convolutional 

layers, there may be pooling layers that reduce the 

computational cost by reducing the output data of these layers. 

 

4.4.2 Long-Short Time Memory (LSTM)  

Traditional ANNs cannot use the information from the 

previous step during modeling for the current step. Recurrent 

Neural Networks (RNN), which enables information to be 

remembered, offers a solution to this problem. They do this 

with feedback connections between hidden layers that act as 

internal memory. These layers process the input data 

sequentially, using a feature vector that preserves contextual 

information. Long-Short Time Memory (LSTM) is a special 

type of RNN that can learn short- and long-term dependencies. 

The LSTM network is trained using backpropagation in time 

and overcomes the problem of disappearing gradient in long-

term dependencies in RNNs [29]. The general structure of an 

LSTM cell is presented in Figure 5. 

While traditional neural networks have neurons, LSTM 

networks have memory blocks interconnected by cascading 

layers. Each block consists of four basic gates: the forget gate, 

which determines what information from the previous unit is 

to be forgotten, the input gate which decides what to accept 

into the neuron, the update gate which updates the cell, and 

finally the output gate, where new long-term memory is 

created. The basic mathematical expressions of these gates in 

the LSTM structure are presented below [30]: 

• The gate that decides what information to enter into the 

cell is expressed mathematically as follows: 

 

𝑖𝑡  =  𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑖) (4) 

 

• Information to be forgotten from previous memory is 

controlled by the forget gate, which is mathematically 

defined as follows: 

 

𝑓𝑡  =  𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑓) (5) 

 

• The update gate that updates the cell state is expressed 

by the following equations: 

 

�̃�𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑐  ) (6) 

 

𝑐𝑡  =  𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (7) 

 

• The hidden layer of the previous time step, as well as 

the output gate responsible for updating the output, is 

expressed as: 

 

𝑜𝑡  =  𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑜  ) (8) 

 

ℎ𝑡  =  𝑜𝑡 ∗ tanh (𝑐𝑡) (9) 

 

where, 𝑊𝑥 and 𝑏𝑥  represent weight matrices and bias vectors 

( 𝑥 = 𝑖, 𝑓, 𝑡, 𝑜 ), respectively. 𝑓𝑡  forget gate vector, 𝑖𝑡  input 

(update) gate vector, 𝑜𝑡  output gate vector, 𝑥𝑡  current input 

data, ℎ𝑡−1  hidden state vector, 𝑐𝑡  current state vector, 𝜎(⋅) 

sigmoid activation function, and the * operator the elementary 

product of the vectors. 

 

 
 

Figure 5. General structure of the LSTM cell [30] 

 

4.5 Performance metrics 

 

Performance criteria such as Accuracy, Precision, 

Recall/Sensitivity, Specificity, and f-measure were used to 

reveal the performance of the approaches used in the study. 

The following expressions are used to calculate these 

performance criteria. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 
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𝑅𝑒𝑐𝑎𝑙𝑙/Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

In these equations, T, F, P, and N represent the concepts of 

true, false, positive, and negative, respectively. For example, 

TP is the number of correctly classified positive samples; FN 

indicates the number of negative samples that were 

misclassified. 

Accuracy: It is the most popular and simple method used 

to determine the accuracy of the model. This ratio is defined 

as the ratio of the number of correctly classified (TP+TN) 

samples to the total number of samples (TP+TN+FP+FN). 

Precision: Measures how good the model is at predicting 

positive events. It is the ratio of the number of samples labeled 

as positive (TP) to the total samples classified as positive 

(TP+FP). 

Recall/Sensitivity: It measures how well the model is 

suitable for detecting events in the positive class. It is the ratio 

of positively labeled samples (TP) to the total number of truly 

positive samples (TP+FN). Sensitivity is calculated similarly, 

measuring how well the model is at detecting positive events. 

Specificity: It measures how accurate the model is in 

assigning the positive class. It is the ratio of negatively labeled 

samples (TN) to the total number of truly negative samples 

(TN+FP). 

F-Measure: Precision and sensitivity (Recall) metrics are 

interrelated, and the two are combined to give the F-Measure, 

which is their harmonic mean. It is used to optimize the system 

towards precision or sensitivity. 
 

 

5. RESULTS AND DISCUSSION 
 

For the AVLetters2 and AVDigits datasets used in the study, 

the partially speaker-dependent and completely speaker-

independent results obtained by using 10 cross-validation 

results with the CNN-LSTM deep learning method are 

presented below. In the model, the RELU activation function 

and the dropout parameter value as 0.25 was chosen because 

it gave the best results. Epochs and batch size were selected as 

5000 and 100, respectively. Cross validation was carried out 

in the form of stratified sampling. Stratified sampling is a 

sampling method used in situations where the dataset can be 

divided into subgroups and each subgroup sample needs to be 

represented during sampling, as in the problem here. 
 

5.1 Partially speaker dependent results  
 

There are 182 and 90 records for each user in the AVLetter2 

(5 speakers) and AVDigits (6 speakers) datasets, respectively. 

Partially Speaker Dependent (PSD) applications were realized 

because the size of this data set did not contain enough data to 

evaluate each speaker separately for the deep learning model. 

In PSD lip-reading applications, the data set is divided into 

train and test sets as in speaker-independent applications. 

However, after the model was trained with the training dataset, 

only one speaker's data in the test dataset was selected and 

applications were carried out. The performance results 

obtained with the SED, CED, and TPA feature extraction 

approaches are given in Table 2 and Table 3. 

As seen in Table 2, for the AVLetters2 dataset, the best 

method for 𝑆1  and 𝑆4  speakers was SED+CNN-LSTM, and 

63.74% and 54.81% accuracy were obtained, respectively. For 

𝑆2 , 𝑆3,  and 𝑆5 speakers, the best method was CED+CNN-

LSTM and accuracy values of 62.82%, 67.40%, and 52.41% 

were obtained, respectively. 

In Table 3, speaker-dependent accuracy measures are 

presented according to the SED, CED and TPA feature 

extraction approaches proposed for 6 different speakers 

belonging to the AVDigits dataset. 

 

Table 2. AVLetters2 PSD accuracy (%) with CNN-LSTM 

Model (Speakers Si, i = 1,2,3,4,5) 

 
Method 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 

SED 63.74 59.34 66.65 54.81 49.81 

CED 49.41 62.82 67.40 46.64 52.41 

TPA 47.50 55.56 55.00 39.71 48.69 

 

Table 3. AVDigits speaker dependent accuracy (%) with 

CNN-LSTM Model (Speakers Si, i = 1,2,3,4,5,6) 

 
Method 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 

SED 89.49 82.23 87.09 89.17 93.36 78.36 

CED 87.50 77.50 71.07 92.50 92.50 84.17 

TPA 85.32 79.17 84.62 67.74 79.17 66.95 

 

As seen in Table 3, for the AVDigits dataset, the best 

method for 𝑆1 , 𝑆2 , 𝑆3  and 𝑆5  speakers were SED+CNN-

LSTM, and 89.49%, 82.23%, 87.09% and 93.36% accuracy 

were obtained, respectively. For 𝑆4 and 𝑆6 speakers, the best 

method was CED+CNN-LSTM and accuracy values of 

92.50% and 84.17% were obtained, respectively. 

 

5.2 Completely speaker independent results  

 

Completely Speaker-Independent (CSI) applications were 

carried out on the datasets named AVLetter2 and AVDigits 

and the datasets named AVLetAVDig, which were created by 

combining them. In Table 4, the performance values obtained 

using the CNN-LSTM deep learning model with the proposed 

SED, CED, and TPA feature extraction approaches for 

AVLetter2, AVDigits and AVLetAVDig datasets are given. 

 

Table 4. Completely speaker independent accuracies with CNN-LSTM model (%) 
 

Data set Method Train Acc. (%) Test Acc. (%) Test Precision Test Recall Test F1-Score 

AVLetters 

SED 100 59.62 0.63 0.60 0.59 

CED 100 54.81 0.57 0.55 0.54 

TPA 98.64 50.00 0.52 0.50 0.48 

AVDigits 

SED 100 86.67 0.89 0.87 0.86 

CED 100 85.00 0.87 0.85 0.85 

TPA 97.71 78.33 0.80 0.78 0.77 

AVLetAVDig 

SED 100 64.02 0.68 0.64 0.63 

CED 99.69 63.63 0.66 0.65 0.64 

TPA 94.48 57.93 0.63 0.58 0.58 
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Figure 6. CSI best model confusion matrix for each dataset 

 

As seen in Table 4, test accuracy values of AVLetter2, 

AVDigits, and AVLetAVDig datasets were found as 59.62%, 

86.67%, and 64.02%, respectively. The best highest accuracies 

for all three datasets were obtained with SED+CNN-LSTM 

method. According to these results, it is seen that quite high 

accuracies have been achieved on the AVLetters2 and 

AVDigits dataset compared to the performances of the studies 

in the literature (discussed in the following sections). In Table 

5 below, the averages of the accuracies obtained as a result of 

10 cross-folds of the test data for all data sets are listed. 

As seen in Table 5, CSI accuracy values of AVLetter2, 

AVDigits, and AVLetAVDig datasets were obtained as 53.2%, 

81.6% and 59.8%, respectively. According to these results, it 

is seen that the most successful method for all three data sets 

is SED+CNN-LSTM. 

 

Table 5. Average success rates for CSI with CNN-LSTM 

model (%) 

 

Data sets 
Methods 

SED CED TPA 

AVLetters 53.2 51.9 45.7 

AVDigits 81.6 79.7 72.9 

AVLetAVDig 59.8 57.8 52.8 

 

Figure 6 (a,b,c) shows the confusion/complexity matrices of 

AVLetter2, AVDigits, and AVLetAVDig datasets, 

respectively. These matrices were created using the 

SED+CNN-LSTM model, which has the highest accuracy 

value according to the Test datasets.  

In these matrices, normalized correct prediction rates 

(𝑅𝑖,𝑁𝑜𝑟𝑚 = 𝑋𝑖,𝑇𝑟𝑢𝑒 𝑋𝑖⁄ ) are presented (diagonal values in the 

matrix) by dividing the number of correct predictions (𝑋𝑖,𝑇𝑟𝑢𝑒) 

of each letter/digit by the total number of samples (𝑋𝑖) of this 

letter/digit. The values other than the diagonal values in the 

confusion matrix show the false prediction rates. 

 

Table 6. Success rates and directions of change 

 

 AVLetters2 AVDigits AVLetAVDig 
Direction of 

change 

0 - 1.00 0.50 (-0.50) ↓ 

1 - 0.67 0.25 (-0.42) ↓ 

2 - 1.00 0.25 (-0.75) ↓ 

3 - 0.67 0.50 (-0.17) ↓ 

4 - 0.83 0.75 (-0.08) ↓ 

5 - 1.00 1.00 (0.00) ↔ 

6 - 0.50 0.25 (-0.25) ↓ 

7 - 1.00 0.75 (-0.25) ↓ 

8 - 1.00 0.50 (-0.50) ↓ 

9 - 1.00 0.75 (-0.25) ↓ 

A 1.00 - 1.00 (0.00) ↔ 

B 0.50 - 0.50 (0.00) ↔ 

C 0.25 - 1.00 (+0.75) ↑ 

D 0.25 - 0.75 (+0.50) ↑ 

E 0.25 - 0.75 (+0.50) ↑ 

F 1.00 - 0.25 (-0.75) ↓ 

G 0.75 - 0.00 (-0.75) ↓ 

H 0.75 - 0.25 (-0.50) ↓ 

I 0.50 - 0.25 (-0.25) ↓ 

J 0.75 - 0.50 (-0.25) ↓ 

K 0.75 - 0.50 (-0.25) ↓ 

L 0.50 - 1.00 (+0.50) ↑ 

M 1.00 - 0.75 (-0.25) ↓ 

N 0.50 - 0.25 (-0.25) ↓ 

O 1.00 - 0.75 (-0.25) ↓ 

P 0.50 - 0.50 (0.00) ↔ 

Q 0.50 - 0.67 (+0.17) ↑ 

R 0.75 - 1.00 (+0.25) ↑ 

S 0.25 - 1.00 (+0.75) ↑ 

T 0.50 - 0.83 (+0.33) ↑ 

U 0.75 - 0.67 (-0.08) ↓ 

V 0.50 - 1.00 (+0.50) ↑ 

W 0.75 - 0.33 (-0.42) ↓ 

X 0.00 - 0.67 (+0.67) ↑ 

Y 0.75 - 0.83 (+0.08) ↑ 

Z 0.50 - 0.83 (+0.33) ↑ 
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In Figure 6(a), it can be seen that the letters A, F M and O 

in the AVLetters2 dataset are predicted very accurately 

(𝑅𝑖,𝑁𝑜𝑟𝑚 = 1.0). It is seen that the letters G, H, J, K, R, U, W 

and Y are predicted correctly with a high rate (𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.75), 

although they are relatively lower than the previous one. 

However, it is seen that the letter X cannot be predicted 

correctly and is confused with the letters S, N, K and F. In 

addition, it is seen that the letters C, D, E, and S are predicted 

with a low rate (𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.25).  

In Figure 6(b), it is seen that the digits 0, 2, 5, 7, 8 and 9 in 

the AVDigits data set are predicted correctly (𝑅𝑖,𝑁𝑜𝑟𝑚 = 1.0) 

with a very high rate. Although it is relatively lower than the 

previous one, it is seen that the digit 4 is also predicted 

correctly with a high rate (𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.83). However, it is 

seen that the digit 6 is predicted with the lowest rate 

(𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.5) and is mostly confused with the digits 8 and 

7, respectively (according to the high false prediction rate). 

Finally, it is seen that the digits 1 and 3 are predicted correctly 

(𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.67 ) in a good ratio between the lowest and 

highest rates. 

Figure 6(c) shows the normalized confusion matrix of 

letters and digits in the AVLetAVDig dataset created by 

combining AVLetters2 and AVDigits datasets. Accordingly, it 

is seen that the digit 5 and the letters A, C, L, R, S, and V are 

predicted very accurately. However, it is seen that the letter G 

cannot be predicted correctly and is confused with the letters 

K, B, and L. The lowest (𝑅𝑖,𝑁𝑜𝑟𝑚 = 0.25) predictions are seen 

to be 1, 2, 6 digits and the letters F, H, I and N according to 

AVLetters2 and AVDigits, respectively. 

It was observed that combining different letter and digit 

groups, increased the accuracy of our proposed SED+CNN-

LSTM model for the AVLetters2 dataset, but decreased the 

accuracy for the AVDigits dataset. For the AVLetAVDig 

dataset, the accuracy values of the AVLetters2 and AVDigits 

samples of our SED+CNN-LSTM model were found with 

66.94% and 55.00%, respectively. According to the best 

model results in Table 4, accuracy value increased by 12.27% 

for AVLetters2, but decreased by 36.54% for AVDigits. This 

is expected for AVDigits. Because AVDigits, which consists 

of 10 classes, was combined with AVLetters2, which consists 

of 26 classes, and the number of classes was increased to 36. 

In the AVLetters2 dataset, the number of classes increased 

from 26 to 36, however, as the number of samples in the 

dataset increased, the training dataset of the model increased 

and it is seen that the model's success increased by training the 

model better. 

Table 6 lists the correct prediction rates of the AVLetters2 

and AVDigits datasets and the AVLetAVDig dataset created 

by combining them, according to the confusion matrices in 

Figure 6. In addition, the changes in accuracy rates according 

to the dataset AVLetAVDig combined with AVLetters2 and 

AVDigits datasets and the directions of these changes are 

presented in the table. The first 10 rows of the table belong to 

the digits in the AVDigits dataset, and almost all of them 

(except the digit 5) show a decrease in correct prediction rates. 

This is due to the increase in the number of classes from 10 to 

36 in the combined data set, as stated before. Except for the 

first 10 lines, the other 26 lines belong to the letters in the 

AVLetters2 dataset. There was an upward change in 12 of 

these letters, a downward change in 11, and no change in the 

other 3 letters. It is seen that the number of letters whose 

accuracy change rates change up and down are almost equal. 

However, the reason for the increase in overall accuracy is that 

the sum of those whose rates of change are changing upwards 

is greater than the sum of those that are changing downwards. 

Change values are given in parentheses in the “Direction of 

Change” column in Table 6. The sign of the change values also 

indicates the direction of the change (down (↓) and + up (↑)). 

The sum of these accuracy values was +1.33 (↑) for 

AVLetters2 letters, while it was -3.17 (↓) for AVDigits digits. 

Accordingly, accuracy increased for AVLetters2 and 

decreased for AVDigits in the combined dataset. 

As a result of this study, it can be said that the reason why 

some letters/digits are misclassified is due to the similarity of 

lip movements during pronunciation, and therefore the model 

confuses the letters. Since the lip movements during the 

pronunciation of these sounds are similar, the spatial features 

obtained are also almost similar. This causes decreasing of the 

classification accuracy of the model. However, when 

compared the successful results of this study with the existing 

studies in the literature, it is seen that the proposed feature 

extraction methods are quite successful in visual-only lip-

reading applications. In the next section, the feature extraction 

approaches proposed in this study and the results obtained by 

the CNN-LSTM deep learning method used are compared 

with the results obtained in previous studies. In the next 

section, the results obtained with the CNN-LSTM deep 

learning model using the feature extraction approaches 

proposed in this study are compared with the studies in the 

literature. 

 

5.3 Comparison of results  

 

The comparison of the 10 cross-fold accuracy averages of 

the visual-only lip-reading applications obtained by using the 

proposed spatial feature approaches with the existing studies 

are presented in tables below. Comparisons between the 

results of completely speaker-independent studies in the 

literature on the AVLetters2 dataset and the results of the 

approaches proposed in this study are presented in Table 7. 

 

Table 7. AVLetters2 CSI accuracy (%) comparisons 

 
Study Features Classifier Accuracy (%) 

[19] AAM HMM 8.3 

[12] LBP-TOP K-SRC 25.90 

[12] LBP-TOP K-SRC 24.2 

[20] RTMRBM 31.21 

[31] raw-ROI B-LSTM 42.6 

[31] dif-ROI B-LSTM 32.2 

[31] raw+dif-ROI B-LSTM 37.8 

[32] CED RF 45.934 

This Study SED CNN-LSTM 53.2 

This Study CED CNN-LSTM 51.9 

This Study TPA CNN-LSTM 45.7 

 

According to Table 7, when the CSI accuracy values of the 

studies in the literature related to the AVLetters2 dataset are 

compared with the methods proposed in this study, it is seen 

that all of the proposed approaches have a higher success rate. 

As stated before, the highest success rate was obtained with 

the SED+CNN-LSTM model proposed in this study. 

Comparisons of accuracy between completely speaker-

independent studies in the literature on the AVDigits dataset 

and the methods proposed in this study are presented in Table 

8.  

When Table 8 is examined, it is seen that, similar to 

AVLetters2, all of the methods proposed in this study for the 

AVDigits dataset are more successful when compared to other 
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studies in the literature. The highest success was obtained in 

this dataset, as in other datasets, with the SED+CNN-LSTM 

method. 

 

Table 8. AVDigits CSI accuracy (%) comparisons 

 
Study Features Classifier Accuracy (%) 

[33] MDA 66.74 

[34] MDBN 55 

[20] RTMRBM 40,66 

[32] CED Knn 67,407 

This Study SED CNN-LSTM 81.6 

This Study CED CNN-LSTM 79.7 

This Study TPA CNN-LSTM 72.9 

 

 

6. CONCLUSIONS 

 

In this study, three different spatial feature approaches 

named SED, CED and TPA have been proposed for the visual-

only lip-reading problem, which is one of the most difficult 

problems. The features obtained from these feature extraction 

approaches were classified by CNN-LSTM deep learning 

method and the letter/digit pronounced in the video recording 

was tried to be predicted from the lip movements. 

In each frame in the video recordings, firstly the face and 

then the lip borders, which is our focal point on the face, were 

determined. Later on, the marker points that will be located in 

these borders and whose movements will be followed during 

lip reading have been tried to be placed in the most accurate 

way. The changes of these landmark points in the video 

recording of each pronunciation were measured spatially, and 

a feature set was created with three different approaches. By 

classifying the feature sets with the CNN-LSTM deep learning 

method, image-only lip-reading was attempted. CNN-LSTM 

is an architecture with Convolutional Neural Network (CNN) 

layers to obtain features from input data combined with LSTM. 

With this classifier and the proposed SED, CED, and TPA 

feature extraction approaches, CSI accuracy values for 

AVLetters2 were obtained as 53.2%, 51.9%, and 45.7%, 

respectively. According to these results, it was seen that the 

most successful method for the AVLetters2 dataset was the 

SED+CNN-LSTM. For AVDigits, the CSI accuracy values 

were obtained as 81.6%, 79.7% and 72.9%, respectively. 

According to these results, it was seen that SED+CNN-LSTM 

was the most successful method in the AVDigits dataset, as in 

AVLetters2.  

When the accuracy values obtained with the partially 

speaker-dependent CNN-LSTM classifier are examined, it is 

seen that the best feature extraction method varies from 

speaker to speaker. Accordingly, in the AVLetters2 dataset, 

the highest accuracy for speakers with 1 and 4 IDs was 

obtained with the SED feature method as 63.74 and 54.81, 

respectively. On the other hand, speakers with 2, 3 and 5 IDs 

had the highest accuracy with the CED feature extraction 

method as 62.82%, 67.40%, and 52.41%, respectively. For 

AVDigits, on the other hand, the highest accuracy rates were 

obtained for speakers with 1, 2, 3 and 5 IDs as 89.49%, 82.23%, 

87.09% and 93.36%, respectively, with the SED feature 

extraction method. The other 4 and 6 ID speakers were 

obtained as 92.50% and 84.17%, respectively, by the CED 

method. 

The fact that the highest accuracy values vary for different 

speakers and that different attribute methods perform better in 

different users shows that the speakers are quite effective on 

the performance. From this it can be deduced that the speakers 

are quite effective on the performance. Considering that 

speakers have different lip morphologies and different accents 

or facial expressions, it is expected that the accuracy rates are 

speaker dependent. However, the results obtained show that 

the proposed feature extraction approaches also have a 

significant effect on success. Finally, it is thought that the 

feature extraction approaches recommended in lip-reading 

applications and the classifier method used in the study can be 

used successfully in the visual-only lip-reading applications. 
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