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One of the promising technologies in the field of clean and renewable energy is the 
microbial fuel cells, which in addition to generating electrical energy from the metabolism 
of microorganisms, can also be used to improve the environment in wastewater treatment. 
In fact, this paper designs an integrated control model that in the presence of uncertainty 
and unknown parameters can consider the effect of input variables for two-population in 
a chamber. In addition to maintaining closed loop stability, it has acceptable behavior in 
terms of time to reach steady state and reduce system error and provide satisfactory 
performance in terms of output energy. Lyapunov analysis ensures system stability and 
system control functions are demonstrated by MATLAB / Simulink simulations. 
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1. INTRODUCTION

Most of the electricity needed by human societies is
currently supplied by non-renewable sources such as fossil 
fuels and nuclear energy. Along with the rapidly increasing 
demand for electricity due to the industrialization of global life 
and population growth, the high pollution of these methods 
along with the depletion of existing resources, is one of the 
most important factors in encouraging scientists to study new 
technologies to make more use of renewable resources in 
electricity generation. In the last few decades, extensive 
research has been done in the field of technologies related to 
renewable energy such as biomass, solar energy, geothermal, 
wind energy, and etc., in addition to meeting the demand for 
energy at a reasonable price, the upward trend of global 
warming can be reduced by reducing the level of carbon 
emissions from fossil fuels such as natural gas and coal, etc. 
[1-4]. In fact, the best way to balance the reduction of energy 
production by fossil fuels is to develop the use of renewable 
energy sources. On the other hand, energy produced from 
renewable sources is pure, efficient and environmentally 
friendly [1]. One of the effective ways in this field that can be 
both productive is the extraction of energy from waste (organic 
or inorganic), which is also a solution to remove the limitations 
of energy generation and prevent environmental pollution. As 
a result, fuel cell (FC) and microbial fuel cell (MFC), which 
have the ability to convert chemical energy into electrical 
energy, have received more attention in recent years. Because 
compared to other mentioned sources, it has the highest 
efficiency and does not produce any polluting gas. Microbial 
fuel cells are complementary to fuel cells and are considered 
as suitable devices for converting biochemical energy into 
electrical energy [5]. 

We know that most wastewater treatment technologies are 
inefficient, costly and unsustainable. On the other hand, 
industrial growth in the modern world and increasing 

population density in industrial societies have increased water 
pollution and made the optimal wastewater treatment plan one 
of the most important problems in developed and developing 
countries in recent years. Therefore, more attention has been 
paid to the use of more advanced technologies and 
development in wastewater treatment [6]. Sewage is the 
meeting place of complex types of microorganisms such as 
Shewanella putrefaciens, Proteobacteria, microorganisms 
Pseudomonas, G. Sulferredunces, E. coli, Firmicutes and 
Proteus vulgaris, etc. [3] which are generally fermentative, 
metanogenic and anodophilic [7]. The conversion of 
biochemical energy into electricity can be done by microbial 
fuel cells i.e. electricity is produced from wastewater that is 
full of microorganisms and bacteria [8]. The main elements of 
MFCs are anode, cathode, substrate, membrane and bacterial 
species in two parts of anode chamber (including electrode, 
microorganisms, substrate anolite under anaerobic conditions) 
and cathode chamber (including electrode, electron acceptor 
and catalyst with aerobic conditions and anaerobic) [9-10]. 
Bacteria facilitate the transfer of electrons from the anode in 
two direct ways (by means of intracellular mediation or the use 
of nanowires) and indirectly (by means of external electrical 
connection) [11-12]. In this case, the force is extracted and 
fresh water is collected by combining electrons and protons. 
Platinum or microorganisms are used as catalysts in the 
cathode part and these two parts are separated by the interface 
membrane [10]. Figure 1 shows an anode-based single 
Chamber two-population MFC without the use of an 
intermediate membrane. 
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Figure 1. Single Chamber two-population MFC 

 
Higher conversion rates, the ability to generate electricity 

and efficiency at ambient temperature are the three main 
reasons for replacing this method with conventional 
wastewater treatment methods [13-15]. For the oxidation of 
the substrate in the MFC anode chamber, due to the different 
bacterial species such as acetate, glutamate (glucose), surface 
water, propionate, ethanol, rebuttal, etc., which are responsible 
for the production of positive and negative ions, more than 
Glucose and acetate are used [16-17]. The performance of 
MFCs in this area depends on two categories of parameters: 
design parameters and operational parameters. The size, 
material and surface of the electrodes, the size of the biofilm, 
the types of electron donors, the internal losses and the types 
of membranes, etc. are in the first category. Bacterial growth 
rate, temperature, amount of acid (pH) in the anode chamber, 
effective substrate concentration, external resistance, etc. are 
in the second category [18-21]. The second category 
parameters affect the performance of MFC in terms of voltage 
and power density. 

The best way to facilitate the analysis of the effect of 
different parameters on the performance of any complex 
dynamic system is mathematical modeling [22-23]. Cultures 
of microorganisms (pure or multiple bacterial cultures), 
reactions in chambers, and substrate supply modes are the 
basis for modeling MFCs [24]. The operation of MFCs must 
be performed under controlled conditions to provide stable 
output with optimal performance. Since this technology is still 
in the laboratory stage, more and more research should be done 
on it and different mathematical models for this system should 
be obtained to determine the relationships between parameters, 
inputs, outputs and system behavior and therefore apply 
different control strategies to MFCs. For example, in [25] two-
chamber MFC mathematical modeling with one bacterial 
species and in [26-27] single- chamber MFC modeling with 
two bacterial species are described. So far, different modeling 
has been applied to these systems along with different control 
schemes. For example, in [28] with digital changes due to 
electric charge, ambient temperature and discharge in the 
substrate and the use of microcontrollers for MFC stack and 
controlled output voltage at a constant level, a sample discrete 
time controller is designed. [29] describes the PID-fuzzy 
controller design for MFC with two-chamber for constant 
output voltage; and [30-31] introduce adaptive compensator-
based control in the presence of parametric uncertainty for 
better performance. In [32-33] predictive mode controller and 
adaptive fuzzy techniques under temperature disturbances are 
used. These controllers and other similar methods have been 
developed for different types of MFC models. 

To find the overall function of MFCs, their dependence on 
microorganisms must be considered.  In [25-26] single 
chamber MFC models are presented. [27] introduced 
thermophilic and methanogenic chambers with anode-based 
MFC model in four sets, so that two sets have been developed 
for parameter estimation and the other two sets for model 
validation. This validation is performed by connecting an 
external resistor between the anode and cathode terminals and 
the announced result indicates that the proposed model will be 
suitable for real-time process control. [34] accurately model 
methanogenic microorganisms, as they can reduce the overall 
columbic efficiency as well as the amount of electricity 
produced. In this paper, this challenging and important two- 
chamber sample is examined. This choice is negligible for 
reasons such as uniform distribution of bacterial species, 
without significant changes in temperature and pH in practice, 
assuming gas transfer values through cathode elements and the 
bed gradient in the biofilm. Precise mathematical modeling 
and chemical reaction and dynamics of the MFC system are 
described in [31] and [35]. 

In this paper, the receding horizon control (RHC) or 
predictive model control (MPC) method is used [36]. In this 
strategy, at any time, the first element of the input path is 
selected to optimize the performance of the index. [37-40] 
show that due to the lack of limitations about the model used 
in the prediction, many formulations can be created for linear 
and nonlinear systems. Using a linear model and a second-
order objective function, the nominal MPC algorithm 
transforms itself into a structured second-order convex (QP) 
program and the algorithm provides a reliable solution with 
the best convergence mode. The online computational 
complexity of this method is a major concern in nonlinear 
systems, especially if we have to fast sampling or higher order 
systems. Because the numerical techniques used to solve the 
optimization problem may be longer than the time available 
for online computing. To solve this problem, we can use MPC 
extended semi-definite programs for nonlinear systems, linear 
dynamic approximation with approximation error bounds [41-
42], etc. In recent years, the method of using the minimum-
maximum formulation with quadratic criteria has been 
proposed as linear matrix inequality (LMI) optimization [43-
44]. This method is very flexible in allowing many parts of the 
design do's and don'ts, such as the size and structure of the 
matrix, the degree of exponential stability, the time delay and 
etc. In this paper, we want to use LMI capabilities in 
accordance with MPC-based techniques for a two-chamber 
microbial fuel cell system with a bacterial species. 

In this paper, to apply effective MFC control by collecting 
appropriate parametric ranges, an LMI-based predictive model 
control method is presented for single-chamber MFC with 
state space model. In the presence of unmodulated 
uncertainties, this design reduces the time to steady state and 
aggregation of the system error by maintaining the stability of 
the closed-loop system, which was investigated by Lyapunov 
analysis, and its performance on the MFC system is confirmed 
by simulation. They are used to ensure the performance, 
asymptotic stability and robustness of the nonlinear dynamic 
system in the presence of uncertainty parameters at certain 
reasoned limits. The proposed predictive control method 
improves the performance of MFC under parametric 
uncertainties and effectively estimates uncertain parameters 
online. 

 



Synthesis and applications of biopolymer /FeO nanocomposites: A review / J. New Mat. Electrochem. Systems 
 

74 

The paper is organized as follows: In the second part, a two-
chamber MFC control model with a bacterial species is 
presented. In the third part, the control strategy and design of 
the LMI-based model predictive control are described and in 
the fourth part, the simulation results are studied. In the fifth 
section, the conclusion is stated. 
 
2. THE PROPOSED LMI-BASED MODEL 
PREDICTIVE CONTROL 
 

This section describes the proposed LMI-based predictive 
model control method. The control law 𝑢(𝑘) designed through 
the prediction model ensures the stability of the manifold 
pressure error of the power supply. For this purpose, Equation 
(4) defines the desired error vector, such that 𝑖 = 1, 2, 3: 
 

𝑒௜(𝑘) = 𝑥௜(𝑘) − 𝑥௜ௗ    (4) 
 

And according to the dynamic equation of the system (2), 
the dynamic equations of the error will be as follows: 
 

𝑒(𝑘 + 1)
= 𝐴𝑒(𝑘) + 𝐵𝑢(𝑘)
+ 𝛿(𝑒(𝑘)) 

  (5) 

 
δ (x, k) is the Lipchitz nonlinear constant related to the model 
uncertainty. To satisfy the following constraint, we need state 
and control variables: 
Where �̅� and �̅� are compact sets of 𝑅𝑛 and 𝑅𝑚 that contain 
both origins as an interior point. To design a state-feedback 
control rule 𝑢(𝑘 + 𝑖|𝑘) = 𝐿(𝑘)𝑥(𝑘 + 𝑖|𝑘) (𝑖 ≥ 0) for (5), one way 
to minimize the problem with respect to u (.) is the infinite 
horizon cost function by using of Equation (7): 

∞ 
𝐽(𝐾) = ∑ 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇 ℛ𝑢(𝑘 + 
𝑖|𝑘) 
𝑖=0 

(7) 

 
So that equation (5) is satisfied; 𝒬 and ℛ are definite 

positive weight matrices. Here we introduce a quadratic 
function 𝑉(𝑥) = 𝑒𝑇𝑃𝑒 with condition 𝑃 > 0 corresponding to 
the state 𝑒(𝑘|𝑘) of the system expressed in (5) with initial 
value𝑉(0) = 0. If we assume the sampling time 𝑘, an inequality 
(8) will be obtained: 
 
𝑉(𝑘 + 𝑖 + 1|𝑘) − 𝑉(𝑘 + 𝑖|𝑘) 
≥ −𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇ℛ𝑢(𝑘 + 𝑖|𝑘) 

      (8) 

By summing (8) from 𝑖 = 0 to 𝑖 = ∞ we will have: 
 

𝑒(∞|𝑘)𝑇𝑃𝑒(∞|𝑘) − 𝑒(𝑘|𝑘)𝑇𝑃𝑒(𝑘|𝑘) ≥ −𝐽  (9) 

We know that if the closed-loop system of Equation (5) is 
stable, then 𝑒(∞|𝑘) must be zero, and then we have: 
 

𝐽 ≤ 𝑒(𝑘|𝑘)𝑇𝑃𝑒(𝑘|𝑘) ≤ −𝛾          (10) 

 
Where 𝛾 is a positive number and is considered as the upper 
bound of Equation (7); Then: 
 

∞ 
∑ 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇 ℛ𝑢(𝑘 
+ 𝑖|𝑘) ≤ 𝛾 
𝑖=0 

 (11) 

Before entering into the continuation of the discussion, let 
us state the lemma (1) and lemma (2), the proofs of which are 
given in [47] and [48], respectively. lemma (1), which is 
related to the Schur supplement in relation to LMI, is 
expressed as (12): 
 

𝑄(𝑥) 𝑆(𝑥) 
[𝑆(𝑥)𝑇 𝑅(𝑥)] > 0 

 (12) 

Where 𝑄(𝑥) = 𝑄(𝑥)𝑇 and 𝑅(𝑥) = 𝑅(𝑥)𝑇 and 𝑆(𝑥) are functions 
of 𝑥 and are equivalent to: 

𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅(𝑥)−1𝑆(𝑥)𝑇 > 0 (13) 
 

Of course, this equation can also be written in another way: 
 

𝑄(𝑥) > 0, 𝑅(𝑥) − 𝑆(𝑥)𝑄(𝑥)−1𝑆(𝑥)𝑇 > 0 (14) 
 

If 𝑀 and 𝑁 are real constant matrices and 𝑃 is positive 
matrix of compatible dimensions, Lemma 
(2) will be expressed as follows: 
 

𝑀𝑇𝑃𝑁 + 𝑁𝑇𝑃𝑀 ≤ 𝜀𝑀𝑇𝑃𝑀 + 𝜀−1𝑁𝑇𝑃𝑁 (15) 

Which is true with the condition 𝜀 > 0. 
 

One of the problems with MPCs in minimization is the 
timely detection of duplicate inputs, which we propose a 
convex optimization method to solve. In such a way that 
instead of being minimum in (7), we minimize its upper bound. 
For the nonlinear discrete time system (5), the upper bound is 
minimized by a feedback-state control in the form 𝑢(𝑘 + 𝑖|𝑘) = 
𝐿(𝑘)𝑒(𝑘 + 𝑖|𝑘) (𝑖 ≥ 0) and then give a representation of MPC 
law in terms of feasible solutions to LMIs. 

To form the 𝐿 matrix, which is the state-feedback matrix, 
we use the following theorem: 
 
Theorem (1) 
 

For all times 𝑘, consider the discrete time system (5) and 
assume that 𝑒(𝑘|𝑘) is the measured states of 𝑒(𝑘). Then the 
state-feedback matrix 𝐿 in the control law is obtained by 
minimizing the upper bound of 𝑉(𝑒(𝑘|𝑘)) in the objective 
function and is represented at all times 𝑘 as 𝐿 = 𝑌𝑋−1, where it 
is always 𝑋 > 0. In this relation, 𝑌 is obtained by solving the 
following optimization problem in terms of the given variables 
 
𝛾, 𝜉, 𝑋, 𝑌 and 𝑍 = [𝑋; 𝑌]. 
min  𝛾 
𝛾,𝜉,𝑋,𝑌 

            (16) 

Provided that (17) and (18) are always met. 
 
[ −𝐼 ∗ ] 
𝑥(𝑘) −𝑋 

(17) 

z 
Proof 
 

To reach (18), we must first edit the quadratic function 𝑉 to 
satisfy the desired conditions as follows: 
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⎣
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⎢
⎢
⎢
⎢
⎡

−𝑋 ∗

ඥ(1 + 𝜀)(𝐴𝑋 + 𝐵𝑌) −𝑋
∗ ∗ ∗
∗ ∗ ∗

ටቀ1 +
ଵ

ఌ
ቁ 𝑊𝑍 0

𝑄
ଵ

ଶൗ 𝑋

𝑅
ଵ

ଶൗ 𝑌

0
0

−𝜀𝐼 ∗ ∗
0
0

−𝛾𝐼 ∗
0 −𝛾𝐼

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                (18) 

 
𝑉(𝑘 + 𝑖 + 1|𝑘) − 𝑉(𝑘 + 𝑖|𝑘) 
≤ 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇ℛ𝑢(𝑘 + 𝑖|𝑘)

     (19) 

Then by substituting the state space (5) into an inequality (19) 
we have: 
 
𝑢(𝑘 + 𝑖|𝑘)𝑇ℛ𝑢(𝑘 + 𝑖|𝑘) + 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) − 
𝑒(𝑘 + 𝑖|𝑘)𝑇𝑃𝑒(𝑘 + 𝑖|𝑘) 
𝑇 
+ {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘) + 𝛿(𝑒(𝑘 + 𝑖|𝑘))} 
× 𝑃{𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘) + 𝛿(𝑒(𝑘 + 𝑖|𝑘))} < 0

(20) 

 
Now we define the function ℎ(𝑒, 𝑢) as follows: 
 
𝑇 
ℎ(𝑒, 𝑢) = {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘) + 𝛿(𝑒(𝑘 + 
𝑖|𝑘))} 𝑃 
× {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘) + 𝛿(𝑒(𝑘 + 𝑖|𝑘))} 
= {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)}𝑇𝑃{𝐴𝑒(𝑘 + 𝑖|𝑘) + 
𝐵𝑢(𝑘 + 𝑖|𝑘)} 
+ {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)}𝑇 × 𝑃{𝛿(𝑒(𝑘 + 𝑖|𝑘))} 
𝑇 
+ {𝛿(𝑒(𝑘 + 𝑖|𝑘))} 𝑃 {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)} 
 
𝑇 
+ {𝛿(𝑒(𝑘 + 𝑖|𝑘))} × 𝑃{𝛿(𝑒(𝑘 + 𝑖|𝑘))}} 
 

(21) 

And using lemma (2) and considering that 𝑃 ≤ 𝜆𝑚𝑎𝑥𝐼 ≤ 𝜇𝐼, 
we can define the upper bound of 
ℎ(𝑒, 𝑢) as follows: 
 
ℎ(𝑒, 𝑢) ≤ (1 + 𝜀){𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 
𝑖|𝑘)}𝑇𝑃 × {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)} 
+ (1 + 𝜀−1){𝛿(𝑒(𝑘 + 𝑖|𝑘))}𝑇𝑃 × {𝛿(𝑒(𝑘 + 
𝑖|𝑘))} 
 

 (22)

In the proposed equation 𝜆𝑚𝑎𝑥 is the eigenvalue of the 
maximum 𝑃 and 𝜇𝐼 of the upper bound, so we have: 
 
ℎ(𝑒, 𝑢) ≤ (1 + 𝜀){𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 
𝑖|𝑘)}𝑇𝑃 × {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)} 
+ (1 + 𝜀−1)𝜇{𝛿(𝑒(𝑘 + 𝑖|𝑘))}𝑇𝑃 × {𝛿(𝑒(𝑘 + 
𝑖|𝑘))} 
 

 (23)

Since the relations related to 𝛿(. ) in the above equation are 
finite, i.e. 
 
𝑇 
{𝛿(𝑒(𝑘 + 𝑖|𝑘))} 𝛿(𝑒(𝑘 + 𝑖|𝑘)) 
≤ [𝑒(𝑘 + 𝑖|𝑘)𝑇𝑢(𝑘 + 𝑖|𝑘)𝑇]𝑊𝑇𝑊[𝑒(𝑘 + 𝑖|𝑘), 
𝑢(𝑘 + 𝑖|𝑘)] 

 (24)

Then 
 
ℎ(𝑒, 𝑢) ≤ (1 + 𝜀){𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)}𝑇𝑃 × 
{𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)} 
+ (1 + 𝜀−1)𝜇[𝑒(𝑘 + 𝑖|𝑘)𝑇𝑢(𝑘 + 𝑖|𝑘)𝑇]𝑊𝑇𝑊[𝑒(𝑘 + 𝑖|𝑘), 
𝑢(𝑘 + 𝑖|𝑘)] 
 

(25) 

To satisfy Equation (22) for all i≥0s, the following relation 
must be guaranteed to be negative: 
 
𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘) + 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) − 
𝑒(𝑘 + 𝑖|𝑘)𝑇𝑃𝑒(𝑘 + 𝑖|𝑘) 
+ (1 + 𝜀){𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)}𝑇𝑃 
× {𝐴𝑒(𝑘 + 𝑖|𝑘) + 𝐵𝑢(𝑘 + 𝑖|𝑘)} 
+ (1 + 𝜀−1)𝜇[𝑒(𝑘 + 𝑖|𝑘)𝑇𝑢(𝑘 + 𝑖|𝑘)𝑇]𝑊𝑇𝑊[𝑒(𝑘 + 𝑖|𝑘), 
𝑢(𝑘 + 𝑖|𝑘)] 
< 0 

(26) 

By placing 𝑢(𝑘 + 𝑖|𝑘) with 𝐿𝑒(𝑘 + 𝑖|𝑘), and rewrite the relation 
(26): 
 
(1 + 𝜀)𝑒(𝑘 + 𝑖|𝑘)𝑇(𝐴 + 𝐵𝐿)𝑇𝑃(𝐴 + 𝐵𝐿)𝑒(𝑘 + 𝑖|𝑘) − 
𝑒(𝑘 + 𝑖|𝑘)𝑇𝑃𝑒(𝑘 + 𝑖|𝑘) 
+ 𝑒(𝑘 + 𝑖|𝑘)𝑇𝒬𝑒(𝑘 + 𝑖|𝑘) + 𝑒(𝑘 + 𝑖|𝑘)𝑇𝐿𝑇𝑅𝐿𝑒(𝑘 + 
𝑖|𝑘) 
+ (1 + 𝜀−1)𝜇𝑒(𝑘 + 𝑖|𝑘)𝑇[𝐼𝐿𝑇]𝑊𝑇𝑊[𝐼, 𝐿] × 𝑒(𝑘 + 𝑖|𝑘) 
< 0 

(27) 

Which is valid for all 𝑖 ≥ 0; If 
 
(1 + 𝜀)(𝐴 + 𝐵𝐿)𝑇𝑃(𝐴 + 𝐵𝐿) − 𝑃 + 𝒬𝐿𝑇𝑅𝐿 + (1 + 
𝜀−1)𝜇[𝐼𝐿𝑇]𝑊𝑇𝑊[𝐼, 𝐿] < 0 
 

(28) 

If substitutions are made for 𝑋 = 𝛾𝑃−1, 𝑋 > 0 and 𝑌 = 𝐿𝑥, as 
well as 𝜉 = 𝛾𝜇−1, before and after multiplying 𝑋 by (28) and 
using the Schur supplement provided that −𝑋 + 𝜉𝐼 ≤ 0 is valid, 
we can rewrite (28) as follows: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑋                         ∗ ∗ ∗ ∗

√1 + 𝜀(𝐴𝑋 + 𝐵𝑌)

ඨ൬1 +
1

𝜀
൰ 𝑊𝑍

𝒬
ଵ
ଶ𝑋

𝑅
ଵ
ଶ𝑌

−𝑋
0
0
0

∗
−𝜉𝐼

0
0

∗
∗

−𝛾𝐼
0

∗
∗
∗

−𝛾𝐼

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

≤ 0 

(29) 

 
Note that the * symbol in the above matrix represents the 

symmetric expressions in Equation (29). Using the Schur 
supplement we have: 

 

൤
−𝐼 ∗

𝑥(𝑘) −𝑋
൨ ≤ 0 (30)   

 
By solving the inequalities (24) and (25), the problem of 

convex programming (7) can be solved with the benefit of 𝐿 
feedback. The stability of the system defined according to 
Equation (5) is guaranteed by the obtained control law. In this 
algorithm, using the immutable elliptic set 𝑆 = 
{𝑒|𝑒𝑇𝑋−1𝑒 𝑒 ≤ 1}, the stability range is obtained and is 
evaluated in a new iteration unit. Therefore, convergence to 
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the local minimum at any sampling time is guaranteed for the 
proposed algorithm. 
 
3. SIMULATION RESULTS 

To analyze and evaluate the performance of microbial fuel 
cells, it is necessary to design advanced control techniques by 
considering parameters in the presence of uncertainty. The 
proposed control scheme of this paper is a LMI based model 
predictive controller. The performance of such a controller 
under parametric uncertainty and uncertainty has been 
compared in simulation with an adaptive control method under 
similar modeling conditions and more suitable results have 
been obtained through it. To confirm the effectiveness of the 
proposed design, the model is simulated by 
MATLAB/Simulink and the results are presented in the 
following figures. The control parameters related to LMI are 
recorded as follows: 

𝑄 = ൥
1 0 0
0 1 0
0 0 1

൩                                                             (31) 

𝑅 = 1 

𝑊 = ൥
0.001 0 0

0 0.001 0
0 0 0.001

൩ 

𝜀 = 0.01 

(31)  

 
The variables𝜃1 and 𝜃2 are also considered as uncertainty. 

𝜃ଵ = ቄ
0.5 𝑖𝑓 𝑡 > 2
1.4 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (32) 

𝜃ଶ = ቄ
0.3 𝑖𝑓 𝑡 > 2
0.1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(32)  

 
Now we can compare the behavior of the three main 

variables of our state space, namely 𝑥1(𝑡), 
𝑥2(𝑡)and 𝑥13(𝑡)with a nonlinear adaptive controller with similar 
conditions, as shown in Figures (2), (3) and ( 4). The goal is to 
adjust the state space variables and bring them to zero 
equilibrium points. As a law, a controller that can reach the 
state variable to zero in less time has a better function and is 
more suitable. This comparison is performed in Table (2). 
 

 
Figure 2. Trajectory of 𝑥1(𝑡) under proposed LMI based 

MPC and nonlinear adaptive control 
As shown in Figure 2, the first state variable has reached 

equilibrium in a much shorter time compared to the nonlinear 
adaptive controller, indicating the strength and efficiency of 
proposed design. Achieving steady state in less than three 
seconds versus more than twenty seconds to reach steady state 
in adaptive method announces the strength and efficiency of 

proposed LMI based controller. In the following, we will 
express this trend for other state variables as well. 
 

 
Figure 3. Trajectory of 𝑥2(𝑡) under proposed LMI based MPC 
and nonlinear adaptive control 
 

Figure (3) clearly shows that second state variable has 
reached a steady state of equilibrium in less than two seconds. 
Compare this time with a nonlinear adaptive controller that 
took about ten seconds to reach equilibrium. So in the case of 
the second variable, the proposed method has shown more 
power and efficiency. 
 

 
Figure 4. Trajectory of 𝑥3(𝑡) under proposed LMI based 

MPC and nonlinear adaptive control 
 

In Figure (4), we have examined the third variable of the 
state, namely the substrate concentration. In this case, although 
the time difference between the two control methods is small, 
but still the proposed LMI based MPC method reaches a stable 
equilibrium state about two seconds earlier. These results can 
be carefully observed and examined in Table (2). 

 
Table 2: time comparison to reach the steady state in the 

proposed and the adaptive methods 
 

 𝑥3(𝑡) 𝑥2(𝑡) 𝑥1(𝑡) 

Time to reach steady 
state in the proposed 
design 

4s 2s 3s 

Time to reach steady 
state in the adaptive 
method 

5s 11s 23s 
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The figures and table above clearly show that reaching the 

steady state in the proposed method is much less than the 
adaptive controller, although the time to reach the steady state 
is close in the case of substrate concentration. The second 
point in the figures is that there is less error than the adaptive 
method used for comparison, which serves as another strength 
for the proposed layout. It is quite clear that the system 
behavior with the LMI predictive model controller has less 
error compared to the nonlinear adaptive controller and 
reaches a stable equilibrium state in a much shorter time. 
Another issue to compare is the control signal. As shown in 
Figure (5), the control signal in the nonlinear adaptive 
controller has a very small value and is considered with a 
coefficient of 10−4. This means that the controller is passive 
and inactive and it could not display the proper control 
behavior and have not the correct control behavior, but in the 
proposed control method, the value of the control signal is 
close to 1 and on the other hand controls the system in less 
than 5 seconds. 
 

 
 

Figure 5. Control Signal obtained through proposed LMI 
based MPC and nonlinear adaptive methods 

 
In general, what is achieved in simulation is that the 

proposed design behaves efficiently, robustly and reliably due 
to much less time to achieve stable equilibrium, less error 
value and proper control signal size compared to nonlinear 
adaptive controller. 
 
4. CONCLUSION 
 

The development of model-based control strategies and 
their optimization by considering different parameters has 
been very important to analyze the behavior and performance 
of complex MFC systems. In this paper, efforts to develop 
modeling in MFCs have been compared and discussed in terms 
of bacterial species, enclosure modeling and different 
modeling methods. To apply the effective control of MFC, by 
collecting the appropriate parametric ranges, a LMI based 
model predictive control is designed for MFC with nonlinear 
state space model. This design reduces the steady state 
reaching time and the error and confirms its performance on 
the MFC system through simulation in the presence of 
unmodulated uncertainties, in addition to maintaining the 

stability of the closed-loop system which is investigated by 
Lyapunov analysis. 
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