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Cross-efficiency measurement in data envelopment analysis (DEA) was developed to 

overcome the main disadvantage of DEA in discriminating decision making units 

(DMUs). However, the results obtained from each cross-efficiency model (Benevolent 

and aggressive models) may not generally be the same for similar problems, and each 

model may provide different viewpoints that we should take each model into account 

at the same time. Since Gibbs entropy is one of powerful tools to measure uncertainty, 

in this paper a novel linear programming model based on the concepts of Gibbs entropy 

(GE model) has been offered to combine cross-efficiency scores, which are obtained 

from the viewpoints of benevolent and aggressive models, for ranking DMUs. In order 

to validate the proposed GE model, it is tested with two examples, including the 

performance assessment problem and the relative efficiency of seven Thai provinces. 

The main advantages of the GE model are that it can be used to tackle large size 

problems with uncertainty, and it can be used to combine other models for ranking 

DMUs. In addition, the set of multiple solutions of optimal weights for each model can 

be ignored. By using the proposed model, decision-makers can achieve more reliable 

decision than individual models.  
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1. INTRODUCTION

The concept of data envelopment analysis (DEA) was first 

described by Farrel [1]. However, a mathematical model, 

called CCR model, was offered by Charnes et al. [2]. In the 

DEA model, the objective function o DEA is to maximize the 

ratio of the weighted sum of outputs to the weighted sum of 

inputs for each DMU, efficiency values of each DMU cannot 

be greater than one [3]. The CCR model has been proven to be 

a useful method for measuring the relative efficiency of a set 

of DMUs with multiple inputs and outputs. If a DMU with 

relative efficiency of one, the DMU is an efficient DMU; 

otherwise DMU, which the relative efficiency is less than one, 

is defined as inefficient DMU [4]. The main advantages of 

using DEA to calculate efficiency are as follows [5]. Firstly, 

there is no need to consider the weights of inputs and outputs. 

Secondly, it allows inefficient factor analysis by comparing 

inefficient DMUs and effective DMUs. Thirdly, there is no 

need for the form of a production function. Over the past four 

decades, several scholars have proposed relative efficiency 

evaluation issues in different fields [6, 7]. Although the DEA-

CCR model is an effective technique to evaluate the relative 

efficiency of a set of homogenous DMUs, one of the 

disadvantages of CCR model and others traditional DEA 

models is that efficient DMUs are indistinguishable. Hence, 

the cross-efficiency measurement, an extension of traditional 

DEA models, has been developed to overcome the main 

drawback. The cross-efficiency measurement is a useful and 

effective method to provide a ranking for all DMUs [8]. 

Sexton et al. [9] have taken the concept of cross-efficiency 

measurement into DEA model. However, ranking results 

obtained from the cross-efficiency measurement may be not 

the same for similar problems because the optimal weights 

obtained by the DEA model are not unique. To overcome the 

main drawback, Doyle and Green [10] have proposed the well-

known models, called aggressive and benevolent models, to 

tackle the main drawback of the cross-efficiency measurement 

by adding a secondary goal into the cross-efficiency model. 

Although, the aggressive and benevolent models have been 

proven to be two effective tools for ranking all DMUs, the 

ranking results obtained from the two models may not 

generally be the same for similar problems. So the question 

arises from decision makers which one is more suitable or 

better? Undoubtedly, these two viewpoints should not be 

ignored, and to achieve maximum benefit, it is wise to try 

effective cross-efficiency methods and integrate the efficiency 

scores of each method in order to rank DMUs. 

There are other directions of studies that consider cross-

efficiency intervals to transform into crisp results for ranking 

the DMU. Yang et al. [11] have proposed an effective method 

to consider all sets of possible weights in calculating the 

interval cross-efficiencies. In the interval cross-efficiency 

matrix (ICEM), the acceptability index based on SMAA-2 

method is calculated to obtain the ranking results of each 

DMU. Alcaraz et al. [12] have offered an effective approach 

to achieve the cross-efficiency measurement without the need 

to generate any specific alternative for weights of DEA. 

Ramón et al. [13] have proposed two models that allow for all 

the possible DEA weights simultaneously to produce 

individual lower and upper bounds for the cross-efficiencies 
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of the different units. These methods perform cross-efficiency 

assessments without selecting DEA weights. 

The entropy formulation is one of the effective weighting 

methods used to measure the uncertainty of information. 

According to the concept of entropy, the information quality 

is a main determining factor in making the right decision [14]. 

The Shannon’s entropy can be utilized to discriminate DMUs 

as in the literature [15-17]. Although Shannon’s entropy is 

widely used in DEA, the application of entropy to intervals of 

DEA cross-efficiency values has been proposed recently, and 

it has become a topic of interest. Wang et al. [17] first applied 

the DEA model based on entropy to transform the cross-

efficiency intervals into crisp relative efficiencies of all DMUs, 

and each DMU can be ranked based upon the positive ideal 

distance. Lu and Liu [18] have offered a new mathematical 

model based on Gibbs entropy to calculate the optimal entropy 

values for ranking all DMUs. This mathematical model can be 

used to transform cross-efficiency intervals into crisp entropy 

values for ranking all DMUs, and it is easy to apply in 

computing using optimization software. However, the original 

model, Lu and Liu [18], classified as a nonlinear programming 

model, the optimal solutions for large size problems with 

uncertainty may be very hard to obtain using optimization 

software/exact method. Hence, the original model should be 

transformed to linear programming model for solving 

efficiency intervals of each DMU. This is the reason why 

Gibbs entropy should be adapted as an alternative tool for 

discrimination among DMUs in this research. 

From the above reasons, this paper offers a new linear 

programming model based on the concepts of Gibbs entropy 

(GE model) in aggregating the benevolent and aggressive 

viewpoints for ranking all DMUs. The proposed GE model has 

been adapted from the Lu and Liu [18] to achieve more reliable 

decision than individual models. 

The rest of this paper unfolds as follows. In the sections that 

follow, we first present some cross-efficiency models. After 

that, Section 3 presents the new solution procedure based on 

the concept of Gibbs entropy for ranking DMUs. Then the 

ideal proposed in this paper in Section 4 will be illustrated with 

numerical examples. Finally, Section 5 is a conclusion.  

 

 

2. BACKGROUND 

 

2.1 DEA-CCR model 

 

The DEA-CCR model, first formulated by Charnes et al. [2], 

is utilized to measure the relative efficiency of a set of 

homogenous DMUs with multiple outputs and inputs. Several 

scholars [19-23] have applied the DEA-CCR model for 

measuring the performance of DMUs in various fields.  

Consider a number of DMUj with the inputs (xij, i = 1,...,m) 

and outputs of DMUj (yrj, r = 1,..., s). Let urk be the weights of 

outputs, and vik is the weights of inputs. The CCR model for 

measuring the performance of a set of DMUk (1 ≤ k ≤ n) can 

be defined in Eq. (1). 
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For DMUk, a set of relative efficiency scores can be 

obtained by solving Eq. (1). 

 

2.2 The concept of cross-efficiency measurement 

 

The cross-efficiency method has been offered to overcome 

the main drawback of the traditional CCR model in 

discriminating efficient DMUs. The cross-efficiency 

formulations are: 
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where Ekj is the efficiency value of each DMUk and target 

DMUj. As a result, the average cross-efficiency of DMUj (�̄�𝑗) 

is as follows.  
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2.3 The benevolent and aggressive models 

 

Doyle and Green [10] have offered the benevolent and 

aggressive models to generate the average cross-efficiency for 

ranking of all DMUs. Details of the benevolent and aggressive 

formulations are: 
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Subject to: the same constraints as in Eq. (4) 

(5) 

 

Eq. (4) is benevolent model which aims to maximize the 

efficiencies of the other (n-1) DMUs. Eq. (5) is aggressive 

model which aims to minimize the efficiencies of the other (n-

1) DMUs. Since the viewpoints of the two models are different, 

the same ranking results may be not guaranteed. Hence, the 

391



 

idea of integrating benevolent and aggressive viewpoints in 

order to rank DMUs is an attractive way in applied DEA. 

 

2.4 Gibbs entropy formulation for cross-efficiency 

intervals 

 

Table 1 reports a cross-efficiency interval matrix (C-EI 

matrix) based on the viewpoints of the benevolent and 

aggressive models.  

 

Table 1. Generalized C-EI matrix 

 
DMU Target DMU1 … Target DMUn Average 

1 [𝐸11
𝐿 , 𝐸11

𝑈 ] … [𝐸1𝑛
𝐿 , 𝐸1𝑛

𝑈 ] [�̄�1
𝐿, �̄�1

𝑈] 
2 [𝐸21

𝐿 , 𝐸21
𝑈 ] … [𝐸2𝑛

𝐿 , 𝐸2𝑛
𝑈 ] [�̄�2

𝐿, �̄�2
𝑈] 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

m [𝐸𝑚1
𝐿 , 𝐸𝑚1

𝑈 ] … [𝐸𝑚𝑛
𝐿 , 𝐸𝑚𝑛

𝑈 ] [�̄�𝑚
𝐿 , �̄�𝑚

𝑈 ] 

 

To deal with this problem, Lu and Liu [18] proposed a 

nonlinear programming model based on the concepts of Gibbs 

entropy to transform cross-efficiency intervals into crisp 

entropy values for ranking DMUs. In the C-EI matrix, DMUs 

and target DMUs were viewed as alternatives and criteria 

respectively. The values of 𝐸𝑖𝑗
𝐿  and 𝐸𝑖𝑗

𝑈 solved from Eq. (4) and 

Eq. (5), respectively, are the lower and upper values of the 

interval cross-efficiencies between DMUi and target DMUj.  

Let Pj be the probability Pj (j = 1, 2,…, n) and K is a constant 

value, then the entropy formulation is: 
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where, 0 ≤ 𝑃𝑗 ≤ 1, ∑ 𝑃𝑗
𝑛
𝑗=1 = 1. 

The entropy value of DMUi (Hi) for cross-efficiency can be 

formulated as: 
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where, 𝐺𝑖𝑗 = 𝐸𝑖𝑗/ ∑ 𝐸𝑖𝑗
𝑛
𝑗=1  and 𝐾𝑖 = (�̄�𝑖

𝐿 + �̄�𝑖
𝑈)/2 and the �̄�𝑖

𝐿 

and �̄�𝑖
𝑈  are the average efficiency scores of aggressive and 

benevolent formulations respectively. Then Eq. (7) can be 

transformed as: 
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where, 𝐸𝑖𝑗
𝐿 ≤ �̂�𝑖𝑗 ≤ 𝐸𝑖𝑗

𝑈 , 𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛.  To 

obtain the optimal value of �̂�𝑖  (Lowest uncertainty), the 

minimum value of �̂�𝑖 can be formulated as in Eq. (9).  
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Eq. (9) is a nonlinear fractional programming model; using 

the concept of Charnes and Cooper [24], set ti as𝑡𝑖 = 1/�̂�𝑖𝑗 

and 𝜔𝑖𝑗 = 𝑡𝑖�̂�𝑖𝑗 . This model can be transformed to Eq. (10). 
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where, �̂�𝑖 is the entropy value of DMUi, Ki can be defined as 

𝐾𝑖 = (�̄�𝑖
𝐿 + �̄�𝑖

𝑈)/2, ∀𝑖 = 1,2,3, . . . , 𝑛 . 𝜔𝑖𝑗 is an increasing 

function for DMUi and target DMUj, 𝐸𝑖𝑗
𝐿  can be obtained from 

the cross-efficiencies of aggressive model that are defined in 

Eq. (4). 𝐸𝑖𝑗
𝑈  can be obtained from the cross-efficiencies of 

benevolent model that are defined in Eq. (5). In C-EI matrix, 

𝐸𝑖𝑗
𝐿  and 𝐸𝑖𝑗

𝑈 are the minimum and maximum efficiency scores, 

respectively, between DMUi and target DMUj. Based on the 

optimal solution of �̂�𝑖, each DMU can be ranked. The higher 

value of �̂�𝑖 means a better ranking of the DMU. 

 

 

3. PROPOSED METHOD 

 

This section offers a new Gibb entropy models, called GE 

model for ranking all DMUs. The proposed framework for this 

study is shown in Figure 1.  

 

 
 

Figure 1. The proposed framework for this study 

 

3.1 Generating the C-EI matrix  

 

Based on viewpoints of the aggressive and benevolent 

formulations [10], the benevolent and aggressive models must 

be evaluated first using Eqns. (4) to (5). As a result, cross-

efficiency matrices (CEMs) for benevolent (EB) and 

aggressive (EA) can be generated as  
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where 𝐸𝑖𝑗
𝐿 = 𝑚𝑖𝑛{𝑒𝑖𝑗

𝐵 , 𝑒𝑖𝑗
𝐴} , ∀𝑖 = 1,2, . . . , 𝑚, ∀𝑗 =

1,2, . . . , 𝑛 and 𝐸𝑖𝑗
𝑈 = 𝑚𝑎𝑥{𝑒𝑖𝑗

𝐵 , 𝑒𝑖𝑗
𝐴} , ∀𝑖 = 1,2, . . . , 𝑚, ∀𝑗 =

1,2, . . . , 𝑛. 
The C-EI matrix based on values of EB and EA is: 
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3.2 Formulating the GE model 

 

Since the original model, Eq. (10), is classified as a non-

linear programming model, the optimal solutions may be 

difficult to obtain using optimization software. Hence, the 

original model should be transformed to linear programming 

model. This paper offers a novel GE formulation based upon 

the benevolent and aggressive models for ranking all DMUs. 

The details of the proposed GE model are as follows.  

After obtaining the C-EI matrix from Eq. (12), kij values 

must be calculated first. The values of kij can be calculated as 

in Table 2.  

 

Table 2. The values of kij 

 
DMU Target DMU1 … Target DMUn 

1 𝑘11 = (𝐸11
𝐿 , 𝐸11

𝑈 )/2 … 𝑘1𝑛 = (𝐸1𝑛
𝐿 , 𝐸1𝑛

𝑈 )/2 

2 𝑘21 = (𝐸21
𝐿 , 𝐸21

𝑈 )/2 … 𝑘2𝑛 = (𝐸2𝑛
𝐿 , 𝐸2𝑛

𝑈 )/2 

. 

. 

. 

. 

. 

. 

. 

. 

m 𝑘𝑚1 = (𝐸𝑚1
𝐿 , 𝐸𝑚1

𝑈 )/2 … 𝑘𝑚𝑛 = (𝐸𝑚𝑛
𝐿 , 𝐸𝑚𝑛

𝑈 )/2 

 

In the original model/Eq. (10), a constant value (Ki) can be 

estimated into kij and 𝜔𝑖𝑗=𝑡𝑖 ⋅ 𝑘𝑖𝑗, so the entropy of DMUi (�̂�𝑖) 

can be defined as: 
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(13) 

 

3.3 Ranking all DMUs 

 

In this section, the proposed GE model is examined for 

validity with two examples, including the performance 

assessment problem and a case study of relative efficiency of 

seven Thai provinces. Details of the calculation procedure for 

each problem are shown in Sections 4.1 and 4.2 respectively.  
 

 

4. NUMERICAL EXAMPLES 

 

4.1 Solving the performance assessment problem 

 

Andersen and Petersen [25] have proposed a performance 

assessment problem that has five DMUs with two inputs (x1 

and x2) and one output (y1). Table 3 provides the data set of 

this problem, together with the efficiency scores based on the 

CCR model of each DMU. In Table 3, DMU1, DMU2, DMU3 

and DMU4 are efficient DMUs, and it cannot discriminate 

among them. 

 

Table 3. Data set of performance assessment problem 

 
DMU x1 x2 y1 CCR 

1 2.0 12.0 1.0 1.000 

2 2.0 8.0 1.0 1.000 

3 5.0 5.0 1.0 1.000 

4 10.0 4.0 1.0 1.000 

5 10.0 6.0 1.0 0.750 

 

The efficiency scores of each DMU based on Eq. (1) must 

be calculated first. Next, the benevolent and aggressive 

formulations, as shown in Eq. (4) and Eq. (5) respectively, 

were solved using LINGO. As a result, the cross-efficiency 

matrices of benevolent and aggressive models (Benevolent 

CEM and aggressive CEM) were generated as listed in Table 

4 and Table 5 respectively. 

 

Table 4. Benevolent CEM of performance assessment 

 

DMU 
Target 

DMU1 

Target 

DMU2 

Target 

DMU3 

Target 

DMU4 

Target 

DMU5 

1 1.000 0.714 0.714 0.484 0.484 

2 1.000 1.000 1.000 0.714 0.714 

3 0.400 1.000 1.000 1.000 1.000 

4 0.200 0.714 0.714 1.000 1.000 

5 0.200 0.625 0.625 0.750 0.750 

 

Table 5. Aggressive CEM of performance assessment 

 

DMU 
Target 

DMU1 

Target 

DMU2 

Target 

DMU3 

Target 

DMU4 

Target 

DMU5 

1 1.000 1.000 0.484 0.333 0.484 

2 1.000 1.000 0.714 0.500 0.714 

3 0.400 0.400 1.000 0.800 1.000 

4 0.200 0.200 1.000 1.000 1.000 

5 0.200 0.200 0.750 0.667 0.750 

 

After obtaining the benevolent CEM and aggressive CEM, 

the C-EI matrix was obtained using Eqns. (11) to (12). Details 

of C-EI matrix of performance assessment problem were 

shown in Table 6.  

 

Table 6. The C-EI matrix of performance assessment 

 

DMU 
Target 

DMU1 

Target 

DMU2 

Target 

DMU3 

Target 

DMU4 

Target 

DMU5 

1 
[1.000, 

1.000] 

[0.714, 

1.000] 

[0.484, 

0.714] 

[0.333, 

0.484] 

[0.484, 

0.484] 

2 
[1.000, 

1.000] 

[1.000, 

1.000] 

[0.714, 

1.000] 

[0.500, 

0.714] 

[0.714, 

0.714] 

3 
[0.400, 

0.400] 

[0.400, 

1.000] 

[1.000, 

1.000] 

[0.800, 

1.000] 

[1.000, 

1.000] 

4 
[0.200, 

0.200] 

[0.200, 

0.714] 

[0.714, 

1.000] 

[1.000, 

1.000] 

[1.000, 

1.000] 

5 
[0.200, 

0.200] 

[0.200, 

0.625] 

[0.625, 

0.750] 

[0.667, 

0.750] 

[0.750, 

0.750] 

 

In the proposed GE model/ Eq. (13), the values of kij were 

obtained using the average efficiency score of each element in 

the C-EI matrix (Table 6), for example, k11 = (1.000 + 1.000)/2 

= 1.000, k12 = (0.714 + 1.000)/2 = 0.857, k13 = (0.484 + 

0.714)/2 = 0.599, k14 = (0.333+ 0.484)/2 = 0.409 and k15 = 

(0.484 + 0.484)/2 = 0.484. Details of kij are shown in Table 7. 

After obtaining the values of kij, to find the optimal entropy 
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value of �̂�𝑖, for DMUi, the data listed in Table 6 and Table 7 

were taken into Eq. (13). For example, the linear programming 

model for �̂�1 is: 
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1 1

1 1 1

1 1

1 1
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Table 7. The values of kij for performance assessment 
 

DMU 
Target 

DMU1 

Target 

DMU2 

Target 

DMU3 

Target 

DMU4 

Target 

DMU5 

1 1.000 0.857 0.599 0.409 0.484 

2 1.000 1.000 0.857 0.607 0.714 

3 0.400 0.700 1.000 0.900 1.000 

4 0.200 0.457 0.857 1.000 1.000 

5 0.200 0.413 0.688 0.708 0.750 

This, as a linear programming model, is easy to solve using 

any optimization solver. In this paper, the proposed GE model 

was coded using LINGO software. The optimal entropy value 

of �̂�1 is solved as 1.0845 occurring at 𝑡1
∗= 0.2986239. With the 

same solution procedure, the optimal entropy values for�̂�2, �̂�3, 

�̂�4 and �̂�5  were 1.3488, 1.3008, 1.1642 and 0.9062 

respectively. As a result, the ranking comparisons for all 

DMUs are provided in Table 8. 

As seen in Table 8, the rankings of all models problem were 

obtained. The benevolent, aggressive and GE models assess 

that DMU2> DMU3 > DMU4 > DMU1 > DMU5, but Lu and 

Liu’s model assesses that DMU2> DMU3 > DMU1 > DMU4 > 

DMU5.  

Finally, Spearman’s rank correlation test was used for 

testing the correlation of each method (rs). The details of each 

rs value are shown in Table 9. 

As seen in Table 9, the correlation coefficients (rs) for 

proposed GE model and benevolent model, aggressive model 

and Lu and Liu’s model are calculated as rs = 1.00, 1.00 and 

0.90 respectively. This is a guarantee that the proposed GE 

model has a higher correlation with the benevolent and 

aggressive models than Lu and Liu's model [18]. 

 

Table 8. The rankings of models for performance assessment 

 
DMU Benevolent Rank Aggressive Rank Lu and Liu’s model Rank GE Rank 

1 0.6793 4 0.6602 4 1.0167 3 1.0845 4 

2 0.8857 1 0.7857 1 1.3185 1 1.3488 1 

3 0.8800 2 0.7200 2 1.2223 2 1.3008 2 

4 0.7257 3 0.6800 3 0.9932 4 1.1642 3 

5 0.5900 5 0.5133 5 0.8064 5 0.9062 5 

 

Table 9. The correlation test for performance assessment 

 
DMU GE Ben. Agg. Lu and Liu 

GE 1.00 1.00 1.00 0.90 

Benevolent 1.00 1.00 1.00 0.90 

Aggressive 1.00 1.00 1.00 0.90 

Lu and Liu 0.90 0.90 0.90 1.00 

 

Table 10. Data set of seven Thai provinces [26, 27] 

 
DMU x1 x2 x3 x4 y1 CCR 

1 169.71 1813 209.4 206950 41515 1.000 

2 108.37 2700 203.7 227477 30003 0.930 

3 191.17 4342 220.4 307629 54985 1.000 

4 72.57 2669 200.6 169656 24711 1.000 

5 292.77 4957.0 267.1 389695 60737 0.931 

6 162.80 3042 302.8 280643 45053 1.000 

7 105.31 2062 185.4 190081 27316 0.929 

 

4.2 Solving the relative efficiency of seven Thai provinces 

 

The upper northeastern region of Thailand is the poorest 

region of Thailand. Agriculture is still the largest sector. Rice, 

sugarcane and cassava are the main agriculture crop. 

Measuring the relative efficiency and ranking of each province 

is one way to find ways to develop these provinces. The upper 

northeastern provinces have eight DMUs with four inputs (x1, 

x2, x3 and x4) and one output (y1). The DMU1, DMU2, DMU3, 

DMU4, DMU5, DMU6 and DMU7 are Nong Khai, Nong Bua 

Lamphu, Loei, Bueng Kan, Sakon Nakhon, Nakhon Phanom 

and Mukdahan respectively. The x1, x2, x3, x4 and y1 are Energy 

consumption (Ktoe), Agricultural area (km2), Annual budget 

for 2020 (million baht), Labor and Gross Provincial Product 

(baht) respectively. Table 10 provides the data set of this 

problem, together with the efficiency scores based on the CCR 

model of each DMU. 

In Table 10, DMU1, DMU3, DMU4 and DMU6 are efficient 

DMUs, and it cannot discriminate among them.  

Based on the same calculation step of Section 4.1, the C-EI 

matrix for efficiency of seven Thai provinces was shown in 

Table 11. 

Finally, the optimal entropy values for �̂�1 , �̂�2 , �̂�3 , �̂�4 , 

�̂�5, �̂�6 and �̂�7were 1.872, 1.613, 1.863, 1.676, 1.521, 1.744 

and 1.628 respectively. As a result, the ranking comparisons 

for all DMUs are provided in Table 12. 

As seen in Table 12, the aggressive, Lu and Liu and GE 

models assess that DMU1> DMU3 > DMU6 > DMU4 > DMU7> 

DMU2 > DMU5, but benevolent model assesses that DMU3> 

DMU1 > DMU6 > DMU4 > DMU7> DMU2 > DMU5. The 

correlation coefficients (rs) for proposed GE model and 

benevolent model, aggressive model and Lu and Liu’s model 

are calculated as rs = 0.964, 1.00 and 1.00 respectively. This is 

a guarantee that the proposed GE model has a high correlation 

with the other methods. 

Since the original model, Lu and Liu [18], is classified as a 

non-linear programming model, the optimal solutions for large 

size problems with uncertainty may be difficult to obtain using 

optimization software/exact method. Hence, the original 

model should be transformed to linear programming model for 

solving efficiency intervals of each DMU. The main 

advantages of the proposed GE model are that it can be used 

to deal with large size problems with uncertainty, and it is 

simple but powerful. In addition, the set of multiple solutions 

of optimal weights for each model can be ignored.  
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Table 11. The C-EI matrix of seven Thai provinces 

 
DMU Target DMU1 Target DMU2 Target DMU3 Target DMU4 Target DMU5 Target DMU6 Target DMU7 

1 [1.000,1.000] [0.988,0.988] [0.795,1.000] [0.718,0.997] [1.000,1.000] [1.000,1.000] [0.988,0.988] 

2 [0.485,0.925] [0.930,0.930] [0.590,0.925] [0.813,0.920] [0.671,0.671] [0.918,0.925] [0.930,0.930] 

3 [0.553,1.000] [1.000,1.000] [1.000,1.000] [0.845,1.000] [1.000,1.000] [0.982,1.000] [1.000,1.000] 

4 [0.404,0.982] [1.000,1.000] [0.494,0.982] [1.000,1.000] [0.560,0.560] [0.975,0.982] [1.000,1.000] 

5 [0.535,0.781] [0.776,0.776] [0.781,0.911] [0.609,0.779] [0.931,0.931] [0.769,0.781] [0.776,0.776] 

6 [0.647,1.000] [1.000,1.000] [0.596,1.000] [0.813,1.000] [0.727,0.727] [1.000,1.000] [1.000,1.000] 

7 [0.578,0.928] [0.929,0.929] [0.591,0.928] [0.762,0.925] [0.703,0.703] [0.925,0.928] [0.929,0.929] 

 

Table 12. The rankings of models for seven Thai provinces 

 
DMU Benevolent Rank Aggressive Rank Lu and Liu Rank GE Rank 

1 0.996 2 0.927 1 1.864 1 1.872 1 

2 0.889 6 0.762 6 1.585 6 1.613 6 

3 1.000 1 0.911 2 1.844 2 1.863 2 

4 0.930 4 0.776 4 1.610 4 1.676 4 

5 0.801 7 0.758 7 1.504 7 1.521 7 

6 0.961 3 0.826 3 1.720 3 1.744 3 

7 0.896 5 0.774 5 1.608 5 1.628 5 

 

 

5. CONCLUSIONS 

 

Although the cross-efficiency evaluation method is an 

effective tool to calculate average cross-efficiency score for 

ranking DMUs with multiple inputs and outputs, rankings 

derived from each cross-efficiency model may not be the same 

for similar problems. The traditional models (Benevolent and 

aggressive models) may select a set of optimal weights based 

on their alternative secondary goals for performing cross-

efficiency measurement. It is therefore possible that the 

optimal weight obtained from each model may not be the same 

for similar problems due to the different viewpoints of each 

model, and each model may provide valuable information that 

we should take each model into account. Differently from 

previous methods in the literature, this paper offers a novel 

linear programming model based on Gibbs entropy, called GE 

model, to measure uncertainty of cross-efficiency intervals for 

ranking all DMUs. Two numerical examples, including the 

performance assessment problem and the relative efficiency of 

seven Thai provinces, have illustrated the advantages, 

potential and applications of the proposed method. Exactly, 

the DMU discrimination performance is more reliable results 

than individual models. 
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