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The resource need for deep learning and quantum computers' high computing power 

potential encourage collaboration between the two fields. Today, variational quantum 

circuits are used to perform the convolution operation with quantum computing. However, 

the results produced by variational circuits do not show a direct resemblance to the classical 

convolution operation. Because classical data is encoded into quantum data with their exact 

values in value-encoded methods, in contrast to variational quantum circuits, arithmetical 

operations can be applied with high accuracy. In this study, value-encoded quantum circuits 

for convolution and pooling operations are proposed to apply deep learning in quantum 

computers in a traditional and proven way. To construct the convolution and pooling 

operations, some modules such as addition, multiplication, division, and comparison are 

created. In addition, a window-based framework for quantum image processing applications 

is proposed. The generated convolution and pooling circuits are simulated on the IBM 

QISKIT simulator in parallel thanks to the proposed framework. The obtained results are 

verified by the expected results. Due to the limitations of quantum simulators and computers 

in the NISQ era, the used grayscale images are resized to 8x8 and the resolution of the 

images is reduced to 3 qubits. With developing the quantum technologies, the proposed 

approach can be applied for bigger and higher resolution images. Although the proposed 

method causes more qubit usage and circuit depth compared to variational convolutional 

circuits, the results they produce are exactly the same as the classical convolution process. 
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1. INTRODUCTION

Today, deep learning (DL) is used in every field from self-

driving cars to artificial intelligence (AI) that can write poems 

and draw pictures [1-3]. Besides its success, the high 

computatiınal power they need is one of the biggest 

disadvantages of DL. A DL network can run over and over for 

the same input data, and it needs a lot of different data [4]. 

Since training a DL network from scratch is very difficult and 

requires very powerful computers, today's DL-related works 

are usually carried out through pre-trained networks [5]. 

DL consists of steps such as convolution, pooling, and a 

fully-connected layer. The steps of DL are given in Figure 1 

[6]. Today, the most commonly used DL networks in the 

literature are CNN (Convolutional Neural Network), RNN 

(Recurrent Neural Network), and LSTM (Long Short-Term 

Memory) [7]. However, convolution and pooling operators 

used in the feature extraction phase are common to each [8].  

Input

filters Convolution Pooling Fully-connected
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repeats

Figure 1. General DL steps 

Supercomputers are known as the most powerful computers 

today. For example, the Fugako supercomputer, which is on 

the list of the best 500 supercomputers in 2020, consumes up 

to 30-40 MWh of power [9, 10]. In contrast, quantum 

computers that are reported to be exponentially faster than a 

supercomputer, have a power consumption of only 25 kWh 

[11, 12]. Quantum computers offer significant potential for 

certain problems in terms of processing power. DL and 

Quantum Computing (QC) are closely related in terms of 

complementing each other [13].  

1.1 Motivation 

In this study, the quantum computation models of 

convolution, and pooling which are used in DL networks, have 

been carried out in a classical way that differs from the 

literature. In literature, the studies about quantum machine 

learning are focused on variational quantum circuits which 

aim to emulate the target function within an arbitrarily small 

error with fewer circuit elements [14]. The main motivation of 

the study is to model DL steps exactly in their original form in 

a quantum computing environment. Our supportive 

motivations are listed below: 

• Training of DL networks is a time-consuming process that

requires high-performance computing (HPC).

• Existing DL networks are usually pre-trained networks. It

is predicted that the success of a DL network trained from

scratch will be more than that of a pre-trained one [5].
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• Lack of computational power is one of the biggest 

obstacles to the training of DL networks. 

• QC has high computing power with low power 

consumption [9, 10]. 

• With the use of QC in DL, the training of DL networks 

from scratch will be easier and better solutions can be 

achieved by trial and error experiments. 

• Implementation of DL networks in a proven classical way 

ensures the results with exact high accuracy, as opposed 

to the possible results of variational circuits.  

• With the practical use of QC in AI, a new era for AI will 

open its doors [15, 16]. 

 

1.2 Background 

 

Since QC is based on quantum physics, it differs 

fundamentally from binary computing. This difference is also 

seen in the basic gates used in circuit creation. The basic 

quantum gates are Hadamard, Pauli-X (NOT), Pauli-Y, Pauli-

Z, Phase, pi/8, CNOT, Swap, and Toffoli gates [17]. In QC, 

the CNOT, and Toffoli gates are used to make the qubits 

entangled. The Hadamard gate is a frequently used gate to puts 

the inputs into superposition. Thanks to the superposition 

principle, quantum computers are capable of parallel 

processing [18]. The basic quantum gates and notations used 

in the study are given in Table 1. For detailed information 

about quantum gates, readers are encouraged to read [17, 19]. 

 

Table 1. Essential quantum gates used in this study 

 
Gate Name Symbol Mission 

Pauli-X 

(NOT) 
 

Take the inverse of the qubit 

Hadamard H
 Puts the inputs in superposition 

Controlled 

Not (CNOT)  

Take the inverse of the target qubit only if 

the control qubit is 1 

Multi 

Controlled 

Toffoli 

(MCT) 

...

 

Take the inverse of the target qubit only if 

the control qubits are satisfied the condition 

(filled circle means 1, hollow circle means 

0). If it has only 2 filled control qubits, the 

gate is called Toffoli. 

Controlled 

Swap 

 

Swap the target qubits only if the control 

qubit is 1 

 

Quantum algorithms, or circuits, can be developed by using 

basic quantum gates [20]. Early examples of these algorithms 

are the Deutch, Shor, and Grover algorithms, which are 

developed in the 1990s [21-23]. It has been shown that with 

these basic algorithms, quantum computing can be performed 

faster than binary computing. However, it is not easy to run 

the developed algorithms on hardware. Although Shor's 

algorithm was developed in 1994, it is implemented for the 

first time on a real quantum computer in 2001 for factoring the 

number 15 [24]. It is seen that quantum algorithms were 

developed before suitable quantum computers and suitable 

quantum computers become available much later. 

 

1.3 Literature  

 

Many studies aim to use the advantage of QC in different 

machine learning methods [25-28]. DL is a machine learning 

method, based on Artificial Neural Network (ANN), and even 

more on perceptrons. There are also many studies in the 

literature on the realization of perceptrons with quantum 

circuits [29-32]. Apart from these, a pure literature summary 

of recent studies on quantum DL is given in Table 2 with their 

strengths and weaknesses. As seen in the table some studies 

aim to realize convolution and pooling steps with variational 

quantum circuits. The main contribution of the paper is 

implementing the DL steps classically. It has not been proven 

how the performances obtained as a result of small size and 

limited trials of variational circuits will work in big data. The 

study guarantees that the results obtained with the study will 

be the same as the results obtained with the proven traditional 

DL network. 

 

Table 2. Recent studies in the literature 

 
Ref. 

Year 
Main Contribution Difference from our study 

[33] 

2021 

A novel image recognition 

framework is proposed for 

optical quantum computers.  

The proposed framework is for 

optical quantum computers. 

[34] 

2021 

It has been suggested to 

perform the convolution 

process more effectively 

using the QRAM model. 

It has been suggested that the 

QRAM model be used in the 

variational convolution process.  

[35] 

2020 

Hybrid machine learning 

tools have been created and 

made available for the 

Tensorflow library. 

It allows modeling of 

variational quantum circuits for 

convolution and pooling.  

[36] 

2020 

Variational circuits have 

been proposed for quantum 

DL. 

Variational circuits, which have 

not been proven for big data, are 

used. 

[37] 

2020 

Algorithms using the QRAM 

model have been proposed 

for the convolution process 

The proposed algorithms are 

realized by serialization instead 

of iterative convolution. This 

requires a higher number of 

qubits. 

[38] 

2020 

It has been suggested 

Quantum CNN algorithm be 

used in breast cancer 

diagnosis through images. 

Variational circuits, which have 

not been proven for big data, are 

used. 

[39] 

2020 

Classification has been made 

on the MNIST data set using 

the Tensorflow quantum 

platform. 

Variational circuits, which have 

not been proven for big data, are 

used. 

[40] 

2020 

Quantum circuits with 2, 3, 

and 4 window sizes have 

been proposed for the binary 

convolution process. 

The proposed quantum circuit is 

for binary inputs. Only 2,3,4 

dimensional circuits are 

handled. 

[41] 

2019 

Variational circuits for 

quantum convolution and 

pooling have been proposed. 

Variational circuits, which have 

not been proven for big data, are 

used. 

 

 

2. MATERIALS AND METHODS 

 

In this section, used quantum image representation model 

and quantum modules such as addition, multiplication, 

comparison, and sorting are explained.  

 

2.1 Quantum image representation 

 

Images are frequently used as input data in DL methods. 

The storage of an image in conventional computers is carried 

out in matrix form. There are different color representation 

methods for storing images such as grayscale images. 
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Grayscale images are capable of expressing each pixel in a 

single color without disturbing the contours of the picture. To 

set the DL steps to work on quantum computers, the input data 

must first be transformed into a quantum representation model. 

Some approaches such as qubit encoding, amplitude encoding, 

and feature encoding are used for encoding the classical data 

to quantum data. Different models such as NEQR (Novel 

Enhanced Quantum Representation), FRQI (Flexible 

Representation of Quantum Images), SQR (Simple Quantum 

Representation), etc. are proposed for quantum image 

representation [42]. In the study, the NEQR model, which is a 

qubit encoding approach, is preferred to apply arithmetic 

operators easily and work with gray-level images [43]. 

According to NEQR, a pixel is stored as shown in (1), where 
|𝐶𝑌𝑋⟩ is color, |𝑌⟩, and |𝑋⟩ are coordinates. Considering the 

color depth of |𝐶𝑌𝑋⟩ is q qubits, the colors in the range of [0-

2𝑞−1 ] can be coded as in classical computers. The NEQR 

representation for the 2𝑛𝑥2𝑛 image is given in (1). A sample 

image and its representation for n=1, are given in Table 3. 

 

|𝐼⟩ =
1

2𝑛
 ∑ ∑ |𝐶𝑌𝑋⟩|𝑌⟩|𝑋⟩

2𝑛−1

𝑋=0

2𝑛−1

𝑌=0

 (1) 

 

Table 3. Sample NEQR model for n=1 

 
Sample Image Representation 

00000000

00 01

10 11

10000000

11000000 11111111

 

𝐼 = [
0 128

192 255
] 

 

|I⟩ =  
1

2
(

|00000000⟩ ⊗  |00⟩ +
|10000000⟩ ⊗  |01⟩ +
|11000000⟩ ⊗  |10⟩ +
|11111111⟩ ⊗  |11⟩   

)  

 

2.2 Basic modules for quantum circuits 

 

This section introduces the basic modules required for DL 

convolution and pooling. 

 

2.2.1 Addition module 

To create the adder module, half and full adders circuits are 

used. While the half adder takes two inputs, the full adder 

considers the previous carry bit as well as the input values. The 

sum of qubits is actualized by taking the inverse of the ancilla 

qubit, which is 0 at the beginning if one of the inputs is 1. 

When both 2 inputs are 1, then the sum qubit is 0 and the carry 

qubit is 1. In this way, the truth table of the adder is ensured. 

Half and full adder quantum circuits are given in Figure 2. 

While the whole image belongs to the full adder, the dotted 

rectangle represents the half adder circuit. 

 

|𝑎𝑛   

|0  

|0  

|𝑏𝑛   

|𝑐𝑛−1  
|𝑎𝑛   

|𝑏𝑛   

|𝑐𝑛−1  

|𝑆𝑛   

|𝑐𝑛   
 

 

Figure 2. Quantum full adder circuit where the dotted line is 

for a half adder, 𝑎𝑛 and 𝑏𝑛 are nth bits of inputs, 𝑐𝑛−1 is input 

carry bit, 𝑐𝑛 is output carry bit, and 𝑆𝑛 is the result bit 

 

Using these adders sequentially, an adder circuit with n 

qubit is created [44]. In the adder circuit, the output must be 

one qubit more than the inputs. The temporary carry bits are 

garbage qubits, which are not necessary for output. There are 

quantum adder circuit designs with extra garbage and carry 

bits [44]. But for the operations such as convolution and 

pooling, the extra qubits make it harder to build the circuit. 

The suggested module to perform quantum addition without 

using extra qubits can be seen in Figure 3.a, where |a⟩ and |b⟩ 
are the input states. The output |a + 𝑏⟩  is overwritten on 

input |b⟩. For large sums that cannot be expressed in n qubits, 

one more qubit must be added to the output. If the sum can be 

expressed with n qubit, there is no need extra (carry) qubit. 

The quantum adder circuit with one carry qubit is given in 

Figure 3.b for n=3 [45]. 

 

+
b

n
|𝑎  

n
|𝑏  

|𝑎  

|𝑎 + 𝑏  
n+1

 
(a) 

a0

a1

a2

b0

b1

b2

c

s0

s1

s2

s3  
(b) 

 

Figure 3. Quantum self-adder module and circuit a) Adder 

quantum circuit module where |a⟩ and |b⟩ are the inputs with 

n qubits, |a + 𝑏⟩ is the output with n+1 qubits b) 3-qubit self-

adder circuit, the output is stored in s3s2s1s0 

 

2.2.2 Plus 1 and minus 1 modules 

 

+1n|𝑎  |𝑎 + 1  

|𝑎1  

|𝑎𝑛−2  

|𝑎0  

|𝑎𝑛−1  

|𝑎𝑛−3  

|𝑎2  

... -1n|𝑎  

|𝑎1  

|𝑎𝑛−2  

|𝑎0  

|𝑎𝑛−1  

|𝑎𝑛−3  

|𝑎2  

...

a b

|𝑎 − 1  

 
(a) 

+1n|𝑎  |𝑎 + 1  

|𝑎1  

|𝑎𝑛−2  

|𝑎0  

|𝑎𝑛−1  

|𝑎𝑛−3  

|𝑎2  

... -1n|𝑎  

|𝑎1  

|𝑎𝑛−2  

|𝑎0  

|𝑎𝑛−1  

|𝑎𝑛−3  

|𝑎2  

...

a b

|𝑎 − 1  

 
(b) 

 

Figure 4. Plus 1 and Minus 1 quantum circuits. a) Plus 1 

circuit, b) Minus 1 circuit 

 

Quantum plus 1 and minus 1 operators are important for 

fetching a window from the encoded image. For the plus 1 

module, all qubits are checked, starting with the most weighted 

qubit first. If all subsequent qubits are 1, the inverse of the 

current qubit is taken. At the end of the process, the last 

significant qubit a0 is inverted. The plus 1 quantum circuit is 

given in Figure 4.a [46]. In reversible circuits, a state can be 
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reverted by applying the operators in reverse order. So minus 

1 module can be written as reverse order plus 1 module. The 

minus 1 quantum circuit is given in Figure 4.b. 

 

2.2.3 Multiplication module 

Multiplying binary numbers can be calculated by the sum 

of shifted numbers. Since modeling the multiplication process 

requires parameterized circuits and loops, 2, and 4 

multiplication modules are proposed [14]. Multiplying a 

number with the power of 2 can be practically provided by 

shifting the qubits and giving the last qubit as 0 [44]. By 

considering the possibility of the original inputs being used 

later by other circuits, extra qubits should be used. The 

modulus of multiplication by 2 and 4 are given in Figure 5 [44]. 

The dotted lines represent the circuits with no carry (ancilla) 

qubits. 

 

x2
n

out

in

anc.

|𝑎  

|0  

|𝑎𝑥2  

q0 

q1 

q2 

q3 

0

q0 

q1 

q2 

q3 

q4 

q
4q

3q
2q

1q
0|0  

|0  

|0  

|0  

(n+1)

 
(a) 

x4
n

out

in

anc.

|𝑎  

|00  

|𝑎𝑥4  

q0 

q1 

q2 

q3 

0

q0 

q1 

q2 

q3 

q4 

q
5q

4q
3q

2q
1q

0

|0  

|0  

|0  

(n+2)2

0q5 

|0  

 
(b) 

 

Figure 5. Quantum multiplication modules for 2 and 4 [44]. 

a) The quantum x2 module and its circuit, where |𝑎⟩ is input, 

|a𝑥2⟩ is output. b) The quantum x4 module and its circuit, 

where |𝑎⟩ is input, |a𝑥4⟩ is output 

 

2.2.4 Division module 

In binary numbers, dividing by the power of 2 can be 

accomplished by shifting the bit right. Assume that the number 

will be divided by 2𝑚 . Then, the last m qubit gives the 

remaining, and the number obtained by shifting the input m 

times right gives the output. Unlike the multiplication module, 

the direction of the shifting changes. Moreover, if n qubits are 

used at the input, (n-m) qubit is obtained as the output. The 

quantum division modules are given in Figure 6 [44]. 

 

/2
n

outin
|𝑎  |𝑎/2  

q0 

q1 

q2 

q3 

q0 

q1 

q2 

q3 

q
3q

2q
1q

0

|0  

n |0  

|0  

|0  

 
(a) 

/4
n

in
|𝑎  |𝑎/4  

q0 

q1 

q2 

q3 

q0 

q1 

q2 

q3 

q
3q

2q
1q

0

|0  

|0  

|0  

|0  

n
out

 
(b) 

 

Figure 6. Quantum division modules for 2 and 4. a) The 

quantum /2 module and its circuit, where |𝑎⟩ is input, |a/2⟩ is 

output. b) The quantum /4 module and its circuit, where 
|𝑎⟩ is input, |a/4⟩ is output 

2.2.5 Comparison module 

A circuit for quantum comparison is proposed by Li in the 

literature [47]. In this study, a new quantum comparison circuit 

is proposed by optimizing [47]. With the proposed circuit, it is 

aimed to increase the applicability of the comparison circuit 

by using fewer qubits and gates. The proposed comparison 

circuit takes 2 n qubit inputs and compares them. The proposed 

circuit and modular presentation are given in Figure 7. The 

output of the proposed comparison circuit is as given in (2). 

 

𝑒1𝑒0 = {

00,    𝑖𝑓 𝑥 = 𝑦
10,    𝑖𝑓 𝑥 > 𝑦

01,    𝑖𝑓 𝑥 < 𝑦
11,      𝑛𝑒𝑣𝑒𝑟

 (2) 

 
n

2

n

2
out

in1in1

anc.

cmp1
grb.

|𝑎⟩ |𝑎⟩ 

|0⟩ 

|0⟩ |𝑒⟩ 

n n
in2in2

|𝑏⟩ |𝑏⟩ 

 
(a) 

0

0

0

q0 

q1 

q2 

q3 

q4 

q5 

q6 

q7 

c
q3 vs q7

İf c==0 İf c==0

q2 vs q6 q1 vs q5

0 0

in
1

2

0

in
2

e0

e1

 
(b) 

 

Figure 7. The proposed quantum compare module. a) 

compare module, b) open form of the module for 4 qubits, 

where 𝑞0-𝑞3 refers to input a, 𝑞4-𝑞7 refers to input b, 𝑎8,𝑞9 

refers to ancilla or output, 𝑞10 refers to garbage qubits 

 

2.2.6 Controlled swap module 

In the controlled swap circuit, if the control bit is 1, the 

inputs switch places, if it is 0, the inputs are output in the same 

order. This circuit requires an extra control qubit. The 

controlled swap module is given in Figure 8 [48]. If the first 

output is a, the second output must be b; if the first output is b, 

the second output must be a. 

 

n

1

n
in1'in1

ctrl.

cswp

|𝑎  |𝑎  
n n

in2'in2
|𝑏  

|𝑐  

|𝑏  or

|𝑎  |𝑏  or

q0 

q1 

q2 

q3 

a0 

a1 

a2 

b0

q4 b1

q5 b2

q6 c  
 

Figure 8. Controlled swap module, where c is the control bit, 

a and b are the n qubit inputs to be swapped. If the control bit 

is 1, then in1’=b, and in2’=a; otherwise: in1’=a, and in2’=b 
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2.2.7 Sorting module 

Comparison and controlled swapping circuits are required 

for sorting. The sorting module is given in Figure 9 [46]. If the 

small value is desired to stay on top, the control qubit must be 

connected to 𝑒0. If the large value is desired to be at the top, 

the control qubit must be connected to 𝑒1. 

 

n

2

n

2
out

in1in1

anc.

cmp2
grb.

|𝑎  

|0  

|0  |𝑒  

n n
in2in2

|𝑏  

n
in1'in1

ctrl.

cswp

n
in2'in2

|𝑒0  

|𝑒1  
max

min

(in2 > in1)

(in1 > in2)

sort

 
 

Figure 9. Sort module which uses compare and controlled 

swap sub-modules, where a and b are the n qubit inputs to be 

sorted. If output 𝑒0 of compare module is connected to the 

controlled swap control bit, then in1’ is the minimum in2’ is 

the maximum; otherwise in1’ is the maximum, in2’ is the 

minimum 

 

2.2.8 Limit module 

The limit circuit ensures that the output takes the max value 

when it exceeds the max. The limit circuit with max value 7 

(lim8) is given in Figure 10, and the output is given in (3). If 

the original output is not wanted to be collapsed, the 

corresponding qubit is copied to another qubit by CNOT, and 

the qubit is collapsed. 

 

𝑓(𝑥) = {
𝑎2𝑎1𝑎0,   𝑥 < 8
111,       𝑒𝑙𝑠𝑒  

 (3) 

 

a0 

a1 

a2 

a3 

c
İf c==1

0

İf c==1

0

İf c==1

0

4
 q

u
b
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s 

in
p

u
t

3
 q

u
b

it
s 

o
u

tp
u

t
a2

a1
a0

   

 
 

Figure 10. Limit circuit for 3 qubits. If 𝑎3 qubit is 1 (in other 

words if the number exceeds binary 111), then the other 

qubits are set to 1 (in other words the number set to binary 

111) 

 

 

3. THE PROPOSED METHOD 

 

This section shows how to perform operations such as 

convolution, and pooling quantum operations with the 

proposed framework.  

 

3.1 Convolution 

 

The convolution process is one of the main operations that 

makes DL different from other machine learning methods. The 

convolution process is carried out as given in Figure 11 and 

equation (4). As can be seen from the equation, the 

convolution process can be defined as the sum of dot products. 

So, it is possible to model a quantum convolution circuit with 

multiplication and addition modules. 

 

Filter Input Output2x2

 
 

Figure 11. Example classical convolution process 

 

𝑠 = ∑ ∑ 𝑚𝑖𝑗 . 𝑎𝑖𝑗

𝑛

𝑗=0

𝑛

𝑖=0

 (4) 

 

Designing a quantum multiplier circuit is very difficult at 

this stage of quantum computers. For quantum multiplication, 

it is necessary to develop a cyclic working structure with 

quantum circuit models that can take parameters or have a 

memory unit. For the same reason, it is hard to train DL 

networks. But multiplication or division with the power of 2 is 

easy to implement by shifting qubits. By using these modules, 

the convolution operation is applied. Figure 12 shows a 2x2 

window and sample masks to be applied to this window. The 

quantum model circuit required for the application of the 

masks in between Figure 12.b and Figure 12.e are given in 

between Figure 13.a and Figure 13.d. The extended version of 

Figure 13.d is given in Figure 14. 

 

a00 a01 

a10 a11 

Input Filters

a b c d e

0 0

0 1

1 1

1 1

2 1

1 1 0

0.5 0.25

0.25

 
 

Figure 12. Example input and filters for convolution 

 

Figure 14 is obtained by changing the modules in Figure 

13.d with their quantum circuit equivalent. Each module is 

separated by dashed lines. Since the weight corresponding to 
|𝑎11⟩ in the original filter is 0, this value is not used in creating 

the convolution circuit. In the example convolution operation 

in Figure 14, it is assumed that each of the inputs has 3 qubits 

(n=3). It can be obtained the circuits with a larger number of 

inputs and qubits by properly adapting the modules. In the 

circuit, firstly, input |𝑎00⟩ is divided by 2, and inputs |𝑎01⟩ and 

|𝑎10⟩ are divided by 4. The division is actualized by bit shifting. 

It should be noted that the division operation is performed by 

rounding to lower digits. After the division, the basic quantum 

circuit equivalents of the addition modules are written. First, 
|𝑎00⟩ and |𝑎01⟩ are added together and written to |𝑎01⟩. Then 

|𝑎01⟩ and |𝑎10⟩ are added together and written on |𝑎10⟩. Here 

in the example, since the sum of the weights is 1, the carry 

qubit is not required. At the end of the process, the result in 
|𝑎10⟩ is copied to the output qubits S. 

 

3.2 Pooling 

 

Pooling is the process of eliminating other pixels by making 
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a selection in a window. Common pooling methods in DL are 

min pooling, max pooling, mean pooling, and average pooling. 

According to min pooling, by choosing the smallest value in a 

window, other values are ignored. According to max pooling, 

the highest value is chosen. Mean pooling is performed by 

sorting the data in the window and selecting the value in the 

middle. Average pooling is done by averaging the values. 

 

3.2.1 Min / Max / Mean Pooling 

Min / Max / Mean pooling is performed using sorting 

circuits. The quantum circuit required for full sorting operation 

is given in Figure 15 [46, 49]. But for min pooling, it will be 

sufficient to apply the sequential sorting modules once. That 

is, only the first part, which calculates in1’, is satisfying. With 

the change of the control bit given to the sorting circuits, the 

circuit will work reversely and bring the max element to in1’. 

If we want to apply mean pooling, we look for in(k/2)’ output. 

Once the in(k/2)’ output is determined, there is no need to 

continue sorting. Therefore, (k-1) sorting modules are required 

for min and max-pooling. The number of sorting modules that 

should be used for mean pooling is calculated as ∑ (𝑖𝑘−1

𝑖=⌊
𝑘

2
⌋

), 

where k is the number of inputs. The quantum circuit for max 

pooling is given in Figure 16. 

 

 
 

Figure 13. Convolution model circuits for filters in Figure 12. a) the circuit for filter Figure 12.b, b) the circuit for filter Figure 

12.c, c) the circuit for filter Figure 12.d, d) the circuit for filter Figure 12.e 
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Figure 14. Extended version of the model circuit given in Figure 13.d for 3-qubit inputs 
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Figure 15. Model circuit for min/max/mean pooling 

 

The circuit given in Figure 16 is generated for 4 inputs with 

3 qubits. Sorting modules are obtained by sequential use of 

comparison and controlled swap modules. By using sorting 

modules in the circuit, it is ensured that the maximum value is 

moved to the top. In Figure 7, 𝑒0 and 𝑒1 qubits are shown for 

the comparison module. As stated in (2), when the second 

input is bigger, then 𝑒1 = 1. So, only 𝑒1 qubit connections are 

done. As a result, when the second input is bigger, controlled 

swap is actualized. For the quantum min pooling circuit, 𝑒0 is 

used instead of 𝑒1. Each sorting module is shown with dashed 

lines. The ancilla (𝑒1) and garbage qubits are reset after each 

sorting operation and can be used in the next sorting operation. 

The garbage qubit is an intermediate qubit whose result is 

negligible and used to perform calculations. The c in the figure 

is the classical bit and is used for the measurement result. By 

using common these extra qubits, the max pooling circuit 

needs only 2 qubits except for the inputs. In other words, for 

min/max/mean pooling, 𝑚 ∗ 𝑛 + 2 qubits are required, where 

m is the number of inputs, and n is the qubit length of inputs. 
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Figure 16. Max pooling quantum circuit for 4 inputs, where each input is 3-qubit 

 

3.2.2 Average pooling 

For practical application of the proposed quantum average 

pooling circuit, the window size should be the power of 2. For 

average pooling, the sum of the inputs is calculated first. Then, 

the numbers are averaged with the help of the division module. 

An example average pooling circuit for a scenario with 4 

inputs is given in Figure 17. The output of the circuit gives the 

new pixel value. 

 

|𝑎10  

|𝑎01  

|𝑎11  

|𝑎00  

nS
n

n

n

n

+

+
+

a

b

a

b

a

b /4
 

 

Figure 17. Quantum circuit for average pooling 

 

3.3 The proposed framework for image processing 

 

In the previous sections, convolution and pooling circuits 

have been proposed that take the elements in a window as 

input. However, for operations such as convolution and 

pooling to take place in a completely quantum environment, 

the elements corresponding to the window must first be 

fetched from the encoded input. In this way, it is possible to 

perform operations on the entire input image in parallel. In this 

section, a framework is proposed to fetch neighboring pixels 

of the relevant pixel according to the window size. In the 

proposed framework, it requires the input image to repeat as 

many as the number of non-0 elements in the mask. To fetch 

the elements, the increment/decrement operations of the 

relevant coordinates are performed before each repeated image. 

The encoded image is transferred to qubits holding the 

window's element at the relevant index each time. The 

suggested framework for a case with 4 window sizes is given 

in Figure 18, where I is the encoded image, S is the output, and 

a00, a01, a10, and a11 are the elements in the window. 
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Figure 18. The proposed framework for fetching windows, 

for a case with 4 window sizes, where S’ is the result 

 

 

4. SIMULATION RESULTS 

 

The proposed methods are tested on a Windows computer 

with i7 6220M processor, 12 GB RAM, and SSD. The method 

has been applied in the simulation environment because the 

proposed methods require lots of qubits, and quantum 

computers in the NISQ era are not robust for such big circuits 

[50, 51]. In the study, firstly, quantum encoding is performed 

to convert classical data to quantum data. NEQR model, which 

is developed for representing grayscale images, is used for 

quantum image encoding. According to this model, images are 

encoded with x, and y coordinates and their real values. In this 

way, the necessary arithmetic operations can be applied to 

inputs easily. Then, by using the proposed framework 

structure, a 2x2 window is fetched from the encoded image. 

As shown in the proposed framework, parallelization is 

performed by applying the Hadamard gate to the coordinate 

inputs. In this way, it is ensured that all windows are fetched 
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at the same time. Finally, sample convolution circuits were 

created with the help of the given modules and added to the 

circuit. The qubits from which the results were collected were 

copied to the output qubit, and the coordinate and output qubits 

were observed together. 

Because of the limitations and performance of the Qisqit 

simulators, the input images were reduced to 8x8 size with 3 

qubit resolution to test the proposed approach. A Matlab code 

is written which encodes the input image into quantum data. 

MCT gates are utilized for encoding images, and no 

optimization method is used. The proposed modules are 

adopted for 3 qubit color depth, and the circuits are obtained. 

Because the used images are resized 8x8 (23x23), the pixel 

coordinates are represented by 6 qubits (3 for x, and 3 for y). 

The created modules are coded in the IBM QISKIT Quantum 

Lab environment and tested for all input pairs. The accuracies 

of modules are checked. QISKIT aer_simulator backend is 

used for all simulations. To demonstrate the steps of value-

encoded quantum convolution, “cameraman.tif” is used. The 

reduced image is given in Figure 19.a. The matrix form of the 

image is given in Figure 19.b. To encode this image, the image 

should be represented by binary numbers. The binary 

representation of the matrix is given in Figure 20.a. The binary 

indices in Figure 20.a should give the output in the relevant 

cell. For example, if x is 000 and y is 000, then the output 

should be 101. The quantum circuit for encoding the image is 

given in Figure 20.b. First dotted rectangle is used for 

encoding (x, y) = (000,000) indices. So, all the controls are 

negative controls, which are active when the control qubit is 0. 

Because the data should be 101, the first and last qubits of a00 

are reversed, in another word they are set to 1. The process is 

done for all the cells. 
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Figure 19. The example input image a) cameraman.tif with 

the size of 8x8 and resolution of 3 qubits, b) matrix form of 

the image 

 

To calculate the histogram such encoded image, Hadamard 

gate should be applied on all x and y qubits. And all qubits 

should be measured. In our example, we measure the qubits in 

reverse order. So the measurements give the outputs formed in 

x2x1x0y2y1y0a2a1a0. The histogram of the encoded image is 

given in Figure 21 for 512 shots. For example, the output 

000000101 means there is 101 (last 3 qubits) in the cell 

indexed by 000 (first 3 qubits), and 000 (second 3 qubits). The 

measurements done in this way, give us the input indices and 

output value independently from probabilities. The higher the 

shots, the more the probabilities tend to be the same. So we 

don’t care about the probability values.  

After the input image is encoded, the circuit must be created 

with the help of the proposed framework. The generated 

quantum circuit is given in Figure 22. In the figure, the last 

dotted rectangle represents the operations formed according to 

the mask. Here, we design the circuit for the mask in Figure 

12.e. The other dotted rectangle represents the encoded images. 

Gray one is not used and necessary for this mask because the 

value of a11 is zero in this case. When the image is encoded for 

the first time, the current index value is reflected in the output. 

When we increase the X value by one and project the image to 

other outputs, we get the value to the right of the pixel (a01). 

When we increase it one more time, we get the element in the 

lower right corner (a11). When we subtract one from X, the 

element below (a10) is obtained. In the end, 1 must be 

subtracted from y to return to the index (a00) again. This is 

important for proper measurement. In this way, the elements 

inside the mask window are fetched. Then, using the circuits 

suggested in the above sections, the relevant convolution or 

pooling circuits are generated and implemented. Measurement 

is done after copying the final output to the S qubit. By 

applying the Hadamard gate to the inputs, a parallel 

calculation is performed for all the x and y indices at the same 

time. 

The result obtained by running 512 shots of the circuit in 

Figure 22, is given in Figure 23. Similar to the graph given in 

Figure 20, the first 6 qubits give the x and y indices, and the 

last three qubits give the convolution result. Modules such as 

/2 and /4 use "floor" for rounding. For example, the result of 

7/4 is equal to 1. Therefore, it should be taken into account that 

the calculations are made in this way. By interpreting the 

obtained results and transforming them into images, Figure 24 

appears.  

The same procedure is applied for other Matlab built-in 

demo images for different masks with window sizes 2x2 as 

shown in Table 4. The results produced by quantum circuits 

are compared with the expected results. All of the images are 

as expected. Because the sum of the weights in the used masks 

is 1, no extra qubit is needed for operations such as sum. With 

the development of quantum technologies, the proposed 

method can be applied to images with higher size and color 

resolutions. 
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Figure 20. Encoding of input a) Binary matrix form of input, 

b) Quantum circuit for encoding the image 

508



 
 

Figure 21. Histogram of 3-qubit 8x8 cameraman.tif for 512 shots. The first 3 qubits represent the x coordinate, the second 3 

qubits represent the y coordinate, and the last 3 qubits represent the color value 
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Figure 22. Application of the convolution process for filter given in Figure 12.e. The gray dotted rectangle is not necessary for 

this filer. Total 21 qubits are required for 8x8 image and 2x2 filters 

 

 
 

Figure 23. Convolution outputs for the quantum circuit given in Figure 22. The circuit runs for 512 shots 
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Figure 24. Reconstruction of the convoluted image. a) 

Binary matrix form of results, b) decimal matrix, c) output 

image 

Table 4. Simulation results for different input images 

 

Original 

image 

8x8, 3-qubit 

resolution 

Mask: 
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0.25
 

Mask: 

0.5 0

0 0.5
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0.5
 

  

 

  

  

 

  

     

     

 

    

     

     

 

 

5. CONCLUSION 

 

QC is exciting for many research areas with its computing 

power potential. On the other hand, window-based image 

applications such as DL need high computational power. But 

it is difficult to use QC in DL because the fundamentals of QC 

are different from traditional computing. Some variational 

circuits are proposed to apply quantum DL in the literature. 

However, the precision of these methods has not been 

validated in large input sets. There are also value-encoded 

methods for realizing window-based image processing 

applications. But they do not utilize the parallel processing 

capability of QC. In this study, a framework is proposed for 

the parallel processing of window-based quantum methods. In 

addition, convolution and pooling quantum circuits, which are 

the processes that require high computational power in DL, are 

implemented. To build these circuits, basic modules such as 

addition, multiplication, division, and comparison have been 

created. In this context, some modules such as x2, x4, /2, and 

/4 are implemented. Furthermore, a new approach for 

implementing the quantum comparison circuit is proposed. 

The created modules are run for all possible input pairs, and 

the results are validated. Because of the limitations of quantum 

simulators, and quantum computers in the NISQ era, the input 

images are reduced to 8x8 size and 3 qubit resolution. So, only 

21 qubits are used, and the circuit length is kept at the 

appropriate depth for the efficient operation of quantum 

simulators. The generated circuits by the proposed methods 

are run on Qisqit aer_simulator. It is verified that the proposed 

methods successfully produce the expected results. Since the 

circuits are run in a simulation environment, satisfactory 

results could not be obtained in terms of running times. For the 

convolutional circuits, 512 shots were completed in an average 

of 8-10 minutes. However, it is thought that the real speed 

advantage of the methods will be observed with the emergence 

of gate-based quantum computers operating with low error 

rates in high volume, and with a sufficient number of qubits 

[51].  

This study focused on the parallel application of the value-

encoded convolution process in QC. Due to the limitations of 

quantum simulators, the sample input images are kept small. 

This study demonstrates how the convolution and pooling 

operations can be applied to QC with the traditional approach. 

With the proposed method, circuits that produce exactly the 

same result as the classical convolution process in the quantum 

computing environment are produced. With the use of the 

generated circuits, proven original deep learning steps are 

performed with high accuracy. However, many gates are 

required for encoding data and generating modules. The need 

for the use of large amounts of gates makes it difficult to 

implement on quantum computers in the NISQ era. On the 

other hand, it is possible to implement window-based image 

processing applications in parallel thanks to the proposed 

framework. The proposed framework is suitable for both 

value-based and variational circuits. In future studies, studies 

will be carried out to develop reversible circuit optimization 

methods so that the produced circuits can be created with 

fewer gates. In this way, the method will be carried out with 

fewer quantum gates and its applicability will be increased. 

The highlights of the study can be summarized as below: 

• Value-based convolution operations are simulated in 

parallel across an entire image with the help of the 

proposed framework. 

• In contrast to variational quantum circuits, the classical 

data is encoded into quantum data with their exact values. 

So, the study guarantees that the results will be the same 

as the results obtained with the proven DL networks. 

• A new approach, which uses fewer qubits and gates, is 

proposed to compare two binary numbers. 

• Circuits for pooling are proposed with the help of modules 

that perform the ordering of two numbers. The circuits 

contain controlled swap and comparison modules. 

• By repeating the patterns in module circuits, the basic 

modules with different qubit numbers can be obtained. 
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And other convolutional and pooling circuits as needed 

can be easily implemented. 

 

 

ACKNOWLEDGMENT 

 

This study was supported by the TUBITAK (The Scientific 

and Technological Research Council of Turkey) under Grant 

No: 121E439. 

This article work was carried out within the scope of Hasan 

Yetiş’s doctoral dissertation named "Development of 

Artificial Intelligence Algorithms Based on Quantum 

Computing". The supervisor of the thesis, Mehmet Karaköse. 

 

 

REFERENCES 

 

[1] Kuutti, S., Bowden, R., Jin, Y., Barber, P., Fallah, S. 

(2021). A survey of deep learning applications to 

autonomous vehicle control. IEEE Transactions on 

Intelligent Transportation Systems, 22(2): 712-733. 

https://doi.org/10.1109/TITS.2019.2962338 

[2] Floridi, L., Chiriatti, M. (2020). GPT-3: Its nature, scope, 

limits, consequences. Minds & Machines, 30(4): 681-

694. https://doi.org/10.1007/s11023-020-09548-1 

[3] Dale, R. (2021). GPT-3: What’s it good for? Natural 

Language Engineering., 27(1): 113-118. 

https://doi.org/10.1017/S1351324920000601 

[4] Shahinfar, S., Meek, P., Falzon, G. (2020). ‘How many 

images do I need?’ Understanding how sample size per 

class affects deep learning model performance metrics 

for balanced designs in autonomous wildlife monitoring. 

Ecological Informatics, 57. 

https://doi.org/10.1016/j.ecoinf.2020.101085 

[5] Maheshwaram, S. (2021). Future directions and 

challenges of deep learning. International Journal of 

Multi Disciplinary Research in Science, Engineering and 

Technology, 4(1). 

https://doi.org/10.15680/IJMRSET.2021.0401003 

[6] Peemen, M., Mesman, B., Corporaal, H. (2011). 

Efficiency optimization of trainable feature extractors for 

a consumer platform. Advanced Concepts for Intelligent 

Vision Systems, 6915(1): 293-304. 

https://doi.org/10.1007/978-3-642-23687-7_27 

[7] Tan, Z., Karakose, M. (2020). Comparative study for 

deep reinforcement learning with CNN, RNN, and 

LSTM in autonomous navigation. International 

Conference on Data Analytics for Business and Industry 

(ICDABI), Bahrain. 

https://doi.org/10.1109/ICDABI51230.2020.9325622 

[8] Cui, Z., Ke, R., Pu, Z., Wang, Y. (2018). Stacked 

bidirectional and unidirectional LSTM recurrent neural 

network for network-wide traffic speed prediction. 

arXiv:1801.02143.  

[9] Shimizu, T. (2020). Supercomputer Fugaku: Co-

designed with application developers/researchers. IEEE 

Asian Solid-State Circuits Conference (A-SSCC), 

Hiroshima, Japan. 

[10] Kodama, Y., Odajima, T., Arima, E., Sato, M. (2020). 

Evaluation of power management control on the 

supercomputer Fugaku. IEEE International Conference 

on Cluster Computing, pp. 484-493. 

https://doi.org/10.1109/CLUSTER49012.2020.00069 

[11] Elsayed, N., Maida, S.A., Bayoumi, M. (2019). A review 

of quantum computer energy efficiency. IEEE Green 

Technologies Conference, Lafayette, LA, USA. 

[12] Arute, F., Arya, K., Babbush, R. (2019). Quantum 

supremacy using a programmable superconducting 

processor. Nature, 574(7779): 505-510. 

https://doi.org/10.1038/s41586-019-1666-5 

[13] Garg, S., Ramakrishnan, G. (2020). Advances in 

quantum deep learning: An overview. arXiv:2005.04316 

[quant-ph]. 

[14] Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M. (2019). 

Parameterized quantum circuits as machine learning 

models. Quantum Science and Technology, 4(4): 043001. 

https://doi.org/10.1088/2058-9565/ab4eb5 

[15] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., 

Wiebe, N., Lloyd, S. (2017). Quantum machine learning. 

Nature, 549(7671): 195-202. 

https:/doi.org/10.1038/nature23474 

[16] Adcock, J., Allen, E., Day, M., Frick, S. (2015). 

Advances in quantum machine learning. 

arXiv:1512.02900 [quant-ph]. 

[17] Yetiş, H., Karaköse, M. (2021). Obtaining Quantum Gate 

Models from Known Input and Output Values. 

Interdisciplinary Research in Technology and 

Management, CRC Press, 393-398. 

[18] Matteo, O.D., Mosca, M. (2016). Parallelizing quantum 

circuit synthesis. Quantum Science and Technology, 1(1): 

015003. https://doi.org/10.1088/2058-9565/1/1/015003 

[19] Adedoyin, A., Ambrosiano, J., Anisimov, P. (2018). 

Quantum algorithm implementations for beginners. 

arXiv:1804.03719. 

[20] Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M. 

(2017). Open Quantum Assembly Language. 

arXiv:1707.03429.  

[21] Deutsch, D., Jozsa, R. (1992). Rapid solution of 

problems by quantum computation. Proceedings of the 

Royal Society of London. Series A: Mathematical and 

Physical Sciences, 439(1): 553-558. 

https://doi.org/10.1098/rspa.1992.0167 

[22] Shor, P.W. (1994). Algorithms for quantum computation: 

Discrete logarithms and factoring. IEEE Proceedings 

35th Annual Symposium on Foundations of Computer 

Science, 124-134. 

[23] Grover, L.K. (1996). A fast quantum mechanical 

algorithm for database search. Proceedings of the 

Twenty-Eighth Annual ACM Symposium on Theory of 

Computing, pp. 212-219. 

https://doi.org/10.1145/237814.237866 

[24] National Academies of Sciences Engineering and 

Medicine. (2019). Domestic Manufacturing Capabilities 

for Critical DoD Applications: Emerging Needs in 

Quantum-Enabled Systems: Proceedings of a Workshop. 

Washington, DC: The National Academies Press. 

[25] Zhang, Y., Ni, Q. (2020). Recent advances in quantum 

machine learning. Quantum Engineering, 2(1): e34. 

https://doi.org/10.1002/que2.34 

[26] Dunjko, V., Taylor, J.M., Briegel, H.J. (2016). Quantum-

enhanced machine learning. Physical Review Letters, 

117(13): 130501. 

https://doi.org/10.1103/PhysRevLett.117.130501 

[27] Ciliberto, V., Herbster, M., Davide, A., Pontil, M., 

Severini, S. (2018). Quantum machine learning: A 

classical perspective. Proceedings of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, 

474(2209): 20170551. 

511

https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.1016/j.ecoinf.2020.101085
https://doi.org/10.1109/ICDABI51230.2020.9325622
https://doi.org/10.1109/CLUSTER49012.2020.00069
https://iopscience.iop.org/journal/2058-9565
https://iopscience.iop.org/journal/2058-9565
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1002/que2.34


 

https://doi.org/10.1098/rspa.2017.0551 

[28] Saini, S., Khosla, P., Kaur, M., Singh, G. (2020). 

Quantum driven machine learning. International Journal 

of Theoretical Physics, 59(12): 4013-4024. 

https://doi.org/10.1007/s10773-020-04656-1 

[29] Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D. 

(2019). An artificial neuron implemented on an actual 

quantum processor. npj Quantum Information, 5(1): 26. 

https://doi.org/10.1038/s41534-019-0140-4 

[30] Schuld, M., Sinayskiy, I., Petruccione, F. (2015). 

Simulating a perceptron on a quantum computer. Physics 

Letters A, 379(7): 660-663. 

https:/doi.org/10.1016/j.physleta.2014.11.061 

[31] de Paula Neto, F.M., Filho, G.I.S., Monteiro, C.A. (2020). 

Approaches to avoid overfitting in a quantum perceptron. 

International Joint Conference on Neural Networks, UK.  

[32] Tacchino, F., Barkoutsos, P., Macchiavello, C., 

Tavernelli, I., Gerace, D., Bajoni, D. (2020). Quantum 

implementation of an artificial feed-forward neural 

network. Quantum Science and Technology, 5(4). 

https:/doi.org/10.1088/2058-9565/abb8e4 

[33] Parthasarathy, R., Bhowmik, R.T. (2021). Quantum 

optical convolutional neural network: A novel image 

recognition framework for quantum computing. IEEE 

Access, 9. 

https:/doi.org/10.1109/ACCESS.2021.3098775 

[34] Oh, S., Choi, J., Kim, J.K., Kim, J. (2021). Quantum 

convolutional neural network for resource-efficient 

image classification: A Quantum Random Access 

Memory (QRAM) approach. International Conference 

on Information Networking (ICOIN), 50-52, Jeju Island, 

Korea (South). 

https:/doi.org/10.1109/ICOIN50884.2021.9333906 

[35] Broughton, M. (2020). TensorFlow quantum: A software 

framework for quantum machine learning. 

arXiv:2003.02989 [cond-mat, physics:quant-ph]. 

[36] Chen, Y.C.S., Yang, H.C.H., Qi, J., Chen, P.Y., Ma, X., 

Goan, H.S. (2020). Variational quantum circuits for deep 

reinforcement learning. IEEE Access, 8(1): 141007-

141024. https:/doi.org/10.1109/ACCESS.2020.3010470 

[37] Kerenidis, I., Landman, J., Prakash, A. (2019). Quantum 

algorithms for deep convolutional neural network. 

arXiv:1911.01117. 

[38] Bisarya, A., El Maouaki, W., Mukhopadhyay, S., Mishra, 

N. (2020). Breast cancer detection using quantum 

convolutional neural networks: A demonstration on a 

quantum computer. Oncology. 

https://doi.org/10.1101/2020.06.21.20136655 

[39] Oh, S., Choi, J., Kim, J. (2020). A tutorial on quantum 

convolutional neural networks. arXiv:2009.09423. 

[40] Yetiş, H., Karaköse, M. (2020). Quantum circuits for 

binary convolution. IEEE International Conference on 

Data Analytics for Business and Industry. 

https:/doi.org/10.1109/ICDABI51230.2020.9325659 

[41] Cong, I., Choi, S., Lukin, D.M. (2019). Quantum 

convolutional neural networks. Nat. Phys., 15(12): 1273-

1278. https://doi.org/10.1038/s41567-019-0648-8 

[42] Su, J., Guo, X., Liu, C., Li, L. (2020). A new trend of 

quantum image representations. IEEE Access, 8(1): 

214520-214537. 

https:/doi.org/10.1109/ACCESS.2020.3039996 

[43] Zhang, Y., Lu, K., Gao, Y., Wang, M. (2013). NEQR: A 

novel enhanced quantum representation of digital images. 

Quantum Inf Process, 12(8): 2833-2860. 

https://doi.org/10.1007/s11128-013-0567-z 

[44] Ma, Y., Ma, H., Chu, P. (2020). Demonstration of 

quantum image edge extraction enhancement through 

improved Sobel operator. IEEE Access, 8(1): 210277-

210285. https:/doi.org/10.1109/ACCESS.2020.3038891 

[45] Thapliyal, H., Ranganathan, N. (2013). Design of 

efficient reversible logic-based binary and BCD adder 

circuits. ACM Journal on Emerging Technologies in 

Computing Systems, 9(3): 1-31. 

https://doi.org/10.1145/2491682 

[46] Li, P., Shi, T., Lu, A., Wang, B. (2019). Quantum circuit 

design for several morphological image processing 

methods. Quantum Information Processing, 18(12): 364. 

https://doi.org/10.1007/s11128-019-2479-z 

[47] Wang, D. (2012). Design of quantum comparator based 

on extended general Toffoli gates with multiple targets. 

Computer Science, 39(9): 302-306. 

[48] Foulds, S., Kendon, V., Spiller, T. (2021). The controlled 

SWAP test for determining quantum entanglement. 

Quantum Science and Technology, 6(3): 035002. 

https://doi.org/10.1088/2058-9565/abe458 

[49] Jiang, S., Zhou, R.G., Hu, W., Li, Y. (2019). Improved 

quantum image median filtering in the spatial domain. 

International Journal of Theoretical Physics, 58(7): 

2115-2133. https://doi.org/10.1007/s10773-019-04103-

w 

[50] Leymann, F., Barzen, J. (2020). The bitter truth about 

gate-based quantum algorithms in the NISQ era. 

Quantum Science and Technology, 5(4): 044007. 

https://doi.org/10.1088/2058-9565/abae7d 

[51] Yetis, H., Karakose, M. (2021). Investigation of noise 

effects for different quantum computing architectures in 

IBM-Q at NISQ level. 25th International Conference on 

Information Technology (IT), Zabljak, Montenegro.  

512

https://doi.org/10.1098/rspa.2017.0551
https://link.springer.com/journal/10773
https://link.springer.com/journal/10773
https://www.nature.com/npjqi
https://iopscience.iop.org/journal/2058-9565
https://doi.org/10.1109/ACCESS.2021.3098775
https://doi.org/10.1109/ICOIN50884.2021.9333906
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1109/ICDABI51230.2020.9325659
https://doi.org/10.1109/ACCESS.2020.3039996
https://doi.org/10.1109/ACCESS.2020.3038891
https://dl.acm.org/toc/jetc/2013/9/3
https://dl.acm.org/toc/jetc/2013/9/3
https://doi.org/10.1145/2491682
https://iopscience.iop.org/journal/2058-9565



