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Weeding is the fundamental task in agriculture to increase yields crop. Accurate weed 

recognition is major prerequisite in precision agriculture. Precision weeding significant 

reduces the usage of herbicides in farming. Deep learning has been a major endeavor for 

enhancing the learning performance, particularly for classification. This paper proposes a 

Deep Residual Convolutional neural network (DRCNN) with Contrast Limited Adaptive 

Histogram Equalization (CLAHE) for weed and crop classification helpful for accurate 

individual targeting of weeds. In this method, initially data augmentation is performed to 

avoid overfitting on training data, A deeper residual network architecture is defined through 

residual connections in CNN architecture this architecture improves gradient flow through 

the network and for training the deeper network. The experiments are carried out on the 

publicly available dataset with four groups of images viz., soil, grass, soybean and broadleaf. 

Different state-of-the-art pretrained networks like AlexNet, and VGG-16 Net are also 

investigated and the results are compared. The proposed method yielded an accuracy of 

97.3% which is superior to other methods. 
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1. INTRODUCTION

Crop production is the major objective of agriculture. For 

global food management it is very essential. Crop is a 

cultivated plant while weed is an unwanted plant which grows 

randomly in the field. Weed control is very vital in crop 

production. Precision weed control is a challenging task to get 

quality crops, and can reduce the amount of herbicides to 

ensure the best results. This is possible with the use of latest 

techniques based on artificial intelligence. Different machine 

learning and deep learning algorithms are used recently in 

precision agriculture. There can be many varieties of weed that 

are harmful for crop production and need to be detected in the 

early stages of growth. The basic resources which are essential 

for crop growth viz., soil, water, sunlight and also the 

fertilizers used are effected by these unwanted weeds. From 

the literature it is observed that about one third of crops are 

effected due to growth of weeds. Weed and crop classification 

is fundamental in agriculture, rural medicine, forestry and 

commercial applications. In the past, weed detection and 

removal was done by men, later some research work was done 

and implemented on weed–crop classification for automatic 

detection and removal. subsequently robots came into 

existence, but suffer accuracy problem existing with 

traditional classification techniques. So we propose a deep 

learning method to perform weed/crop classification. 

2. RELATED WORK

Weed and crop recognition is a challenging research area 

and various computer vision algorithms are developed 

focusing this area. The fundamental approaches are feature 

based and recently different machine learning and deep 

learning algorithms are developed aiming at recognizing 

weeds accurately. Contrast-Limited-Adaptive-Histogram- 

Equalization (CLAHE) is widely used image enhancement 

method. The following subsections outlines the related work 

of the preprocessing method, Feature based and Deep learning 

based approaches. 

2.1 Feature-based approaches 

Earlier, weed and crop identification methods are based on 

low level feature extraction like color, texture and shape. In 

research Shape, texture and fractal dimensions are integrated 

for weed recognition. In their work Support vector machine 

and Shafer-Dempster evidence theory are used [1]. In maize 

and weed classification Color indices is used. Here Support 

Vector Data Description (SVDD) is also used and investigated 

under different weather conditions [2]. In precision farming 

weed control task is vital. To achieve this SURF features 

integrated with an optimized Gaussian Mixture Model is 

employed [3]. Plant and weed classification in UAV imagery 

is done for smart farming [4]. In addition, multi spectral 

features are used in weed recognition [5]. The features 

mentioned used for recognition are taken on human experience. 

The recognition performance is different on different datasets 

[6]. 

2.2 Deep learning based approaches 

With feature based methods, different machine learning 

techniques are used for classification purpose. Recently these 
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are replaced by deep learning techniques to detect weed in real 

time. Deep learning gives solution for many drawbacks in 

traditional methods and reduces the human effort in feature 

extraction from agriculture images [7, 8]. As example Sugar 

beet plant and background separation with semantic 

segmentation for RGB data by convolution neural networks in 

real time fields was performed [9]. Real time blob wise Sugar 

beet and weed classification was also implemented by using 

CNN [10]. Different crop like Maize plant classification from 

weed using CNN with different filters and hardware also 

yielded the best results compared to traditional methods [11]. 

Leaf species detection with smart phone was implemented 

based on CNN approaches by extracting the features like shape, 

texture, color., etc. [12] and two CNN approaches, one 

approach for plant- soil classification and other approach for 

crop-weed classification with segmentation [13], weed 

detection with deep CNN [14] is done. In precision agriculture 

sliding window approach for the detection of weed regions 

with CNN [15]. Convolvulus sepium detection in sugar beet 

field is done using D-CNN based on YOLOv3 architecture 

[16]. For multiclass weed classification for deep weeds dataset 

inception-v3 and ResNet-50 are used [17]. Weed detection for 

canola fields is implemented by deep CNN along with 

maximum likelihood classification [18]. Detection of weed 

instances in cereal fields is done with fully CNN based on a 

modified version of the GoogLe Net architecture. It is used to 

detect weeds in winter wheat fields particularly with heavy 

leaf occlusion [19]. Generally in CNN random initial weights 

are used. Instead of this process, K-means unsupervised 

feature learning method is used in CNN [20]. Combination of 

multiple features and deep confidence network is used for 

weed detection [21]. Unsupervised deep learning and semi-

automatic data labeling is used for weed identification which 

yielded an accuracy of about 97% [22]. 

These Deep learning approaches yield good accuracy when 

large dataset is available for training. So these are not suitable 

to agricultural recognition as the labeled data available is 

limited [23]. CNN feature based graph convolutional network 

(GCN) based on extracted weed CNN features for four 

different weed datasets with different methods viz., AlexNet, 

VGG16 and ResNet-101 are investigated [24]. The design of 

an accurate weed and crop recognition model with significant 

learning capability when the availability of data is very limited 

is still a challenge. In this paper we focused on robust and high 

efficient crop/weed classification system using convolutional 

neural networks. 

 

2.3 Preprocessing 

 

There are different Histogram Equalization methods 

proposed in research for image enhancement. In Dynamic 

Histogram Equalization the histogram of image is partitioned 

depending on local minima. Then partitioning is done 

considering different gray level ranges. This is done before 

equalization [25]. In Brightness Protecting Dynamic 

Histogram Equalization (BPDHE) mean brightness of the 

image is maintained. The mean intensity of both the output 

image and the input image is nearly the same [26]. However 

CLAHE has superior contrast limiting than ordinary adaptive 

histogram equalization. CLAHE is widely used for enhancing 

medical imagery, satellite images, etc. [27]. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Dataset 

 

The data for this work is taken from a public repository [28]. 

As per dos Santos Ferreira (2017), soybean crop is grown in 

Brazil, the images are captured using drone, the size of this 

dataset is 1.2GB. These captured images contain about 15336 

images of the soil, soybean, broadleaf and grass weeds. In 

these images 3249 belong to soil, 7376 images are of soybean, 

3520 are of grass and 1191images are of broadleaf weeds. In 

this work, from this dataset 1000 images from each group are 

taken. Figure 1 shows Examples of image dataset classes. 

 

 
 

Figure 1. Examples of image dataset classes. First, Second, 

Third and Fourth Columns examples of Broadleaf, Grass, 

Soil, Soybean classes 

 

3.2 Contrast limited adaptive histogram equalization 

 

As a preprocessing step, image enhancement through 

CLAHE is used for better visual interpretation of images.  

CLAHE algorithm improves the contrast of image and 

limits the amplification, for improving the quality of image. In 

conventional adaptive histogram equalization the noise in the 

near constant regions in image is amplified. this is due to over 

amplification of contrast in the near constant regions. This 

problem is addressed by CLAHE by limiting the contrast. 

CLAHE algorithm has basically three steps i) portition of the 

input image ii) For each part histogrm equalization is done 

using a predefined threshold iii) The histogram is computed 

for every partition as set of bins. If these values in a bin are 

above the threshold, they are distributed to the remaining bins. 

Following this the Cumulative Distribution Function value is 

computed for the histogram values. These Cumulative 

Distribution Function values of each part are scaled. Then 

mapped using the input image pixel values. With bilinear 

interpolation, the resulting blocks are combined to generate an 

output image with improved contrast [29]. 

 

3.3 Architecture of DRCNN 

 

Deep residual convolutional neural network architecture [30, 

31] is used in Figure 2. architecture and specifications. The 

propagation of Parameter gradients will become easy from the 

final layer to the previous layers of the network because of 

residual connections. Consequently, the training of deeper 

networks is possible and highly accurate results on very 

difficult tasks are achieved. 
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Figure 2. Architecture deep residual convolutional neural 

network 

 

3.4 Data augmentation 

 

The batches of data are transformed with operations like 

resizing, rotation, and reflection. During training, in a random 

manner the images are flipped. This is done along the vertical 

axis. Then the images are translated to four pixels in horizontal 

direction and vertical direction. Data augmentation of training 

image data with the above operations will avoid over fitting of 

the network. Here at each epoch, the training data is perturbed. 

Thus different data set is used at each epoch, while the number 

of images at each epoch does not change. 

 

3.5 Proposed network architecture 

 

 
 

Figure 3. Proposed architecture 

 

Figure 3 shows the architecture of residual network consists 

of i) Main branch having sequential connection of 

convolutional layer l, batch normalization layer, and ReLU 

layers ii) Additionally the main branch convolutional units are 

bypassed with Shortcut connections. The outputs of these 

shortcut connections and convolutional blocks are added 

element by element. The Shortcut connections makes the flow 

of the parameter gradients from the output layer to the 

previous layers of the network to be easy, thus making network 

training faster and more reliable. 

 

3.6 Main branch  

 

There are five sections in the main branch: i) Image input 

layer, ii) 3 stages of convolutional layers with different feature 

sizes viz., 32x32, 16x16, and 8x8, respectively, with each 

stage containing 2 convolutional units, iii) The last section 

contains global average pooling, fully connected layer, 

softmax layer, and classification layer. 

 

3.7 Shortcut connections 

 

Shortcut connections are added around the convolutional 

units. No operations are performed by most of the shortcut 

connections. They just add element wise to the convolutional 

units outputs. A deeper residual network is created, three 

convolutional units per each stage i.e., 9 convolutional units 

and with a width of 16. 

 

3.8 Training of network & evaluation 

 

To train the network, different training options are specified. 

Here stochastic gradient descent with momentum optimizer is 

used. Gradient descent method minimizes the objective 

function J(θ), which is a function of model parameter θ. This 

is done by updating the parameters in the opposite direction of 

the gradient of the objective function ∇θJ(θ). To achieve this 

local minimum, the learning rate η is selected properly. This 

selection determines the step size. γ is the momentum term. v 

represents the weights of the neural network. Updation of 

weights are done by the formula 

 

𝑣𝑡 = 𝛾𝑣𝑡−1 +ⴄ𝛥𝛳J(θ) 

 

The network is trained for 50 epochs. The accuracy on the 

training set and also on the validation set is obtained. 

 

 

4. RESULTS 

 

For the evaluation of results on both training images and 

validation images a confusion matrix is obtained. This is a 

table which illustrates the details of actual and predicted 

classes generated by the system. This matrix represents the 

actual in rows and predicted in columns. Diagonal elements 

indicate number of correctly classified images. The other 

elements indicate misclassified images. Figure 5 and Figure 6 

shows the confusion matrix of size 4x4 for the 4 categories 

broad leaf, grass, soil, soybean images classes using DRCNN 

without and with CLAHE algorithm. 

Results 

Validation Accuracy: 97.25% 

Elapsed time: 17 minutes 44 seconds 

Iteration per Epoch: 87 

Maximum Iterations: 4350 

Hardware source: Single CPU 

Learning rate: 0.025 
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Figure 4. Training progress with CLAHE 

 

From Figure 4, the graph is of two parts one is Iteration(x-

axis) vs Accuracy(y-axis).in the upper x-axis 10, 20, 30, 40, 

50 are epochs and lower divisions of 0, 500, 1000, 1500, … 

4500 are Iterations and y-axis from 0 to 100 in steps of 10. 

Similarly in the second part of the graph is for Iteration(x-axis) 

vs Loss(y-axis).in the x-axis upper divisions of 10, 20, 30, 40, 

50 are epochs and lower divisions of 0, 500, 1000, 1500, … 

are Iterations, and y-axis from 0 to 0.14 in steps of 0.2. 

 

 
 

Figure 5. Confusion matrix for weed/crop classification with 

DRCNN 

 

 
 

Figure 6. Confusion matrix for weed crop classification with 

DRCNN + CLAHE 

 
 

Figure 7. Classification of each group of images in four 

groups 

 

From Figure 7, it is observed that 289 broableaf, 291 grass, 

soil 300 and 287 soybean are correctly classified out of 300 in 

each class of images. 

 

 
 

Figure 8. Classification accuracy of individual groups of 

images and over all accuracy 

 

Table 1. Performance comparison 

 
S.No Method /Network Accuracy(%) 

1 Alex-Net 95.17 

2 VGG-16 Net 95.75 

3 DRCNN 96.33 

4 DRCNN with CLAHE (Proposed) 97.25 

 

 
 

Figure 9. Comparison with other pre-trained networks 

 

Figure 5 and Figure 6 are the confusion matrices for 

weed/crop classification with DRCNN and DRCNN + 

CLAHE respectively. From Figure 7. It is observed that 289 

broableaf, 291 grass, soil 300 and 287 soybean are correctly 

classified out of 300 in each class of images. Figure 8 shows 
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the classification performance of broadleaf, grass, soil, 

soybean and average performance of these 4 classes. 

Table 1 shows the performance comparison of different 

methods Alex-Net, VGG-16 Net with DRCNN and DRCNN 

with CLAHE(Proposed). Figure 9 is the graphical 

representation of Table 1. 

 

 

5. CONCLUSION 

 

In this work, a method was developed to classify different 

types of weeds and soybean crop images, which would be 

helpful in discriminating between different types of weeds and 

also to detect weed images in crops. Deep Residual 

Convolutional neural network (DRCNN) worked well in 

recognizing the images, with yielded accuracy of 96.3% after 

applying simple histogram equalization for enhancing the 

images. However, with the CLAHE algorithm, the 

classification was much better with an accuracy of 97.3%. 

Data augmentation is additional feature which enhanced the 

recognition capability of CNN architecture. Compared to 

pretrained architectures viz., Alexnet and VGG-16, our 

method demonstrated superior performance. In future using 

the designed architecture, the detection of weeds in soybean 

crop images can be investigated. 
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