
A New Framework Containing Convolution and Pooling Circuits for Image Processing and

Deep Learning Applications with Quantum Computing Implementation

Hasan Yetiş*, Mehmet Karaköse

Department of Computer Engineering, Fırat University, Elazig 23119, Turkey

Corresponding Author Email: h.yetis@firat.edu.tr

https://doi.org/10.18280/ts.390212 ABSTRACT

Received: 24 February 2022

Accepted: 10 April 2022

The resource need for deep learning and quantum computers' high computing power

potential encourage collaboration between the two fields. Today, variational quantum

circuits are used to perform the convolution operation with quantum computing. However,

the results produced by variational circuits do not show a direct resemblance to the classical

convolution operation. Because classical data is encoded into quantum data with their exact

values in value-encoded methods, in contrast to variational quantum circuits, arithmetical

operations can be applied with high accuracy. In this study, value-encoded quantum circuits

for convolution and pooling operations are proposed to apply deep learning in quantum

computers in a traditional and proven way. To construct the convolution and pooling

operations, some modules such as addition, multiplication, division, and comparison are

created. In addition, a window-based framework for quantum image processing applications

is proposed. The generated convolution and pooling circuits are simulated on the IBM

QISKIT simulator in parallel thanks to the proposed framework. The obtained results are

verified by the expected results. Due to the limitations of quantum simulators and computers

in the NISQ era, the used grayscale images are resized to 8x8 and the resolution of the

images is reduced to 3 qubits. With developing the quantum technologies, the proposed

approach can be applied for bigger and higher resolution images. Although the proposed

method causes more qubit usage and circuit depth compared to variational convolutional

circuits, the results they produce are exactly the same as the classical convolution process.

Keywords:

quantum computing, quantum deep

learning, quantum information processing

1. INTRODUCTION

Today, deep learning (DL) is used in every field from self-

driving cars to artificial intelligence (AI) that can write poems

and draw pictures [1-3]. Besides its success, the high

computatiınal power they need is one of the biggest

disadvantages of DL. A DL network can run over and over for

the same input data, and it needs a lot of different data [4].

Since training a DL network from scratch is very difficult and

requires very powerful computers, today's DL-related works

are usually carried out through pre-trained networks [5].

DL consists of steps such as convolution, pooling, and a

fully-connected layer. The steps of DL are given in Figure 1

[6]. Today, the most commonly used DL networks in the

literature are CNN (Convolutional Neural Network), RNN

(Recurrent Neural Network), and LSTM (Long Short-Term

Memory) [7]. However, convolution and pooling operators

used in the feature extraction phase are common to each [8].

Input

filters Convolution Pooling Fully-connected

Feature Extraction Classification

Label 1
Label 2

Label 3

Label n

repeats

Figure 1. General DL steps

Supercomputers are known as the most powerful computers

today. For example, the Fugako supercomputer, which is on

the list of the best 500 supercomputers in 2020, consumes up

to 30-40 MWh of power [9, 10]. In contrast, quantum

computers that are reported to be exponentially faster than a

supercomputer, have a power consumption of only 25 kWh

[11, 12]. Quantum computers offer significant potential for

certain problems in terms of processing power. DL and

Quantum Computing (QC) are closely related in terms of

complementing each other [13].

1.1 Motivation

In this study, the quantum computation models of

convolution, and pooling which are used in DL networks, have

been carried out in a classical way that differs from the

literature. In literature, the studies about quantum machine

learning are focused on variational quantum circuits which

aim to emulate the target function within an arbitrarily small

error with fewer circuit elements [14]. The main motivation of

the study is to model DL steps exactly in their original form in

a quantum computing environment. Our supportive

motivations are listed below:

• Training of DL networks is a time-consuming process that

requires high-performance computing (HPC).

• Existing DL networks are usually pre-trained networks. It

is predicted that the success of a DL network trained from

scratch will be more than that of a pre-trained one [5].

Traitement du Signal
Vol. 39, No. 2, April, 2022, pp. 501-512

Journal homepage: http://iieta.org/journals/ts

501

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390212&domain=pdf

• Lack of computational power is one of the biggest

obstacles to the training of DL networks.

• QC has high computing power with low power

consumption [9, 10].

• With the use of QC in DL, the training of DL networks

from scratch will be easier and better solutions can be

achieved by trial and error experiments.

• Implementation of DL networks in a proven classical way

ensures the results with exact high accuracy, as opposed

to the possible results of variational circuits.

• With the practical use of QC in AI, a new era for AI will

open its doors [15, 16].

1.2 Background

Since QC is based on quantum physics, it differs

fundamentally from binary computing. This difference is also

seen in the basic gates used in circuit creation. The basic

quantum gates are Hadamard, Pauli-X (NOT), Pauli-Y, Pauli-

Z, Phase, pi/8, CNOT, Swap, and Toffoli gates [17]. In QC,

the CNOT, and Toffoli gates are used to make the qubits

entangled. The Hadamard gate is a frequently used gate to puts

the inputs into superposition. Thanks to the superposition

principle, quantum computers are capable of parallel

processing [18]. The basic quantum gates and notations used

in the study are given in Table 1. For detailed information

about quantum gates, readers are encouraged to read [17, 19].

Table 1. Essential quantum gates used in this study

Gate Name Symbol Mission

Pauli-X

(NOT)

Take the inverse of the qubit

Hadamard H
 Puts the inputs in superposition

Controlled

Not (CNOT)

Take the inverse of the target qubit only if

the control qubit is 1

Multi

Controlled

Toffoli

(MCT)

...

Take the inverse of the target qubit only if

the control qubits are satisfied the condition

(filled circle means 1, hollow circle means

0). If it has only 2 filled control qubits, the

gate is called Toffoli.

Controlled

Swap

Swap the target qubits only if the control

qubit is 1

Quantum algorithms, or circuits, can be developed by using

basic quantum gates [20]. Early examples of these algorithms

are the Deutch, Shor, and Grover algorithms, which are

developed in the 1990s [21-23]. It has been shown that with

these basic algorithms, quantum computing can be performed

faster than binary computing. However, it is not easy to run

the developed algorithms on hardware. Although Shor's

algorithm was developed in 1994, it is implemented for the

first time on a real quantum computer in 2001 for factoring the

number 15 [24]. It is seen that quantum algorithms were

developed before suitable quantum computers and suitable

quantum computers become available much later.

1.3 Literature

Many studies aim to use the advantage of QC in different

machine learning methods [25-28]. DL is a machine learning

method, based on Artificial Neural Network (ANN), and even

more on perceptrons. There are also many studies in the

literature on the realization of perceptrons with quantum

circuits [29-32]. Apart from these, a pure literature summary

of recent studies on quantum DL is given in Table 2 with their

strengths and weaknesses. As seen in the table some studies

aim to realize convolution and pooling steps with variational

quantum circuits. The main contribution of the paper is

implementing the DL steps classically. It has not been proven

how the performances obtained as a result of small size and

limited trials of variational circuits will work in big data. The

study guarantees that the results obtained with the study will

be the same as the results obtained with the proven traditional

DL network.

Table 2. Recent studies in the literature

Ref.

Year
Main Contribution Difference from our study

[33]

2021

A novel image recognition

framework is proposed for

optical quantum computers.

The proposed framework is for

optical quantum computers.

[34]

2021

It has been suggested to

perform the convolution

process more effectively

using the QRAM model.

It has been suggested that the

QRAM model be used in the

variational convolution process.

[35]

2020

Hybrid machine learning

tools have been created and

made available for the

Tensorflow library.

It allows modeling of

variational quantum circuits for

convolution and pooling.

[36]

2020

Variational circuits have

been proposed for quantum

DL.

Variational circuits, which have

not been proven for big data, are

used.

[37]

2020

Algorithms using the QRAM

model have been proposed

for the convolution process

The proposed algorithms are

realized by serialization instead

of iterative convolution. This

requires a higher number of

qubits.

[38]

2020

It has been suggested

Quantum CNN algorithm be

used in breast cancer

diagnosis through images.

Variational circuits, which have

not been proven for big data, are

used.

[39]

2020

Classification has been made

on the MNIST data set using

the Tensorflow quantum

platform.

Variational circuits, which have

not been proven for big data, are

used.

[40]

2020

Quantum circuits with 2, 3,

and 4 window sizes have

been proposed for the binary

convolution process.

The proposed quantum circuit is

for binary inputs. Only 2,3,4

dimensional circuits are

handled.

[41]

2019

Variational circuits for

quantum convolution and

pooling have been proposed.

Variational circuits, which have

not been proven for big data, are

used.

2. MATERIALS AND METHODS

In this section, used quantum image representation model

and quantum modules such as addition, multiplication,

comparison, and sorting are explained.

2.1 Quantum image representation

Images are frequently used as input data in DL methods.

The storage of an image in conventional computers is carried

out in matrix form. There are different color representation

methods for storing images such as grayscale images.

502

Grayscale images are capable of expressing each pixel in a

single color without disturbing the contours of the picture. To

set the DL steps to work on quantum computers, the input data

must first be transformed into a quantum representation model.

Some approaches such as qubit encoding, amplitude encoding,

and feature encoding are used for encoding the classical data

to quantum data. Different models such as NEQR (Novel

Enhanced Quantum Representation), FRQI (Flexible

Representation of Quantum Images), SQR (Simple Quantum

Representation), etc. are proposed for quantum image

representation [42]. In the study, the NEQR model, which is a

qubit encoding approach, is preferred to apply arithmetic

operators easily and work with gray-level images [43].

According to NEQR, a pixel is stored as shown in (1), where
|𝐶𝑌𝑋⟩ is color, |𝑌⟩, and |𝑋⟩ are coordinates. Considering the

color depth of |𝐶𝑌𝑋⟩ is q qubits, the colors in the range of [0-

2𝑞−1] can be coded as in classical computers. The NEQR

representation for the 2𝑛𝑥2𝑛 image is given in (1). A sample

image and its representation for n=1, are given in Table 3.

|𝐼⟩ =
1

2𝑛
 ∑ ∑ |𝐶𝑌𝑋⟩|𝑌⟩|𝑋⟩

2𝑛−1

𝑋=0

2𝑛−1

𝑌=0

 (1)

Table 3. Sample NEQR model for n=1

Sample Image Representation

00000000

00 01

10 11

10000000

11000000 11111111

𝐼 = [
0 128

192 255
]

|I⟩ =
1

2
(

|00000000⟩ ⊗ |00⟩ +
|10000000⟩ ⊗ |01⟩ +
|11000000⟩ ⊗ |10⟩ +
|11111111⟩ ⊗ |11⟩

)

2.2 Basic modules for quantum circuits

This section introduces the basic modules required for DL

convolution and pooling.

2.2.1 Addition module

To create the adder module, half and full adders circuits are

used. While the half adder takes two inputs, the full adder

considers the previous carry bit as well as the input values. The

sum of qubits is actualized by taking the inverse of the ancilla

qubit, which is 0 at the beginning if one of the inputs is 1.

When both 2 inputs are 1, then the sum qubit is 0 and the carry

qubit is 1. In this way, the truth table of the adder is ensured.

Half and full adder quantum circuits are given in Figure 2.

While the whole image belongs to the full adder, the dotted

rectangle represents the half adder circuit.

|𝑎𝑛

|0

|0

|𝑏𝑛

|𝑐𝑛−1
|𝑎𝑛

|𝑏𝑛

|𝑐𝑛−1

|𝑆𝑛

|𝑐𝑛

Figure 2. Quantum full adder circuit where the dotted line is

for a half adder, 𝑎𝑛 and 𝑏𝑛 are nth bits of inputs, 𝑐𝑛−1 is input

carry bit, 𝑐𝑛 is output carry bit, and 𝑆𝑛 is the result bit

Using these adders sequentially, an adder circuit with n

qubit is created [44]. In the adder circuit, the output must be

one qubit more than the inputs. The temporary carry bits are

garbage qubits, which are not necessary for output. There are

quantum adder circuit designs with extra garbage and carry

bits [44]. But for the operations such as convolution and

pooling, the extra qubits make it harder to build the circuit.

The suggested module to perform quantum addition without

using extra qubits can be seen in Figure 3.a, where |a⟩ and |b⟩
are the input states. The output |a + 𝑏⟩ is overwritten on

input |b⟩. For large sums that cannot be expressed in n qubits,

one more qubit must be added to the output. If the sum can be

expressed with n qubit, there is no need extra (carry) qubit.

The quantum adder circuit with one carry qubit is given in

Figure 3.b for n=3 [45].

+
b

n
|𝑎

n
|𝑏

|𝑎

|𝑎 + 𝑏
n+1

(a)

a0

a1

a2

b0

b1

b2

c

s0

s1

s2

s3
(b)

Figure 3. Quantum self-adder module and circuit a) Adder

quantum circuit module where |a⟩ and |b⟩ are the inputs with

n qubits, |a + 𝑏⟩ is the output with n+1 qubits b) 3-qubit self-

adder circuit, the output is stored in s3s2s1s0

2.2.2 Plus 1 and minus 1 modules

+1n|𝑎 |𝑎 + 1

|𝑎1

|𝑎𝑛−2

|𝑎0

|𝑎𝑛−1

|𝑎𝑛−3

|𝑎2

... -1n|𝑎

|𝑎1

|𝑎𝑛−2

|𝑎0

|𝑎𝑛−1

|𝑎𝑛−3

|𝑎2

...

a b

|𝑎 − 1

(a)

+1n|𝑎 |𝑎 + 1

|𝑎1

|𝑎𝑛−2

|𝑎0

|𝑎𝑛−1

|𝑎𝑛−3

|𝑎2

... -1n|𝑎

|𝑎1

|𝑎𝑛−2

|𝑎0

|𝑎𝑛−1

|𝑎𝑛−3

|𝑎2

...

a b

|𝑎 − 1

(b)

Figure 4. Plus 1 and Minus 1 quantum circuits. a) Plus 1

circuit, b) Minus 1 circuit

Quantum plus 1 and minus 1 operators are important for

fetching a window from the encoded image. For the plus 1

module, all qubits are checked, starting with the most weighted

qubit first. If all subsequent qubits are 1, the inverse of the

current qubit is taken. At the end of the process, the last

significant qubit a0 is inverted. The plus 1 quantum circuit is

given in Figure 4.a [46]. In reversible circuits, a state can be

503

reverted by applying the operators in reverse order. So minus

1 module can be written as reverse order plus 1 module. The

minus 1 quantum circuit is given in Figure 4.b.

2.2.3 Multiplication module

Multiplying binary numbers can be calculated by the sum

of shifted numbers. Since modeling the multiplication process

requires parameterized circuits and loops, 2, and 4

multiplication modules are proposed [14]. Multiplying a

number with the power of 2 can be practically provided by

shifting the qubits and giving the last qubit as 0 [44]. By

considering the possibility of the original inputs being used

later by other circuits, extra qubits should be used. The

modulus of multiplication by 2 and 4 are given in Figure 5 [44].

The dotted lines represent the circuits with no carry (ancilla)

qubits.

x2
n

out

in

anc.

|𝑎

|0

|𝑎𝑥2

q0

q1

q2

q3

0

q0

q1

q2

q3

q4

q
4q

3q
2q

1q
0|0

|0

|0

|0

(n+1)

(a)

x4
n

out

in

anc.

|𝑎

|00

|𝑎𝑥4

q0

q1

q2

q3

0

q0

q1

q2

q3

q4

q
5q

4q
3q

2q
1q

0

|0

|0

|0

(n+2)2

0q5

|0

(b)

Figure 5. Quantum multiplication modules for 2 and 4 [44].

a) The quantum x2 module and its circuit, where |𝑎⟩ is input,

|a𝑥2⟩ is output. b) The quantum x4 module and its circuit,

where |𝑎⟩ is input, |a𝑥4⟩ is output

2.2.4 Division module

In binary numbers, dividing by the power of 2 can be

accomplished by shifting the bit right. Assume that the number

will be divided by 2𝑚 . Then, the last m qubit gives the

remaining, and the number obtained by shifting the input m

times right gives the output. Unlike the multiplication module,

the direction of the shifting changes. Moreover, if n qubits are

used at the input, (n-m) qubit is obtained as the output. The

quantum division modules are given in Figure 6 [44].

/2
n

outin
|𝑎 |𝑎/2

q0

q1

q2

q3

q0

q1

q2

q3

q
3q

2q
1q

0

|0

n |0

|0

|0

(a)

/4
n

in
|𝑎 |𝑎/4

q0

q1

q2

q3

q0

q1

q2

q3

q
3q

2q
1q

0

|0

|0

|0

|0

n
out

(b)

Figure 6. Quantum division modules for 2 and 4. a) The

quantum /2 module and its circuit, where |𝑎⟩ is input, |a/2⟩ is

output. b) The quantum /4 module and its circuit, where
|𝑎⟩ is input, |a/4⟩ is output

2.2.5 Comparison module

A circuit for quantum comparison is proposed by Li in the

literature [47]. In this study, a new quantum comparison circuit

is proposed by optimizing [47]. With the proposed circuit, it is

aimed to increase the applicability of the comparison circuit

by using fewer qubits and gates. The proposed comparison

circuit takes 2 n qubit inputs and compares them. The proposed

circuit and modular presentation are given in Figure 7. The

output of the proposed comparison circuit is as given in (2).

𝑒1𝑒0 = {

00, 𝑖𝑓 𝑥 = 𝑦
10, 𝑖𝑓 𝑥 > 𝑦

01, 𝑖𝑓 𝑥 < 𝑦
11, 𝑛𝑒𝑣𝑒𝑟

 (2)

n

2

n

2
out

in1in1

anc.

cmp1
grb.

|𝑎⟩ |𝑎⟩

|0⟩

|0⟩ |𝑒⟩

n n
in2in2

|𝑏⟩ |𝑏⟩

(a)

0

0

0

q0

q1

q2

q3

q4

q5

q6

q7

c
q3 vs q7

İf c==0 İf c==0

q2 vs q6 q1 vs q5

0 0

in
1

2

0

in
2

e0

e1

(b)

Figure 7. The proposed quantum compare module. a)

compare module, b) open form of the module for 4 qubits,

where 𝑞0-𝑞3 refers to input a, 𝑞4-𝑞7 refers to input b, 𝑎8,𝑞9

refers to ancilla or output, 𝑞10 refers to garbage qubits

2.2.6 Controlled swap module

In the controlled swap circuit, if the control bit is 1, the

inputs switch places, if it is 0, the inputs are output in the same

order. This circuit requires an extra control qubit. The

controlled swap module is given in Figure 8 [48]. If the first

output is a, the second output must be b; if the first output is b,

the second output must be a.

n

1

n
in1'in1

ctrl.

cswp

|𝑎 |𝑎
n n

in2'in2
|𝑏

|𝑐

|𝑏 or

|𝑎 |𝑏 or

q0

q1

q2

q3

a0

a1

a2

b0

q4 b1

q5 b2

q6 c

Figure 8. Controlled swap module, where c is the control bit,

a and b are the n qubit inputs to be swapped. If the control bit

is 1, then in1’=b, and in2’=a; otherwise: in1’=a, and in2’=b

504

2.2.7 Sorting module

Comparison and controlled swapping circuits are required

for sorting. The sorting module is given in Figure 9 [46]. If the

small value is desired to stay on top, the control qubit must be

connected to 𝑒0. If the large value is desired to be at the top,

the control qubit must be connected to 𝑒1.

n

2

n

2
out

in1in1

anc.

cmp2
grb.

|𝑎

|0

|0 |𝑒

n n
in2in2

|𝑏

n
in1'in1

ctrl.

cswp

n
in2'in2

|𝑒0

|𝑒1
max

min

(in2 > in1)

(in1 > in2)

sort

Figure 9. Sort module which uses compare and controlled

swap sub-modules, where a and b are the n qubit inputs to be

sorted. If output 𝑒0 of compare module is connected to the

controlled swap control bit, then in1’ is the minimum in2’ is

the maximum; otherwise in1’ is the maximum, in2’ is the

minimum

2.2.8 Limit module

The limit circuit ensures that the output takes the max value

when it exceeds the max. The limit circuit with max value 7

(lim8) is given in Figure 10, and the output is given in (3). If

the original output is not wanted to be collapsed, the

corresponding qubit is copied to another qubit by CNOT, and

the qubit is collapsed.

𝑓(𝑥) = {
𝑎2𝑎1𝑎0, 𝑥 < 8
111, 𝑒𝑙𝑠𝑒

 (3)

a0

a1

a2

a3

c
İf c==1

0

İf c==1

0

İf c==1

0

4
 q

u
b

it
s

in
p

u
t

3
 q

u
b

it
s

o
u

tp
u

t
a2

a1
a0

Figure 10. Limit circuit for 3 qubits. If 𝑎3 qubit is 1 (in other

words if the number exceeds binary 111), then the other

qubits are set to 1 (in other words the number set to binary

111)

3. THE PROPOSED METHOD

This section shows how to perform operations such as

convolution, and pooling quantum operations with the

proposed framework.

3.1 Convolution

The convolution process is one of the main operations that

makes DL different from other machine learning methods. The

convolution process is carried out as given in Figure 11 and

equation (4). As can be seen from the equation, the

convolution process can be defined as the sum of dot products.

So, it is possible to model a quantum convolution circuit with

multiplication and addition modules.

Filter Input Output2x2

Figure 11. Example classical convolution process

𝑠 = ∑ ∑ 𝑚𝑖𝑗 . 𝑎𝑖𝑗

𝑛

𝑗=0

𝑛

𝑖=0

 (4)

Designing a quantum multiplier circuit is very difficult at

this stage of quantum computers. For quantum multiplication,

it is necessary to develop a cyclic working structure with

quantum circuit models that can take parameters or have a

memory unit. For the same reason, it is hard to train DL

networks. But multiplication or division with the power of 2 is

easy to implement by shifting qubits. By using these modules,

the convolution operation is applied. Figure 12 shows a 2x2

window and sample masks to be applied to this window. The

quantum model circuit required for the application of the

masks in between Figure 12.b and Figure 12.e are given in

between Figure 13.a and Figure 13.d. The extended version of

Figure 13.d is given in Figure 14.

a00 a01

a10 a11

Input Filters

a b c d e

0 0

0 1

1 1

1 1

2 1

1 1 0

0.5 0.25

0.25

Figure 12. Example input and filters for convolution

Figure 14 is obtained by changing the modules in Figure

13.d with their quantum circuit equivalent. Each module is

separated by dashed lines. Since the weight corresponding to
|𝑎11⟩ in the original filter is 0, this value is not used in creating

the convolution circuit. In the example convolution operation

in Figure 14, it is assumed that each of the inputs has 3 qubits

(n=3). It can be obtained the circuits with a larger number of

inputs and qubits by properly adapting the modules. In the

circuit, firstly, input |𝑎00⟩ is divided by 2, and inputs |𝑎01⟩ and

|𝑎10⟩ are divided by 4. The division is actualized by bit shifting.

It should be noted that the division operation is performed by

rounding to lower digits. After the division, the basic quantum

circuit equivalents of the addition modules are written. First,
|𝑎00⟩ and |𝑎01⟩ are added together and written to |𝑎01⟩. Then

|𝑎01⟩ and |𝑎10⟩ are added together and written on |𝑎10⟩. Here

in the example, since the sum of the weights is 1, the carry

qubit is not required. At the end of the process, the result in
|𝑎10⟩ is copied to the output qubits S.

3.2 Pooling

Pooling is the process of eliminating other pixels by making

505

a selection in a window. Common pooling methods in DL are

min pooling, max pooling, mean pooling, and average pooling.

According to min pooling, by choosing the smallest value in a

window, other values are ignored. According to max pooling,

the highest value is chosen. Mean pooling is performed by

sorting the data in the window and selecting the value in the

middle. Average pooling is done by averaging the values.

3.2.1 Min / Max / Mean Pooling

Min / Max / Mean pooling is performed using sorting

circuits. The quantum circuit required for full sorting operation

is given in Figure 15 [46, 49]. But for min pooling, it will be

sufficient to apply the sequential sorting modules once. That

is, only the first part, which calculates in1’, is satisfying. With

the change of the control bit given to the sorting circuits, the

circuit will work reversely and bring the max element to in1’.

If we want to apply mean pooling, we look for in(k/2)’ output.

Once the in(k/2)’ output is determined, there is no need to

continue sorting. Therefore, (k-1) sorting modules are required

for min and max-pooling. The number of sorting modules that

should be used for mean pooling is calculated as ∑ (𝑖𝑘−1

𝑖=⌊
𝑘

2
⌋

),

where k is the number of inputs. The quantum circuit for max

pooling is given in Figure 16.

Figure 13. Convolution model circuits for filters in Figure 12. a) the circuit for filter Figure 12.b, b) the circuit for filter Figure

12.c, c) the circuit for filter Figure 12.d, d) the circuit for filter Figure 12.e

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|𝑎10⟩

|𝑎01⟩

|𝑎00⟩

|𝑆⟩

Figure 14. Extended version of the model circuit given in Figure 13.d for 3-qubit inputs

in1

in2

...

ink-1

n

n

n

n

So
rt

So
rt

in1'

in2'

ink-1'

ink'

in1' = Min
among all

in2' = Min
among others

ink' = Min
among others

min

max

So
rt

So
rt

So
rt

So
rt

So
rt So

rtink

Figure 15. Model circuit for min/max/mean pooling

The circuit given in Figure 16 is generated for 4 inputs with

3 qubits. Sorting modules are obtained by sequential use of

comparison and controlled swap modules. By using sorting

modules in the circuit, it is ensured that the maximum value is

moved to the top. In Figure 7, 𝑒0 and 𝑒1 qubits are shown for

the comparison module. As stated in (2), when the second

input is bigger, then 𝑒1 = 1. So, only 𝑒1 qubit connections are

done. As a result, when the second input is bigger, controlled

swap is actualized. For the quantum min pooling circuit, 𝑒0 is

used instead of 𝑒1. Each sorting module is shown with dashed

lines. The ancilla (𝑒1) and garbage qubits are reset after each

sorting operation and can be used in the next sorting operation.

The garbage qubit is an intermediate qubit whose result is

negligible and used to perform calculations. The c in the figure

is the classical bit and is used for the measurement result. By

using common these extra qubits, the max pooling circuit

needs only 2 qubits except for the inputs. In other words, for

min/max/mean pooling, 𝑚 ∗ 𝑛 + 2 qubits are required, where

m is the number of inputs, and n is the qubit length of inputs.

506

|𝑎10⟩

|𝑎01⟩

|𝑎00⟩

|𝑎11⟩

e1

garbage

|0⟩

|0⟩

|0⟩

|0⟩

if c==0 if c==0 if c==0c

Figure 16. Max pooling quantum circuit for 4 inputs, where each input is 3-qubit

3.2.2 Average pooling

For practical application of the proposed quantum average

pooling circuit, the window size should be the power of 2. For

average pooling, the sum of the inputs is calculated first. Then,

the numbers are averaged with the help of the division module.

An example average pooling circuit for a scenario with 4

inputs is given in Figure 17. The output of the circuit gives the

new pixel value.

|𝑎10

|𝑎01

|𝑎11

|𝑎00

nS
n

n

n

n

+

+
+

a

b

a

b

a

b /4

Figure 17. Quantum circuit for average pooling

3.3 The proposed framework for image processing

In the previous sections, convolution and pooling circuits

have been proposed that take the elements in a window as

input. However, for operations such as convolution and

pooling to take place in a completely quantum environment,

the elements corresponding to the window must first be

fetched from the encoded input. In this way, it is possible to

perform operations on the entire input image in parallel. In this

section, a framework is proposed to fetch neighboring pixels

of the relevant pixel according to the window size. In the

proposed framework, it requires the input image to repeat as

many as the number of non-0 elements in the mask. To fetch

the elements, the increment/decrement operations of the

relevant coordinates are performed before each repeated image.

The encoded image is transferred to qubits holding the

window's element at the relevant index each time. The

suggested framework for a case with 4 window sizes is given

in Figure 18, where I is the encoded image, S is the output, and

a00, a01, a10, and a11 are the elements in the window.

0

0

0

0

0

0

x0

x1

xk

y0

y1

yk

S

a00

a01

fetching
a00

S

H

H

H

...
...

a10

a11

n

n

n

n

n

I

+1

I

fetching
a01

I

+1

fetching
a11

-1

fetching
 a10

I

-1

H

H

H

C
o

n
vo

lu
ti

o
n

 /

P
o

o
lin

g

Figure 18. The proposed framework for fetching windows,

for a case with 4 window sizes, where S’ is the result

4. SIMULATION RESULTS

The proposed methods are tested on a Windows computer

with i7 6220M processor, 12 GB RAM, and SSD. The method

has been applied in the simulation environment because the

proposed methods require lots of qubits, and quantum

computers in the NISQ era are not robust for such big circuits

[50, 51]. In the study, firstly, quantum encoding is performed

to convert classical data to quantum data. NEQR model, which

is developed for representing grayscale images, is used for

quantum image encoding. According to this model, images are

encoded with x, and y coordinates and their real values. In this

way, the necessary arithmetic operations can be applied to

inputs easily. Then, by using the proposed framework

structure, a 2x2 window is fetched from the encoded image.

As shown in the proposed framework, parallelization is

performed by applying the Hadamard gate to the coordinate

inputs. In this way, it is ensured that all windows are fetched

507

at the same time. Finally, sample convolution circuits were

created with the help of the given modules and added to the

circuit. The qubits from which the results were collected were

copied to the output qubit, and the coordinate and output qubits

were observed together.

Because of the limitations and performance of the Qisqit

simulators, the input images were reduced to 8x8 size with 3

qubit resolution to test the proposed approach. A Matlab code

is written which encodes the input image into quantum data.

MCT gates are utilized for encoding images, and no

optimization method is used. The proposed modules are

adopted for 3 qubit color depth, and the circuits are obtained.

Because the used images are resized 8x8 (23x23), the pixel

coordinates are represented by 6 qubits (3 for x, and 3 for y).

The created modules are coded in the IBM QISKIT Quantum

Lab environment and tested for all input pairs. The accuracies

of modules are checked. QISKIT aer_simulator backend is

used for all simulations. To demonstrate the steps of value-

encoded quantum convolution, “cameraman.tif” is used. The

reduced image is given in Figure 19.a. The matrix form of the

image is given in Figure 19.b. To encode this image, the image

should be represented by binary numbers. The binary

representation of the matrix is given in Figure 20.a. The binary

indices in Figure 20.a should give the output in the relevant

cell. For example, if x is 000 and y is 000, then the output

should be 101. The quantum circuit for encoding the image is

given in Figure 20.b. First dotted rectangle is used for

encoding (x, y) = (000,000) indices. So, all the controls are

negative controls, which are active when the control qubit is 0.

Because the data should be 101, the first and last qubits of a00

are reversed, in another word they are set to 1. The process is

done for all the cells.

0 1 2 3 4 5 6 7

0

1

2

3

4

6

5

7

(a) (b)

Figure 19. The example input image a) cameraman.tif with

the size of 8x8 and resolution of 3 qubits, b) matrix form of

the image

To calculate the histogram such encoded image, Hadamard

gate should be applied on all x and y qubits. And all qubits

should be measured. In our example, we measure the qubits in

reverse order. So the measurements give the outputs formed in

x2x1x0y2y1y0a2a1a0. The histogram of the encoded image is

given in Figure 21 for 512 shots. For example, the output

000000101 means there is 101 (last 3 qubits) in the cell

indexed by 000 (first 3 qubits), and 000 (second 3 qubits). The

measurements done in this way, give us the input indices and

output value independently from probabilities. The higher the

shots, the more the probabilities tend to be the same. So we

don’t care about the probability values.

After the input image is encoded, the circuit must be created

with the help of the proposed framework. The generated

quantum circuit is given in Figure 22. In the figure, the last

dotted rectangle represents the operations formed according to

the mask. Here, we design the circuit for the mask in Figure

12.e. The other dotted rectangle represents the encoded images.

Gray one is not used and necessary for this mask because the

value of a11 is zero in this case. When the image is encoded for

the first time, the current index value is reflected in the output.

When we increase the X value by one and project the image to

other outputs, we get the value to the right of the pixel (a01).

When we increase it one more time, we get the element in the

lower right corner (a11). When we subtract one from X, the

element below (a10) is obtained. In the end, 1 must be

subtracted from y to return to the index (a00) again. This is

important for proper measurement. In this way, the elements

inside the mask window are fetched. Then, using the circuits

suggested in the above sections, the relevant convolution or

pooling circuits are generated and implemented. Measurement

is done after copying the final output to the S qubit. By

applying the Hadamard gate to the inputs, a parallel

calculation is performed for all the x and y indices at the same

time.

The result obtained by running 512 shots of the circuit in

Figure 22, is given in Figure 23. Similar to the graph given in

Figure 20, the first 6 qubits give the x and y indices, and the

last three qubits give the convolution result. Modules such as

/2 and /4 use "floor" for rounding. For example, the result of

7/4 is equal to 1. Therefore, it should be taken into account that

the calculations are made in this way. By interpreting the

obtained results and transforming them into images, Figure 24

appears.

The same procedure is applied for other Matlab built-in

demo images for different masks with window sizes 2x2 as

shown in Table 4. The results produced by quantum circuits

are compared with the expected results. All of the images are

as expected. Because the sum of the weights in the used masks

is 1, no extra qubit is needed for operations such as sum. With

the development of quantum technologies, the proposed

method can be applied to images with higher size and color

resolutions.

000 001 010 011 100 101 110 111

000

001

010

011

100

110

101

111
(a)

0

0

0

0

0

0

x2

x1

x0

y2

y1

y0

a00_2 0
0
0

a00_1

a00_0

... ...

Tyx

(b)

Figure 20. Encoding of input a) Binary matrix form of input,

b) Quantum circuit for encoding the image

508

Figure 21. Histogram of 3-qubit 8x8 cameraman.tif for 512 shots. The first 3 qubits represent the x coordinate, the second 3

qubits represent the y coordinate, and the last 3 qubits represent the color value

0

0

0

0

0

0

x2

x1

x0

y2

y1

y0

S2

H

H

H

H

H

H

0
S1 0
S0 0

a00_2 0
0
0

a00_1

a00_0

a01_2 0
0
0

a01_1

a01_0

a10_2 0
0
0

a10_1

a10_0

a11_2 0
0
0

a11_1

a11_0

...

...

/2

/4

/4

+

+

Figure 22. Application of the convolution process for filter given in Figure 12.e. The gray dotted rectangle is not necessary for

this filer. Total 21 qubits are required for 8x8 image and 2x2 filters

Figure 23. Convolution outputs for the quantum circuit given in Figure 22. The circuit runs for 512 shots

509

000 001 010 011 100 101 110 111

000

001

010

011

100

110

101

111
(a)

0 1 2 3 4 5 6 7

0

1

2

3

4

6

5

7

(b) (c)

Figure 24. Reconstruction of the convoluted image. a)

Binary matrix form of results, b) decimal matrix, c) output

image

Table 4. Simulation results for different input images

Original

image

8x8, 3-qubit

resolution

Mask:

0

0.5 0.25

0.25

Mask:

0.5 0

0 0.5

Mask:

0

0 0.5

0.5

5. CONCLUSION

QC is exciting for many research areas with its computing

power potential. On the other hand, window-based image

applications such as DL need high computational power. But

it is difficult to use QC in DL because the fundamentals of QC

are different from traditional computing. Some variational

circuits are proposed to apply quantum DL in the literature.

However, the precision of these methods has not been

validated in large input sets. There are also value-encoded

methods for realizing window-based image processing

applications. But they do not utilize the parallel processing

capability of QC. In this study, a framework is proposed for

the parallel processing of window-based quantum methods. In

addition, convolution and pooling quantum circuits, which are

the processes that require high computational power in DL, are

implemented. To build these circuits, basic modules such as

addition, multiplication, division, and comparison have been

created. In this context, some modules such as x2, x4, /2, and

/4 are implemented. Furthermore, a new approach for

implementing the quantum comparison circuit is proposed.

The created modules are run for all possible input pairs, and

the results are validated. Because of the limitations of quantum

simulators, and quantum computers in the NISQ era, the input

images are reduced to 8x8 size and 3 qubit resolution. So, only

21 qubits are used, and the circuit length is kept at the

appropriate depth for the efficient operation of quantum

simulators. The generated circuits by the proposed methods

are run on Qisqit aer_simulator. It is verified that the proposed

methods successfully produce the expected results. Since the

circuits are run in a simulation environment, satisfactory

results could not be obtained in terms of running times. For the

convolutional circuits, 512 shots were completed in an average

of 8-10 minutes. However, it is thought that the real speed

advantage of the methods will be observed with the emergence

of gate-based quantum computers operating with low error

rates in high volume, and with a sufficient number of qubits

[51].

This study focused on the parallel application of the value-

encoded convolution process in QC. Due to the limitations of

quantum simulators, the sample input images are kept small.

This study demonstrates how the convolution and pooling

operations can be applied to QC with the traditional approach.

With the proposed method, circuits that produce exactly the

same result as the classical convolution process in the quantum

computing environment are produced. With the use of the

generated circuits, proven original deep learning steps are

performed with high accuracy. However, many gates are

required for encoding data and generating modules. The need

for the use of large amounts of gates makes it difficult to

implement on quantum computers in the NISQ era. On the

other hand, it is possible to implement window-based image

processing applications in parallel thanks to the proposed

framework. The proposed framework is suitable for both

value-based and variational circuits. In future studies, studies

will be carried out to develop reversible circuit optimization

methods so that the produced circuits can be created with

fewer gates. In this way, the method will be carried out with

fewer quantum gates and its applicability will be increased.

The highlights of the study can be summarized as below:

• Value-based convolution operations are simulated in

parallel across an entire image with the help of the

proposed framework.

• In contrast to variational quantum circuits, the classical

data is encoded into quantum data with their exact values.

So, the study guarantees that the results will be the same

as the results obtained with the proven DL networks.

• A new approach, which uses fewer qubits and gates, is

proposed to compare two binary numbers.

• Circuits for pooling are proposed with the help of modules

that perform the ordering of two numbers. The circuits

contain controlled swap and comparison modules.

• By repeating the patterns in module circuits, the basic

modules with different qubit numbers can be obtained.

510

And other convolutional and pooling circuits as needed

can be easily implemented.

ACKNOWLEDGMENT

This study was supported by the TUBITAK (The Scientific

and Technological Research Council of Turkey) under Grant

No: 121E439.

This article work was carried out within the scope of Hasan

Yetiş’s doctoral dissertation named "Development of

Artificial Intelligence Algorithms Based on Quantum

Computing". The supervisor of the thesis, Mehmet Karaköse.

REFERENCES

[1] Kuutti, S., Bowden, R., Jin, Y., Barber, P., Fallah, S.

(2021). A survey of deep learning applications to

autonomous vehicle control. IEEE Transactions on

Intelligent Transportation Systems, 22(2): 712-733.

https://doi.org/10.1109/TITS.2019.2962338

[2] Floridi, L., Chiriatti, M. (2020). GPT-3: Its nature, scope,

limits, consequences. Minds & Machines, 30(4): 681-

694. https://doi.org/10.1007/s11023-020-09548-1

[3] Dale, R. (2021). GPT-3: What’s it good for? Natural

Language Engineering., 27(1): 113-118.

https://doi.org/10.1017/S1351324920000601

[4] Shahinfar, S., Meek, P., Falzon, G. (2020). ‘How many

images do I need?’ Understanding how sample size per

class affects deep learning model performance metrics

for balanced designs in autonomous wildlife monitoring.

Ecological Informatics, 57.

https://doi.org/10.1016/j.ecoinf.2020.101085

[5] Maheshwaram, S. (2021). Future directions and

challenges of deep learning. International Journal of

Multi Disciplinary Research in Science, Engineering and

Technology, 4(1).

https://doi.org/10.15680/IJMRSET.2021.0401003

[6] Peemen, M., Mesman, B., Corporaal, H. (2011).

Efficiency optimization of trainable feature extractors for

a consumer platform. Advanced Concepts for Intelligent

Vision Systems, 6915(1): 293-304.

https://doi.org/10.1007/978-3-642-23687-7_27

[7] Tan, Z., Karakose, M. (2020). Comparative study for

deep reinforcement learning with CNN, RNN, and

LSTM in autonomous navigation. International

Conference on Data Analytics for Business and Industry

(ICDABI), Bahrain.

https://doi.org/10.1109/ICDABI51230.2020.9325622

[8] Cui, Z., Ke, R., Pu, Z., Wang, Y. (2018). Stacked

bidirectional and unidirectional LSTM recurrent neural

network for network-wide traffic speed prediction.

arXiv:1801.02143.

[9] Shimizu, T. (2020). Supercomputer Fugaku: Co-

designed with application developers/researchers. IEEE

Asian Solid-State Circuits Conference (A-SSCC),

Hiroshima, Japan.

[10] Kodama, Y., Odajima, T., Arima, E., Sato, M. (2020).

Evaluation of power management control on the

supercomputer Fugaku. IEEE International Conference

on Cluster Computing, pp. 484-493.

https://doi.org/10.1109/CLUSTER49012.2020.00069

[11] Elsayed, N., Maida, S.A., Bayoumi, M. (2019). A review

of quantum computer energy efficiency. IEEE Green

Technologies Conference, Lafayette, LA, USA.

[12] Arute, F., Arya, K., Babbush, R. (2019). Quantum

supremacy using a programmable superconducting

processor. Nature, 574(7779): 505-510.

https://doi.org/10.1038/s41586-019-1666-5

[13] Garg, S., Ramakrishnan, G. (2020). Advances in

quantum deep learning: An overview. arXiv:2005.04316

[quant-ph].

[14] Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M. (2019).

Parameterized quantum circuits as machine learning

models. Quantum Science and Technology, 4(4): 043001.

https://doi.org/10.1088/2058-9565/ab4eb5

[15] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P.,

Wiebe, N., Lloyd, S. (2017). Quantum machine learning.

Nature, 549(7671): 195-202.

https:/doi.org/10.1038/nature23474

[16] Adcock, J., Allen, E., Day, M., Frick, S. (2015).

Advances in quantum machine learning.

arXiv:1512.02900 [quant-ph].

[17] Yetiş, H., Karaköse, M. (2021). Obtaining Quantum Gate

Models from Known Input and Output Values.

Interdisciplinary Research in Technology and

Management, CRC Press, 393-398.

[18] Matteo, O.D., Mosca, M. (2016). Parallelizing quantum

circuit synthesis. Quantum Science and Technology, 1(1):

015003. https://doi.org/10.1088/2058-9565/1/1/015003

[19] Adedoyin, A., Ambrosiano, J., Anisimov, P. (2018).

Quantum algorithm implementations for beginners.

arXiv:1804.03719.

[20] Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.

(2017). Open Quantum Assembly Language.

arXiv:1707.03429.

[21] Deutsch, D., Jozsa, R. (1992). Rapid solution of

problems by quantum computation. Proceedings of the

Royal Society of London. Series A: Mathematical and

Physical Sciences, 439(1): 553-558.

https://doi.org/10.1098/rspa.1992.0167

[22] Shor, P.W. (1994). Algorithms for quantum computation:

Discrete logarithms and factoring. IEEE Proceedings

35th Annual Symposium on Foundations of Computer

Science, 124-134.

[23] Grover, L.K. (1996). A fast quantum mechanical

algorithm for database search. Proceedings of the

Twenty-Eighth Annual ACM Symposium on Theory of

Computing, pp. 212-219.

https://doi.org/10.1145/237814.237866

[24] National Academies of Sciences Engineering and

Medicine. (2019). Domestic Manufacturing Capabilities

for Critical DoD Applications: Emerging Needs in

Quantum-Enabled Systems: Proceedings of a Workshop.

Washington, DC: The National Academies Press.

[25] Zhang, Y., Ni, Q. (2020). Recent advances in quantum

machine learning. Quantum Engineering, 2(1): e34.

https://doi.org/10.1002/que2.34

[26] Dunjko, V., Taylor, J.M., Briegel, H.J. (2016). Quantum-

enhanced machine learning. Physical Review Letters,

117(13): 130501.

https://doi.org/10.1103/PhysRevLett.117.130501

[27] Ciliberto, V., Herbster, M., Davide, A., Pontil, M.,

Severini, S. (2018). Quantum machine learning: A

classical perspective. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences,

474(2209): 20170551.

511

https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.1016/j.ecoinf.2020.101085
https://doi.org/10.1109/ICDABI51230.2020.9325622
https://doi.org/10.1109/CLUSTER49012.2020.00069
https://iopscience.iop.org/journal/2058-9565
https://iopscience.iop.org/journal/2058-9565
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1002/que2.34

https://doi.org/10.1098/rspa.2017.0551

[28] Saini, S., Khosla, P., Kaur, M., Singh, G. (2020).

Quantum driven machine learning. International Journal

of Theoretical Physics, 59(12): 4013-4024.

https://doi.org/10.1007/s10773-020-04656-1

[29] Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.

(2019). An artificial neuron implemented on an actual

quantum processor. npj Quantum Information, 5(1): 26.

https://doi.org/10.1038/s41534-019-0140-4

[30] Schuld, M., Sinayskiy, I., Petruccione, F. (2015).

Simulating a perceptron on a quantum computer. Physics

Letters A, 379(7): 660-663.

https:/doi.org/10.1016/j.physleta.2014.11.061

[31] de Paula Neto, F.M., Filho, G.I.S., Monteiro, C.A. (2020).

Approaches to avoid overfitting in a quantum perceptron.

International Joint Conference on Neural Networks, UK.

[32] Tacchino, F., Barkoutsos, P., Macchiavello, C.,

Tavernelli, I., Gerace, D., Bajoni, D. (2020). Quantum

implementation of an artificial feed-forward neural

network. Quantum Science and Technology, 5(4).

https:/doi.org/10.1088/2058-9565/abb8e4

[33] Parthasarathy, R., Bhowmik, R.T. (2021). Quantum

optical convolutional neural network: A novel image

recognition framework for quantum computing. IEEE

Access, 9.

https:/doi.org/10.1109/ACCESS.2021.3098775

[34] Oh, S., Choi, J., Kim, J.K., Kim, J. (2021). Quantum

convolutional neural network for resource-efficient

image classification: A Quantum Random Access

Memory (QRAM) approach. International Conference

on Information Networking (ICOIN), 50-52, Jeju Island,

Korea (South).

https:/doi.org/10.1109/ICOIN50884.2021.9333906

[35] Broughton, M. (2020). TensorFlow quantum: A software

framework for quantum machine learning.

arXiv:2003.02989 [cond-mat, physics:quant-ph].

[36] Chen, Y.C.S., Yang, H.C.H., Qi, J., Chen, P.Y., Ma, X.,

Goan, H.S. (2020). Variational quantum circuits for deep

reinforcement learning. IEEE Access, 8(1): 141007-

141024. https:/doi.org/10.1109/ACCESS.2020.3010470

[37] Kerenidis, I., Landman, J., Prakash, A. (2019). Quantum

algorithms for deep convolutional neural network.

arXiv:1911.01117.

[38] Bisarya, A., El Maouaki, W., Mukhopadhyay, S., Mishra,

N. (2020). Breast cancer detection using quantum

convolutional neural networks: A demonstration on a

quantum computer. Oncology.

https://doi.org/10.1101/2020.06.21.20136655

[39] Oh, S., Choi, J., Kim, J. (2020). A tutorial on quantum

convolutional neural networks. arXiv:2009.09423.

[40] Yetiş, H., Karaköse, M. (2020). Quantum circuits for

binary convolution. IEEE International Conference on

Data Analytics for Business and Industry.

https:/doi.org/10.1109/ICDABI51230.2020.9325659

[41] Cong, I., Choi, S., Lukin, D.M. (2019). Quantum

convolutional neural networks. Nat. Phys., 15(12): 1273-

1278. https://doi.org/10.1038/s41567-019-0648-8

[42] Su, J., Guo, X., Liu, C., Li, L. (2020). A new trend of

quantum image representations. IEEE Access, 8(1):

214520-214537.

https:/doi.org/10.1109/ACCESS.2020.3039996

[43] Zhang, Y., Lu, K., Gao, Y., Wang, M. (2013). NEQR: A

novel enhanced quantum representation of digital images.

Quantum Inf Process, 12(8): 2833-2860.

https://doi.org/10.1007/s11128-013-0567-z

[44] Ma, Y., Ma, H., Chu, P. (2020). Demonstration of

quantum image edge extraction enhancement through

improved Sobel operator. IEEE Access, 8(1): 210277-

210285. https:/doi.org/10.1109/ACCESS.2020.3038891

[45] Thapliyal, H., Ranganathan, N. (2013). Design of

efficient reversible logic-based binary and BCD adder

circuits. ACM Journal on Emerging Technologies in

Computing Systems, 9(3): 1-31.

https://doi.org/10.1145/2491682

[46] Li, P., Shi, T., Lu, A., Wang, B. (2019). Quantum circuit

design for several morphological image processing

methods. Quantum Information Processing, 18(12): 364.

https://doi.org/10.1007/s11128-019-2479-z

[47] Wang, D. (2012). Design of quantum comparator based

on extended general Toffoli gates with multiple targets.

Computer Science, 39(9): 302-306.

[48] Foulds, S., Kendon, V., Spiller, T. (2021). The controlled

SWAP test for determining quantum entanglement.

Quantum Science and Technology, 6(3): 035002.

https://doi.org/10.1088/2058-9565/abe458

[49] Jiang, S., Zhou, R.G., Hu, W., Li, Y. (2019). Improved

quantum image median filtering in the spatial domain.

International Journal of Theoretical Physics, 58(7):

2115-2133. https://doi.org/10.1007/s10773-019-04103-

w

[50] Leymann, F., Barzen, J. (2020). The bitter truth about

gate-based quantum algorithms in the NISQ era.

Quantum Science and Technology, 5(4): 044007.

https://doi.org/10.1088/2058-9565/abae7d

[51] Yetis, H., Karakose, M. (2021). Investigation of noise

effects for different quantum computing architectures in

IBM-Q at NISQ level. 25th International Conference on

Information Technology (IT), Zabljak, Montenegro.

512

https://doi.org/10.1098/rspa.2017.0551
https://link.springer.com/journal/10773
https://link.springer.com/journal/10773
https://www.nature.com/npjqi
https://iopscience.iop.org/journal/2058-9565
https://doi.org/10.1109/ACCESS.2021.3098775
https://doi.org/10.1109/ICOIN50884.2021.9333906
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1109/ICDABI51230.2020.9325659
https://doi.org/10.1109/ACCESS.2020.3039996
https://doi.org/10.1109/ACCESS.2020.3038891
https://dl.acm.org/toc/jetc/2013/9/3
https://dl.acm.org/toc/jetc/2013/9/3
https://doi.org/10.1145/2491682
https://iopscience.iop.org/journal/2058-9565

