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Hearing perception loss is the main common disabilities existing in adults confirmed by the 

auditory evoked potential exam (AEP). This technique is characterized by limited medical 

information from feedback response in full routine examination of patients. Body 

movements, measuring equipment, low-frequency noise are outside factors that cause a 

misinterpretation. In clinical workflow, AEP signals are manually classified by the experts 

in order to precise the hearing loss level. In order to enhancethe diagnosis rung rightness, 

the fully convolutional neural networks methodology is proposed to highlight reliably 

automated hearing loss analysis. The validation of the proposed approach was focused on 

494 factual incorporated auditory loss cases and 177 seen normal undergoing different 

auditory stimuli (20 dB, 50, 60... and 80 dB) from AEP recordings. The used classification 

method can represent a highly reduced labor-intensive study loads of ear nose throat (ENT) 

doctor by applying the pertinent analysis strategy for each hearing loss level and 

significantly increase the auditory diagnosis performance which provides ability for a 

computerized ENT assessment. Compared to state-of-the-art methods, the used technique 

presents a higher accuracy rate by requiring hearing loss level classes. 
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1. INTRODUCTION

The auditory evoked potential (AEP) is an electrical signal 

produced by the human or animal nervous systems when an 

external stimulus is presented. The EPs are created after a 

sensory stimulus such (AEP), or visual auditory evoked 

potential (VAEP). This proposed work is focused on the AEP 

signals analysis; it is produced by an external ‘sound’ 

proceeding to the brain. The research of AEP signals has 

current early assessment of hearing loss recognition [1]. The 

Hearing perception level analysis has been the most frequent 

sensory disability throughout the world. More than 275 million 

people around the world are affected by several kind of 

hearing loss associated to different causes [2].  

 AEP signals consist of both positive and negative Peaks, 

characterized by different parameters such as: latency, 

amplitude and behavioural correlation [3]. Depending upon 

the amplitude and latencies, Auditory brainstem responses 

(ABR) can be subsequently divided into different periods with 

short (0-12 milliseconds), middle (8-50 milliseconds) and high 

latency of (50-300 millisecond) [3].  

Many researchers generally focused on the evaluation of 

ABRs waveform, the early signal period (10-12 msec) of AEP. 

AEP signal waveform contained different peaks (I-II-III-V), 

which pre-dominant presence of the V Peak can essentially 

determine the existence of hearing perception [4, 5]. 

Different works have been proposed in order to 

automatically identify the Peak V using a matched filter [6], 

spectral technique [7] and wavelet method [8]. 

The major difficulties encountered in classifying the AEP 

wave Peaks are essential to understand the structure of the 

signal with definite different Peaks, hence the charge of 

averaging the AEP signal becomes difficult and time 

consuming ; then, it’s rather difficult to separate the related III 

and V peaks; it is also a several task to explore and recognize 

the AEP peak latencies for abnormal hearing dataset from 

different sound intensities varying between (the 20 dB to 100 

dB) (see Figure 1), which can be caused by auditory nerve 

pathology. Furthermore, it has been reported that the detection 

of amplitude of Peak V is complex when the stimulation 

intensity is below the 30 dB, thus, the defined V Peaks are no 

longer obvious [9]. 

Numerous research works [10, 11] have been approved in 

the field of the measurement of hearing perception level which 

is produced by different auditory disorders. Until today, the 

assessment of this problem represents a difficult task for 

audiologists. The Information about hearing state in the AEP 

signal is in its amplitude and the characteristic wave Peaks as 

was mentioned above. However, assessment of the AEP 

waveform status is often based on a particular evaluation of 

different factors at presence of irregularities of the brainstem 

response.  

Furthermore, a development of automatic methods, used to 

categorize AEP signal according to diverse levels of hearing 

perception states, can assure serious improvement in hearing 

diagnostics. The main aim of such algorithms is to recognize 

quality of different hearing level by precise measurements 

assisting clinicians in the diagnosis process [12].  

In fact, an accuracy of a classification method relies on 

nature of filtering, feature extraction and classification 

techniques used for AEP analysis process. In other words, the 

global features contribute to the performed filtering and 
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discrimination technique and must be highly accurate to assess 

presence or absence of different hearing perception loss. 

 

 
 

Figure 1. An exemplary of AEP signal 

 

In addition, current algorithms [13, 14] used for automated 

hearing loss level identification applied the AEP Peaks as a 

clinical features. In the literature [15], the examination of 

clinical information’s is appreciably significant for the 

analysis process. Therefore, different methods can present an 

error prone and cannot provide appropriate performance due 

to different groups of hearing perception level [16, 17].  

Original automatic diagnostic methods are probable to be 

available and need more ability for hearing loss detection. The 

CAD systems are considered to support ENT doctor in the 

process of visual screening the AEP signal in order to avoid 

the miss-diagnosis. 

The use of automatic strategy using the deep learning 

algorithms allows for a consistent judgment process. In this 

work, a significant method is presented to reduce the time 

consuming generated by different methods [18] so to help in 

the performance of the experimental result related to 

monitoring patient’s status.  

The proposed work is a really task for the organization 

process by the application of fully convolutional neural 

networks (F-CNN) technique. A fast category is carried out to 

distinguish between four kinds of classes: Normal (NL) and 

hearing loss level (mild, moderate, severe) in abnormal data. 

All AEP signals are collected from the AEP technique. 

This paper is structured as follows: section 2 is reserved to 

hearing loss level classification using CNN method based on 

AEP signals. Results and discussions are illustrated in section 

3 and conclusions in section 4.  

 

 

2. CLASSIFICATION USING FULLY 

CONVOLUTIONAL NEURAL NETWORKS 

 

In this work, an AEP machine is employed [19]. The used 

datasets were collected from the Charles Nicolle Hospital of 

Tunis taken through the Nihon Kohden technique. The AEPs 

study was done in a semi-dark room with quiet surroundings. 

The participants were requested to keep away from needless 

movement and to remove all the metallic ornaments. 

Recordings of AEPs were attained with Nihon Kohden 

Neuropack using blinking clicks in each ear at 10 Hz sampling 

rate. Different responses were obtained for both, the ears 

separately [20], to illustrate the cause of hearing loss. The AEP 

results were extracted for the latencies of I, II, III, and V waves 

and Inter-Peak Latencies (IPL) [21] (see Figure 2). 

The AEP signal consists of a sequence of peaks (I–VII) that 

frequently; follow a stimulus was recorded by two electrodes 

fixed on the mastoid applied of each ear and one on the 

forehead. The I and II waves are generated by the auditory 

nerve, where the peaks are due to the electrical activities of 

nuclei at higher levels of the ascending auditory pathway in 

the brainstem. Waves III is presumed to be generated in the 

cochlear nucleus. The proposed technique is achieved and 

evaluated using 671 subjects: 154, 156, 214 are confirmed 

respectively to have three kind of hearing loss levels, and 177 

seen normal.  

 

 
 

Figure 2. The proposed methodology 

 

The proposed technique contains two steps: (a) AEP feature 

collection and (b) data discrimination using F-CNN approach. 

The use of deep learning techniques is applied to divide data 

into four categories: (mild (m), Moderate (M), severe (S) and 

Normal cases (NL)).  

The first task of the classification approach was presented 

in our previous works [22, 23]. An extensive description [23] 

is presented, where plenty of details are preserved to acquire 

competent performance in signal classification results. In fact, 

the procedure proposed in this work is divided into two main 

phases: (a) feature extraction, (b) data discrimination using F-

CNN method to differentiate subjects affected by different 

types of hearing loss. Nevertheless, the proposed work intends 

to create an automatic method for early hearing loss 

recognition using AEP waveform.  

 

2.1 From back propagation (BP) to deep learning 

 

Deep learning (DL) is a new ground in machine learning 

(ML) technique. Its methods create different models with 

hierarchical representations of the input data. The higher-level 

representations of the model correspond to abstract concept, 

defined as a non-linear composition of the lower-level 

representation. For discrimination tasks, these representations 

are more opposed to the inappropriate variations (e.g. noise) 

that are often represent in the input data. These features 

increase the diverse descriptive factors that are significant 

classification. Recently, deep learning methods have been 

presented to medical signals investigation with hopeful 

clinical results in various applications, including prediction for 

Alzheimer’s [24], Parkinson disorders [25] and vestibular 

disorders identification [26]. Though, some studies used DL 

models to recognize diverse patterns in patient dataset 

characteristics. 
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Table 1. Parameters of the proposed F-CNN method 

 
Layer Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Layer Name 

Input feature vectors: 

-The amplitude 

–Inter-Peak Latencies (IPL) 

Cov1D 
Batch 

Normal 
MaxPooling1D Flatten Dense Dense 

Output shape - 91×100 - - - 1×100 1×(4 outputs) 

Other Layer 

Parameter 
- 

Activation=ReLU, 

_Strides=3 

 

- 

The Pooling size=2, 

strides=3, ReLU, strides=1 

 

- 

ReLU, 

Droput 

Rate=0.2 

Softmax 

 

 
 

Figure 3. Illustration of the 6-layer F-CNN method 

 

The DL models [27] are divided into a range of sub-types 

using different training procedures such as: deep neural 

networks, recurrent neural networks, fully-convolutional 

neural networks (F-CNNs) [28, 29] and deep belief network 

[30]. 

 

2.2 Classification procedure 

 

In the F-CNN structure, the First layers are applied to pick 

up features vector, where, the output layers are required to 

create a specific categorization by establishing the major 

parameters in the training step, validation and test. Also, the 

proposed F-CNN structure for the hearing loss level detection 

is presented. In Table 1, the input layer of the CNN model, the 

1D convolution is achieved using 6 vector values presenting 

the amplitude and Inter Peak Latencies (IPL). Primary, the 

activation layer is normalized with the batch layer. Then 

feature maps are formed in the max pooling layer with the 

maximum values of the output features from previous used 

layers. In addition, the reduced feature size is indispensable 

task toward reducing the time consuming of the F-CNN 

method. Indeed, the max pooling output parameters are used 

as an input for the flattened layer. Then, acquired feature 

vectors are used in the dense-connected layer with (512 unit 

vectors). In the last layer of the networks, the softmax layer is 

employed presenting the output classes of data. Really, a 

dropout parameter is used to detect the correct class. 6-layer of 

the F-CNN network is applied to classify AEP signals into 

three hearing loss databases compared to normal cases (see 

Figure 3).  

The F-CNN method is executed to discriminate between 

normal (Nl) and different patients affected by different hearing 

loss levels. Yet, for diverse classification works [31], the F-

CNN represents a high superiority data analysis. Taking into 

account the resemblance between AEP signals, F-CNN 

process is considered using the input learning features to get 

the most pertinent parameters used for a suitable illustration of 

the data classes (1× 4 output). 

Here, F-CNN is basically used to learn the filter values 

using the back-propagation technique. The choice of this 

method was completed related to the results of MSE rates. 

In this work, a validation experience is applied to choose the 

pertinent F-CNN structure. The Iteration is composed of four 

folds for the training and one fold for the validation set.  

 

 

3. RESULTS AND DISCUSSION 

 

An automatic analysis of AEP waveforms features, the 

database contains 671 subjects represent different subjects, the 

signals duration is between (1000-3000) samples, are used for 

the analysis of the optimized F-CNN structure. In order to 

categorize hearing loss level classes compared to normal data 

sets, 60%, 20% and 20% of the data in each sub-datasets were 

applied for the training validation and testing stages (see Table 

2). 

To show the efficiency of the proposed method, various 

CAD methods are tested and validated.  

From the cross-validation results represented in Table 4, it 

is clear that the F-CNN classifier is more suitable than the 

PCA-SVM, PCA-MNN methods in terms of error rate using 

the AEP datasets. 

The hyper-parameters for each classifier measured for 

automatic hearing loss diagnostic are achieved after numerous 

experiences. In reality, classification parameters established in 

the Table 3 shows the relevant grouping that gives the best 

accuracy percentages during all experiments. In fact, the pre-

processing blocs of (PCA) are used to reduce the parameter 

number of the input networks. Table 4 shows the 

categorization result accomplished by the used discrimination 

methods (PCA-MNN and PCA-SVM) [32], a classification 

result is not suitable for the analysis of different hearing loss 

levels compared to the used F-CNN [33].  
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Table 2. AEP signals used for the hearing loss level 

identification 

 
Classes AEP Dataset Training Validation Testing 

mild 124 75 25 24 

Middle 156 94 31 31 

Severe 214 129 43 42 

Normal 177 106 36 35 

 

After several experiences, we achieve that the used DL 

technique seems to be effective using F-CNN classifier 

projected for perfect hearing loss level categorization method. 

The F-CNN scheme is applied to get a promise recognition 

class’s rate. As shown in Figure 4, the used strategy provides 

considerable labelling results in view of statistical 

measurements (accuracy, specificity and sensitivity) 

respectively with an average of 91.29%, 91.78% and 92.14%. 

The employed cross correlation algorithm improves 

significantly the classification results of AEP signal, shown in 

the ROC curves (see Figure 5), in particular for the CNN 

classifier, the AUC are improved to 89.4%. 

Significant classification system of AEP signals is 

established using the F-CNN technique. The proposed CAD 

system offered adequate classification results and clearly 

distinguished hearing loss levels from the healthy subjects. It 

was the highest recognition accuracy compared with others 

works [34].  

With these obtainable results, we can determine that the 

used classification system can consistently be employed to 

help audiologist for unlimited cases that require further 

attention. 

 

Table 3. The hyperparameters for all used classifiers 

 
Methods Input Hidden layer Neuron in hidden layer Output Threshold Training method Epoch number 

PCA-MNN 3 1 12 4 0.9 CG 100 

PCA-SVM 3 1 12 4 0.9 RBF 100 

F-CNN 6 1 12 4 - SBP 100 
*Note: CG: Conjugate Gradient algorithm; RBF: Gaussian radial basis kernel function; SBP: standard back-propagation 

 

Table 4. Results of validation error (%) of the F-CNN classifier, PCA-MNN and PCA-SVM, using cross-validation method 

tested on the AEP data 

 
Used technique Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

(PCA-MNN) 12.7±1.8 12.1±1.0 10.6±1.8 9.3±1.5 8.5±1.0 

(PCA-SVM) 5.8±1.1 5.2±0.8 5.6±0.8 5.8±0.8 5.3±0.6 

F-CNN 7.3±0.8 8.2±0.6 7.2±0.7 8.5±0.5 8.2±0.5 

 

 
 

Figure 4. The F-CNN classification performance versus training and test results 

 

 
 

Figure 5. Validation results of the F-CNN technique using ROC curves 
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4. STATISTICAL MEASURES  

 

The dataset extraction assignment for a routine analysis is a 

severe task; towards recording all information’s to diagnose 

the operative reasons and conditions of actual hearing loss. In 

practice, our study based for the essentially part on recovering 

the diagnosis of AEP signals.  

In this work, it’s an interesting strategy to apply statistical 

results on the hearing loss diagnosis. Indeed, resulting 

measurement harmony can identify the included data ranking 

in term of report supplementary information and reduce time 

processing as an optimization methodology.  

Figure 6 reveals the correlation coefficient results flanked 

by physical and pathological status. It is remarkable to notice 

the dataset, possessed a significant correlation as highly 

accurate measures in I and V Peak waves and latency I-V 

examination.  

First, a logic approach is illustrated over the positive 

resulting for the clinical data and age relation; recognizing the 

hearing loss condition. Hence, the relationship between the 

existence of physical state and the affected by hearing loss is 

then the more or less the subject age increases, the more the 

hearing loss level degree will be present. As well as, the three 

derived feature supplied the high correlation with the same 

physical characteristic; the average is about 53%, 51% and 

45% respectively for I-Peak wave, V-Peak wave and latency 

I-V.  

 

 
 

Figure 6. Resulting statistical coefficients flanked by 

amplitude and peak wave status 

 

 

5. CONCLUSIONS 

 

In this paper, an advanced method using auditory evoked 

potentials is proposed to classify data affected by hearing loss. 

At this point, an effective technique presents the classification 

part of AEP signal. F-CNN technique is applied to categorize 

hearing loss achieving 92% of accuracy rate. Compared to 

recent state of the art, results reveal that the used strategy is 

very adequate for an experimental purpose. Expert diagnostic 

techniques can be based on the discoveries of this strategy. In 

future works, different; attempts can be generated to 

characterize different classes of hearing loss level. This work 

presents various assistances for automatic audiologist 

applications. 
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