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The growing volume of image data calls for better real-time performance of image feature 

extraction algorithms. To enhance the recognition accuracy of image targets, it is significant 

to build a more scientific deep learning network. Multimodal cross convolution or densely 

connected blocks have been introduced to classic deep learning networks, aiming to promote 

the recognition of image targets. However, these attempts fail to satisfactorily extract 

detailed features from the original image. To solve the problem, this paper explores the 

image target recognition based on multiregional features under hybrid attention mechanism. 

Specifically, a convolutional neural network (CNN) was established for extracting 

multiregional features based on the loss function of local feature aggregation. The model 

consists of three independent CNN modules, which are responsible for extracting the global 

multiregional features and the local features of different regions. Next, the channel domain 

attention mechanism and spatial domain attention mechanism were embedded in the 

proposed CNN, such that the model can recognize targets more accurately, without 

increasing the computing load. Finally, the proposed network was proved effective through 

the training and testing on a self-developed sample set of surveillance video images. 
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1. INTRODUCTION

With the development of deep learning, data mining, and 

artificial intelligence, computer vision has made remarkable 

progress in the fields of medical care, engineering construction, 

education, agriculture, and light industry [1-8], and displayed 

its strong ability and excellent effects in target recognition 

based on multiregional feature matching. The relevant 

innovative technologies provide strong support for accurate 

target recognition for all feature points in the captured images 

[9-14].  

Traditionally, image features are extracted by principal 

component analysis (PCA), linear discriminant analysis 

(LDA), local linear embedding, etc. [15-20]. However, the 

growing volume of image data calls for better real-time 

performance of image feature extraction algorithms [21-24]. 

Although deep learning can learn the features of image targets, 

the network is too complex, and the computing load is too high. 

To enhance the recognition accuracy of image targets, it is 

significant to build a more scientific deep learning network. 

Salient region detection plays an important role in image 

preprocessing. How to highlight salient regions evenly 

remains a difficulty in computer vision. Inspired by absorbing 

Markov chain, Zhang et al. [25] proposed a salient region 

detection method driven by multi-feature data. The method 

relies on super pixels to extract salient regions. Firstly, a 

function was constructed to calculate the absorption 

probability of each node on the absorbing Markov chain. 

Based on the image contrast and spatial relationship, the prior 

saliency mapping was modeled for the salient nodes in the 

foreground. Then, the saliency of each node was computed 

according to the absorption probability. To accurately detect 

the occluded regions in the video, Zhang et al. [26] developed 

a video occluded region detection approach based on multi-

feature fusion. Drawing on light flow and brightness, three 

new occlusion-related features were designed, namely, 

brightness block matching, maximum flow difference, and 

flow residual, and the relevant calculation methods were 

defined. 

It is always challenging to find information rich regions in 

the scene. Li et al. [27] presented a scene recognition method 

based on multi-scale salient regional features. Firstly, the 

multi-scale salient regions were detected in the scene. Then, 

the features of each region were extracted through transfer 

learning, using a convolutional neural network (CNN). Cheng 

et al. [28] extended the U-Net into a contour-aware semantic 

segmentation network for medical image segmentation. The 

network consists of a semantic branch and a detail branch, and 

introduces a spatial attention module to adaptively suppress 

redundant features. Compared with the latest strategies, their 

network performed remarkably on challenging public medical 

image segmentation tasks. Zhao et al. [29] devised a recurrent 

slice-wise attention network (RSANet) based on regional self-

attention mechanism. The network focuses on the information 

flow through the entire image, rather than the local 

convolutional operations. It mines the relationship between 

adjacent pixels, contributing to a more logical understanding 

of image contents. 

Multimodal cross convolution or densely connected blocks 

have been introduced to classic deep learning networks, 

aiming to promote the recognition of image targets. Some 

researchers suggested refining the structure with dilated 

convolution, or using the sequential extrusion module. 

However, these attempts fail to satisfactorily extract detailed 
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features from the original image. To solve the problem, this 

paper explores the image target recognition based on 

multiregional features under hybrid attention mechanism. The 

main contents are as follows: (1) The authors set up a CNN for 

extracting multiregional features based on the loss function of 

local feature aggregation. The model consists of three 

independent CNN modules, which are responsible for 

extracting the global multiregional features and the local 

features of different regions. (2) The authors embedded the 

channel domain attention mechanism and spatial domain 

attention mechanism in the proposed CNN, such that the 

model can recognize targets more accurately, without 

increasing the computing load. (3) The authors verified the 

effectiveness of the proposed CNN through the training and 

testing on a self-developed sample set of surveillance video 

images. 

 

 

2. DEEP LEARNING MODEL 
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Figure 1. Process of image target recognition based on 

multiregional features 

  

This paper focuses on real-world image sets of surveillance 

videos. Compared with the lab image sets with sample 

constraints, the real-world image sets of surveillance videos 

are highly flexible and stochastic, involving complex scenes, 

diverse angles, conclusion, and targets with rich process, 

expressions, and action. Figure 1 shows the process of image 

target recognition based on multiregional features for the real-

world image sets of surveillance videos. 

The traditional deep learning models, which are based on 

softmax loss function, perform poorly in feature extraction of 

such image sets. To solve the problem, this paper sets up a 

CNN for extracting multiregional features based on the loss 

function of local feature aggregation. The model consists of 

three independent CNN modules, which are responsible for 

extracting the global multiregional features and the local 

features of different regions. In addition, a supervision layer 

with the loss function of local feature aggregation was 

introduced to the three independent CNN modules. In this way, 

the proposed CNN could extract rich and diverse image 

features with strong complementarity, robustness, and 

identifiability, compared with single regional features. Figure 

2 displays the framework of CNN for multiregional feature 

extraction. 
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Figure 2. Framework of CNN for multiregional feature 

extraction 

 

Let ai be the i-th image eigenvector in the fully-connected 

layer before the supervision layer; Ml{ai} be the set of image 

features in the l nearest regions, which belong to the same class 

of ai; 1/l∑a∈Ml{ai}a be the center of the set; m be the batch size. 

Then, the local loss function of the proposed CNN can be 

expressed as: 
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By minimizing Kkt, each image feature can gradually 

approximate the center of the set of image features in the l 

nearest regions, which belong to the same class as the feature. 

The minimization makes the said set more compact, reducing 

the intra-cluster feature difference. Let Kr be the softmax loss; 

Kkt be the local loss; μ be the weight coefficient to balance the 

two losses. Then, the final loss function can be expressed as 

K=Kr+μKkt. 

This paper needs to reduce the difference in the set of same 

class image features in the nearest region, while enlarging the 

difference between image features in different classes. Thus, 

it is not sufficient to consider the local loss alone. Hence, the 

between class feature difference Kx can be defined as: 
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During the training of the CNN, it is necessary to search for 

the image feature aj, which is the closest to ai in the 

neighborhood l1 but belongs to another class. The reduce the 

effect of noise on network training, the center ad of set of 

image features in the neighborhood l1, which belong to the 

same class of ai, was introduced: 
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Let Ml2{aj} be the set of image features in the neighborhood 

l1, which belong to the same class of ai; l2 be the number of 

image features in the set. Then, a parameter ξ was introduced 

to balance ai with ad. Then, Kx can be defined as: 

596



 

( )
 2

2

1 2
2

1 1
1

2
l j

m

x i j

i a M a

K a a a
l

 
= 

= − − −   (4) 

 

During the CNN training, the between-class feature 

difference Kx should increase continuously. Let μ2 be the 

balancing weight coefficient. Then, the loss function of local 

feature aggregation for the proposed CNN can be defined as: 
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(5) 

 

where, Kkt is responsible for reducing the difference in the set 

of same class image features in the neighborhood; the other 

parts of the loss function are responsible for increasing the 

between class difference of image features. The parameter α 

only avoids exploding gradients and infinitely large loss, and 

does not affect the final effect of feature extraction. The final 

loss function of the deep learning network can be expressed as: 

 

1r LFAK K K= +  (6) 

 

The optimal feature extraction model can be obtained 

through the forward and backward learning training of the 

proposed model. This paper imports the real-world video 

images into the global multiregional feature extraction module, 

extracts the global multiregional eigenvector of each image 

from the fully connected layer, and further obtains the 

multiregional feature points of image targets. Based on the 

multiregional feature points of image targets, the image was 

divided into two parts, in order to acquire local image targets 

with rich features. 

After that, the local image targets were imported into the 

other two CNN modules for extracting features from a single 

region, aiming to obtain the local details of image targets. 

Except for the detailed configurations of CNNs, the structure 

and execution steps of the proposed network are the same as 

those of the global multiregional feature extraction module. 

Due to the size difference between input images, there are 

disparities between the extracted features. In this way, the 

global image target is complementary with local features. 

Hence, our model extracts more features from image targets, 

making the multiregional features of image targets more 

representative. 

Let g0
f be the global multiregional feature; g1

k and g2
k be the 

single reginal local features. The two types of features are 

serial connected to obtain the aggregated feature gx of image 

target. Then, we have: 

 

( )0 1 2; ;x f k kg g g g=  (7) 

 

Importing gx into the SVM for classification, the final 

predicted label of each image target can be obtained: 

 

( )out xlabel argmax g=  (8) 

 

3. HYBRID DOMAIN ATTENTION MECHANISMS 

 

To further enhance the ability of our network to depict the 

details of image targets, this paper embeds the channel domain 

attention mechanism and spatial domain attention mechanism 

in the proposed CNN, that the model can recognize targets 

more accurately, without greatly increasing the computing 

load. 

In the channel domain attention mechanism, the size of 

feature map A is denoted as F'×Q'×D', and the size of feature 

map V is denoted as F×Q×D. Let hi be the convolutional 

kernel of the i-th channel; A be the input; * be the 

convolutional operation; aj be the j-th input feature map; vi be 

the feature of the feature map V in the i-th channel, which is 

obtained after the convolution of feature map A. Then, we 

have:  
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Let Gap be global average pooling; Gcov be a series of 

convolutional operations. Then, the value ri of the i-th channel 

after global average pooling can be expressed as: 
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After the Gap operation, the feature map is dimensionally 

reduced from F×Q×D to 1×1×D. Let ρ be the weight of 

learning for each channel. Then, the input features are 

activated by Gef: 

 

( ) ( )( ) ( )( )2 1, ,efG r W h r W W W r   = = =  (11) 

 

After being processed by the fully connected layer W1 and 

the activation function of rectified linear unit (ReLU), the 

feature r of image target is reduced to the dimension of 

1×1×d/s. Then, the feature dimension is increased to 1×1×D, 

after being processed by the fully connected layer W2 and 

sigmoid activation function ε(·). Let ȧ be the product between 

the learning weight ρi of the i-th channel, and the i-th feature 

map of the original video image. Then, the channel weights of 

the feature map of the original video image targets can be 

redistributed by: 

 

( ),wd i ia G v =  (12) 

 

The channel weights can be re-calibrated through the above 

operations. 

In the spatial domain attention mechanism, the input feature 

map V can be expressed as V=[v1,1,v1,2,...,vi,j,...,vF,Q] by spatial 

dimensions, where vi,j is all the features at position (i, j). Firstly, 

the features are compressed through a convolution with the 

kernel Urw. The projection tensor t obtained by convolution is 

of the size F×Q:  

 

*rwt U V=  (13) 

 

The size of Urw is 1×1×1. Suppose the tij of each projection 

position represents the linear combination of all channel 

features at position (i, j). The projection tensor t is nonlinearly 

activated by Sigmoid function. The activation results are 
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multiplied with each position of the original video image 

features. Let δ(tij) be the importance of all the spatial 

information of the feature at position (i, j) relative to the image. 

Then, the output of the spatial domain attention mechanism 

can be expressed as: 

 

( ) ( ) ( ) ( )1,1 , ,

11 , , , ,i j F Q

SAA SAA ij FQV G V t v t v t v   = =
 

 (14) 

 

After re-calibration of δ(tij), the region positions not highly 

correlated with the target recognition task are eliminated, 

highlighting the region positions strongly corelated with the 

target. 

The channel domain and spatial domain attention 

mechanisms are jointly introduced to the proposed network, 

i.e., the features solved by the two attention mechanisms are 

superimposed channel by channel and pixel by pixel: 

 

MAA SAA PAAV V V= +  (15) 

 

If the input at position (i,j,l) of image target feature map V 

is important in both attention mechanisms, it would be 

assigned a high activation value by our model. Figure 3 

displays the hybrid attention mechanism. 

 

 
 

Figure 3. Hybrid attention mechanism 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS  

 

The configuration of relevant parameters affects the final 

target recognition accuracy of images. Hence, this paper 

carries out four experiments on the four parameters involved 

in model calculation, including the number of centers in the 

set of image features in the nearest regions, the weight 

coefficient ξ that balances ai and ad, the weight coefficient μ 

that balances Kr and Kkt, and the weight coefficient μ2 that 

balances 1/Kx+α and Kkt. The experimental results are shown 

in Figure 4. 

The results of the first experiment are displayed in Figure 4 

(1). During the first experiment, ξ, μ, and μ2 were fixed, while 

the number of centers in the set of image features in the nearest 

regions was changed. The optimal target recognition accuracy 

was achieved at around 30 centers. 

The results of the second experiment are displayed in Figure 

4 (2). During the second experiment, the number of centers, μ, 

and μ2 were fixed, while ξ was changed. The target recognition 

accuracy peaked at ξ=0.9. 

The results of the third experiment are displayed in Figure 

4 (3). During the third experiment, the number of centers, ξ, 

and μ2 were fixed, while μ was changed. The highest target 

recognition accuracy was observed at μ=1×10-6. 

The results of the fourth experiment are displayed in Figure 

4 (4). During the fourth experiment, the number of centers, ξ, 

and μ were fixed, while μ2 was changed. The best target 

recognition accuracy was observed at μ2=0.3. 

To verify the effectiveness of the hybrid domain attention 

mechanism in our model, this paper carries out training and 

verification on a self-developed sample set of surveillance 

video images. Figures 5 and 6 show how the loss function of 

local feature aggregation and Dice coefficient of our model 

varies with the number of iterations in training. It can be seen 

that the loss and Dice coefficient both tended to be stable, 

when the number of iterations reached 800. This may be 

attributed to the insufficiency of samples.  

Our CNN extracts multiregional features based on the loss 

function of local feature aggregation. The weighted mean and 

direct mean of the target recognition accuracy of our model 

were 90.21% and 82.6%, respectively. To demonstrate its 

superiority, our model was compared with several other 

typical models, in terms of recognition accuracy. The results 

are shown in Table 1. The contrastive models are U-Net based 

on multi-scale and attention mechanism (MA-UNet), shape 

attentive U-Net (SAU-Net), attention-based nested U-Net 

(ANU-Net), multi-region ensemble CNN (MRE-CNN), 

Attention-UNet, three-dimensional U-Net (3D U-Net), three-

dimensional volumetric fully convolutional neural network 

(3D V-net), multi-channel fusion CNNs (MCF-CNNs), no-

new-Net (nnU-Net), and three-dimensional universal U-Net 

(3D U2-Net). 

 

  
(1) Results of the first experiment (2) Results of the second experiment 
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(3) Results of the third experiment (4) Results of the fourth experiment 

 

Figure 4. Target recognition accuracies at different parameter settings 

 

 
 

  

Figure 5. Loss curve of our model Figure 6. Dice coefficient curve of our model 

 

Table 1. Recognition accuracies of different models 

 
Model Weighted average (%) Direct average (%) 

MA-UNet 82.61 45.02 

SAU-Net 81.35 51.92 

ANU-Net 80.49 73.35 

MRE-CNN 83.62 71.81 

Attention-UNet 84.14 79.62 

3D U-Net 85.92 73.95 

3D V-net 83.06 70.62 

MCF-CNNs 87.19 73.68 

nnU-Net 86.73 75.13 

3D U2-Net 85.64 75.6 

Our model 90.21 82.6 

 

Table 2. Confusion matrix of 7 classes of expressions 

 
 Cars Bikes Adults Kids Trees Buildings Others 

Cars 87.48 1.62 1.95 2.51 0.94 1.69 4.18 

Bikes 22.63 59.17 3.2 5.37 6.85 4.72 4.94 

Adults 2.2 3.6 63.29 9.58 12.63 6.31 7.41 

Kids 0.48 0.19 0.72 48.52 0.37 0.48 2.68 

Trees 0.39 0.45 2.81 4.15 65.64 0.63 7.05 

Buildings 2.84 1.96 5.38 7.31 1.57 46.91 5.12 

Others 1.82 1.03 2.95 3.08 4.39 0.16 4.25 

As shown in Table 1, our model achieved higher weighted 

mean and direct mean of target recognition accuracy than the 

other 10 models. Finally, the confusion matrix of different 

classes of image targets is listed in Table 2. 

As shown in Table 2, the highest recognition accuracy 

(87.48%) was achieved on cars, and the lowest (4.25%) was 

achieved on others. The difference in target recognition 

accuracy mainly comes from the size imbalance between 

different types of targets in the sample set of surveillance 

video images. The number of appearances for the targets of the 

others class peaked at 546, and that for the targets of the kids 

and buildings classes peaked at 1,487. Both are much smaller 

than the number of appearances for the targets in the other four 

classes. Meanwhile, almost 17.24% the “others” targets were 

misidentified as trees and buildings in the image background. 

This is because the local similarity between the “others” 

targets and the “trees” and “buildings” targets. 

 

 

5. CONCLUSIONS 

 

Based on hybrid attention mechanism, this paper develops 

a method for the image target recognition based on 

multiregional features. Firstly, a CNN was constructed for 
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extracting multiregional features based on the loss function of 

local feature aggregation. There are three independent CNN 

modules in the network, which are responsible for extracting 

the global multiregional features and the local features of 

different regions. After that, the authors embedded the channel 

domain attention mechanism and spatial domain attention 

mechanism in the proposed CNN, such that the model can 

recognize targets more accurately, without greatly increasing 

the computing load. Next, this paper carries out four 

experiments on the four parameters involved in model 

calculation. The experimental results verify the influence of 

the parameter configuration on the final recognition accuracy 

of image targets, and show the correct values of these 

parameters. In addition, the authors tested how the loss 

function of local feature aggregation and Dice coefficient of 

our model varies with the number of iterations in training. It 

can be seen that the loss and Dice coefficient both tended to be 

stable, when the number of iterations reached 800. Finally, the 

superiority of our model was confirmed through comparison 

with several other typical models, in terms of recognition 

accuracy. 
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