
Optimized Context-Adaptive Binary Arithmetic Coder in Video Compression Standard

Without Probability Estimation

S.T. Mrudula1*, K.E. Srinivasa Murthy2, M.N. Giri Prasad3

1 Department of ECE, JNTUA, Anantapuramu 515002, A.P, India
2 Ravindra College of Engineering for Women, Kurnool 518452, A.P, India
3 Academic Audit, JNTUA, Anantapuramu 515002, A.P, India

Corresponding Author Email: sunkaramrudula@gmail.com

https://doi.org/10.18280/mmep.090222 ABSTRACT

Received: 11 August 2021

Accepted: 20 January 2022

CABAC is a Context Adaptive Binary Arithmetic Coder utilized in novel AVC/H.264

of video standard. AC (arithmetic coding) permits important enhancement in the

compression. However, the complexity of implementation is main drawback because

of slowness and hardware cost. In this paper, we propose the implementation of

MPEG4/H-264 AVC against M-decoder without PE (Probability Estimation).

Furthermore, in order to estimate an algorithm, we have compared many existing

methods, and the comparison takes place based on power dissipation and device

utilization.

Keywords:

CABAC, BAC, M-Coder, re-norm, Probability

Estimation

1. INTRODUCTION

Throughout An entropy coding is a lossless coding

technique which compress the data using its statistical

information. CABAC (Context- Based Adaptive-Binary

Arithmetic-Coding) is greatly efficient entropy coding

technique. It has been by recent standard of video compression

H.264 and plays eminent role in improvising its coding-

efficiency. Compared with UVLC (Universal variable-length

coding), CBAC takes full benefits of the feature of arithmetic

codes and significance statistical properties of video streams

that develops an efficiency of coding.

CABAC is higher performance of entropy coding technique

utilized in an AVC/H.264. The main baseline of UVLC

method is based on an Exp-Golmb codes and BAC (Binary

arithmetic-coder) [1]. The context-based method carries out

complex binarization symbols in the efficient manner by unary

tree. The BAC (Binary arithmetic-coder) [2, 3] compresses the

binary symbols attaining bit rates nearer to entropy limit.

AC (Arithmetic coding) united with an efficient context

modelling provides high compression rations than

compression techniques such as Golomb-Rice and Huffman

[2]. In an AVC context, CABAC outcomes are up-to twenty

percent than those whose achieved with the coder of baseline

entropy [4]. Other sources insist that the CABAC overcomes

UVLC by 30 to 40 percent [5]. Later, the CABAC provides

clear benefits over compression techniques implemented in the

existing methods. Higher compression method comes with the

price. Both AC and context modelling need higher number of

memory and operations accesses. Henceforth, the efficient

implementations are essential.

Moreover, the analysis of rate-distortion significantly

maximizes number of the operations. An image is encoded by

following techniques (half-pixel, intra, inter pixel-MC and

unchanged) an optimal technique is selected based on

minimizing the distortion for minimal maximization in bit rate.

When the analysis of rate distortion is carried out with

CABAV instead of the UVLC. Hence, the hardware

acceleration is required as an amount of data to process

maximizes with quality settings and size of image.

In this work, we represent new architecture for CABAC.

The efficient mechanism for the context managing is

introduced that enhances the throughput and reduces workload

based on the mixed design of software and hardware. A novel

architecture of AC is represented that takes the benefits of

novel characteristics discovered in the CABAC. Thus, fast

implementation is represented is represented capable to

process the symbols at speed demanded by higher quality of

video encoding. This paper is organized in such a way that

section-2 represents CABAC, section-3 represents

Background of BAC, section 4 represents result analysis and

finally conclude our work.

2. OPTIMIZED CONTEXT-BASED ADAPTIVE-

BINARY ARITHMETIC-CODING

Figure 1. Basic diagram of CABAC

Optimized Context- Based Adaptive-Binary Arithmetic-

Coding is CABAC utilized in an AVC/H.264 [1]. CABAC has

two parts. At first, parameters, events and coefficients made

by the help of video-encoder can be converted to the binary

symbol. Each symbol is assigned to the specific context.

Afterwards, binary symbols can be compressed with AC

Mathematical Modelling of Engineering Problems
Vol. 9, No. 2, April, 2022, pp. 458-462

Journal homepage: http://iieta.org/journals/mmep

458

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090222&domain=pdf

utilizing context information. The figure above represents the

basis diagram of CABAC. This work represents context

information managing and BAC (binary arithmetic-coder). All

elements highlighted in Figure 1.

2.1 Context-based-compression

The context-based compression is very crucial method in

order to improvise Markov-sources compression. An

efficiency of the entropy compressors relies on the adequate

context-managing. The division of optimal context assigns

various symbols in various context without any fail in the

context atomization. Such as, four-bit numbers can be encoded

as four-binary symbols utilizing the context for all of them.

Anyways, it could occur 2 less important bits that does not

profit through this context assignation. Thus, encoding bits

within similar context could improve and simplify the

compression.

CABAC assumes 701 various contexts. All of them are not

utilized in various operation of encoder modes. Such as, when

encoding process is not interlaced the images, 240 contexts

render are not used. The process symbol of converting generic

to the binary ones contains more than one evaluation

conditions. Here, we have represented 2 cases. The syntactical

elements produce only one binary symbol and all symbols are

encoded per frame. Afterwards, contributes to smaller part of

arithmetic coder-workload.

Some syntactical elements produce many binary symbols in

the predictable fashion and encoded per frame 100 times.

Mainly, these syntactical elements transform significance and

coefficient maps and contribute to the workload of arithmetic

coder. The first element classes are well suited to processed in

the software. Second elements of syntactical class may require

hardware-acceleration. Furthermore, those symbols are

generated in the predictable manner, the efficient

implementation can enhance memory access and boost the

performance. As it is represented in Figure 1, the context

model may be updated after each access. Because of irregular

access patterns, the memory bandwidth can commit the

encoder throughput. Henceforth, the context managing is

implemented in the optimized manner to maximize the data

reuse, enable fast update and permit pre-fetching. An effective

throughput is improved so that the requirements of speed are

met.

2.2 Arithmetic coding

AC [2] contains iterative interval division based on various

probability symbols. The CABAC implements the binary

coder, the particular case permits substantial reduction of

complexity with higher compression efficiency. Specifically,

the arithmetic coder of CABAC is associated to the family of

Q-Coder [3]. By calling range and low to lower point and

current interval length, an encoding equation are given as:

MPS=Most-Probable Symbol

𝐿𝑛𝑒𝑤 = 𝐿

𝑅𝑛𝑒𝑤 = 𝑅 − 𝑟𝐿𝑃𝑆

LPS=Least-Probable Symbol

𝐿𝑛𝑒𝑤 = 𝐿 + 𝑅 + 𝑟𝐿𝑃𝑆

𝑅𝑛𝑒𝑤 = 𝑟𝐿𝑃𝑆

(1)

The 𝑟𝐿𝑃𝑆 value depends of current context encoding-state

and range value. Thus, the dependence of recursive exists in

Figure 1.

Figure 2 represents encoding process. At any time, lower

values keep track in which the symbols were encoded. The

range length minimizes faster for the LPS. Small range values

require high precision for the encoding that means more bits.

To utilize an integer arithmetic, the value of range is

normalized after each iteration.

Figure 2. Example of Binary Arithmetic-coding

Furthermore, the CABAC contains mode for encoding of

equally-probable-symbols. In this mode, the context accessing

is not required. It also permits fast implementation in the

software. The equally-probable symbols can be encoded

utilizing similar circuit by the selection of appropriate

operands. The encoding termination is implemented by the

help of special encoding-process. Afterwards, the state of

internal encoder is encoded by utilizing similar circuit by

appropriate operands-selection. The encoding termination can

also have implemented by the help of special process of

encoding. Then, the state of internal encoder is flushed

towards an output.

As an outcome of encoding process, low value maximizes

while range value reduces. To keep both operands size under

control the range value is normalized in each cycle. The low

value can be shifted as consequences; its value is shortened.

The shortened bits constitute an outcome of encoding process.

They are also packed into the bytes and send to an output.

3. BACKGROUND OF BAC

Here, first we represent basic principle of BAC (Binary

Arithmetic Coding) with the particular focus on the

implementation related features. In BAC, it is convenient to

distinguish among 2 symbols of binary alphabet not by

utilizing their actual symbols “0” and “1” values but rather by

denoting to their evaluated probability-values. By

differentiating among MPS and LPS and keep track the

symbol value of MPS (𝑣𝑎𝑙𝑀𝑃𝑆) as probability of LPS (𝑝𝐿𝑃𝑆),

the simple parameterization is achieved by underlying the

given binary alphabet’s probability model.

On the basis of given settings, BAC is carried out by

dividing initially in given interval that is represented by the

help of its LB (lower bound) ℒ and range of width ℛ into the

2 given disjoint sub-intervals: first width interval ℛ𝐿𝑃𝑆 =
ℛ. 𝑝𝐿𝑃𝑆 that is connected with LPS and second width interval

ℛ𝑀𝑃𝑆 = ℛ − ℛ𝐿𝑃𝑆 is allocated to MPS. Based on binary value

to encode, recognized as MPS and LPS, corresponding sub-

interval is selected as novel coding interval.

Byiterativelyapplying this, the scheme of interval-subdivision

to every element 𝑥𝑏 of the given sequence (𝑥1, 𝑥2, … . . , 𝑥3) of

the binary symbols to encode, the BAC finally defines a value

459

of 𝑧𝑥 in sub-interval [ℒ (𝒩), ℒ (𝒩) + ℛ(𝒩)] that outcomes after

𝒩𝑡ℎ process of interval sub-division. The binary

representation 𝑧𝑥 is an arithmetic code-word of an input

sequence 𝑥.

In our previous work [6], we proposed M-ABRC

(Modified-Adaptive BAC). This algorithm reduces bit-

capacity of multiplication through its architecture of VLSI,

introduced algorithm utilizes Look-Up-table (LUT) based on

Virtual-sliding window (VSW) for PE (Probability

Estimation). In order to obtain high compression rate, our

algorithm has been implemented, this in terms gives good

adoption probability in the encoding phase and also provides

an absolute estimation of low-entropy binary sources (EBS).

The conventional-binary arithmetic-encoding of the symbol

value is represented in paper [6]. In this paper, we propose the

implementation of MPEG4/H-264 AVC against M-decoder

without PE (Probability Estimation).

Algo-1: Procedure of M-decoder without PE

Step-1:ℛ𝐿𝑃𝑆 = ℛ𝑇𝐴𝐵[𝑚][ℛ ≫ 22 + 2)&3

Step-2:ℛ𝑀𝑃𝑆 = ℛ − ℛ𝐿𝑃𝑆

Step-3:𝐼𝑓 (𝑉 < ℛ𝑀𝑃𝑆)

Step-4:𝑅 = ℛ𝑀𝑃𝑆 , 𝑣𝑎𝑙 = 𝑣𝑎𝑙𝑀𝑃𝑆

Step-5: Else

Step-6: 𝑉 = 𝑉 − ℛ𝑀𝑃𝑆 , 𝑣𝑎𝑙 = ! 𝑣𝑎𝑙𝑀𝑃𝑆

Step-7: ℛ = ℛ𝐿𝑃𝑆

Step-8: while (𝑅 < 256)

Step-9: ℛ = ℛ ≪ 1

Step-10: 𝑉 = 𝑉 ≪ 1

Step-11: 𝑉 = 𝑉| 𝑅𝑒𝑎𝑑_1_𝐵𝑖𝑡()

where, [𝑚] is defined as fixed probability state.

In order to ensure that the registers with 𝑦 bits precision are

more sufficient to present ℒ (𝑦)and ℛ(𝑦) for 𝑦, the operation of

re-norm is needed, whenever ℛ(𝑦) decreases certain limit after

one and multiple process of sub-division. Moreover, by

renormalizing ℒ (𝑦)and ℛ(𝑦) the leading arithmetic code-word

bits 𝑧𝑥 can output as soon as they are unambiguously

recognized.

Recently, novel design of multiplication free BAC has been

represented in 8 and 10 lines. Its eminent innovative features

are produced by table-based interval sub-division combined

with PE based FSM (Finite-state machine) as well as the fast

bypass of coding mode. This is also called M coder (Modulo)

family of the BAC methods provides parameterizable trade-

off among memory needs requirements and coding efficiency

for underlying the LUT. Actually, the design of M-coder can

be assumed as the generalization of Q-coder, latter can be

resulted through M-coder incarnation that belonging to

simplest parameter choice.

Another, more elaborated selection of M-coder has been

acquired by ISO/IEC and ITU-T as the normative part of the

standard of video coding MPEG4-AVC/H.264 [7]. It provides

good trade-off among complexity and the performance of

compression, as represented in paper [8, 9].

3.1 M-Coder

The major element of lower-complexity M-coder method of

an interval sub-division is quantizing an admissible domain

𝔇 = [2𝒷−2, 2𝒷−1] for range of ℝ register bring by the help of

re-norm into smaller number of 𝐶 cells. Inorder to simplify,

we considered 𝔇 as uniform quantization to be applied,

resulting the representative equispaced sets with range values

ℚ0, ℚ1, … . . , ℚ𝐶−1 , where 𝐶 is defined as constrained to the

power of 2 such as 𝐶 = 2𝐶 for an integer value 𝐶 ≥ 0. By

discretisation of LPS related probability-range values ℙ𝐿𝑃𝑆 ∈

[0,
1

2
] , the representative probabilities sets ℙ =

{𝓅0, 𝓅1, … … , 𝓅𝑀−1} can be reconstructed organized with set

of the corresponding transition-rules for the FSM based PE.

Both ℙ and ℚ enable the operation of multiplication

approximation ℙ𝐿𝑃𝑆 × ℛ for an interval sub-division by

RTAB which consists ℳ × 𝐶 pre-computed products values

like {𝓅𝑀 × ℚ𝐶0 ≤ 𝔪 < 𝑀; 0 ≤ 𝑐 < 𝐶} in selected integer

precision. An entity can be addressed by utilizing 𝕞 index of

state and 𝑐 index of quantization cell to ℛ value. The

computation 𝑐 is performed by bit-shift concatenation and the

operation of bit masking applied to ℛ , where latter is

interpreted as the modulo operation-based operand 𝐶 = 2𝐶 ,

hence the proposed codes is defined as:

𝑐 = (ℛ ≫ (𝒷 − 2 − 𝑐))&(2𝑐 − 1)

For M-coder realization, 𝒷 and 𝑐 are fixed, therefore both

operands are given as the fixed values in above equation. By

selecting the value of 𝑐 = 0, to the linear, where all ℛ values

have single representation-value is utilized for 𝓅𝕞 × ℛ. This

type of case is an equivalent to the operation of sub-interval

carried out in Q-Coder and its corresponding derivate.

Anyways, for presentation clarity and without generality,

we restrict ourselves in specific case with MPEG4/H.264-

AVC-compliant M-Coder that corresponds to 𝑐 = 2 and

specification of the LUT (Lookup-table). For further

simplification, we neglect LUT operations needed to adapt

probability state 𝕞 during every single decoding/encoding

cycle.

3.2 Re-norm procedure

In terms of the implementation costs, the re-norm part of M-

coder still suffers through bit-by-bit output/input and as far as

the concerns of encoder side also through the bitwise carry

over the handling. In the implementation of encoder

computationally critical parts can be attributed to bitwise loop

of operating re-norm and conditional branching inside this

loop is represented in algo-1 line 11.

Although from the decoder perspective, an issue appears to

be marginally lessened when comparing Re-norm parts in

algo-1, there is still substantial CO (computational overhead)

convoluted in the implementation of conventional M-coder

because of its sequential bits reading from bit-stream.

4. EXPERIMENTAL RESULT

Our methodology is evaluated by comparing optimized

CABAC with the existing methodology. Our methodology is

simulated by using Xilinx-version 14.7 and code is written by

utilizing the VDHL. For the evaluation of optimized CABAC,

we have compared with several existing methodologies, which

is mentioned below, and various parameters and constraint has

been considered and each case our methodology outperforms

than existing methodologies. The result section is divided into

2 section such as device utilization and dynamic and static

power. Below Table 1 represents device utilization and Table

460

2 represents power dissipation.

4.1 Device-utilization

Table 1. Comparison of various coder

Architecture Technology
Logic cell

(no.)

Memory

(Kbit)

MQ Coder Dyer

[10]
Altera Stratix 1596 8192

MQ Coder Dyer

[11]
Altera Stratix 761 2675

MQ Coder [12]
Xilinx Virtex 4-

LX80
15,692 4.17

MQ Coder Kai [13]
Xilinx Virtex 4-

XC4VL
6974 4269

ABRC [14]
Xilinx Virtex 4-

LX80
1688 0

ABRC Shcherbakov

[15]

Xilinx Virtex 5-

ML507
1544 552960

ABRC [16] Altera Stratix 1296 0

Optimized CABAC
Xilinx Virtex 4-

XC4VF
948 0

Table 1 above represents the outcome of optimized CABAC

when FPGA implementation takes place and different

architecture is compared. First column represents different

architecture, whereas second, third and fourth represents

technology, Logic cell and Memory. Number of logic cells is

considered as one of the best parameters that has been used for

different resources by FPGA technologies. So, maximization

in image doesn’t affect the hardware resources of optimized

CABAC at fixed number of the block size. This methodology

also achieves trade-off among adaption speed and precision of

the probability of one’s due to utilization of different window

size. Therefore, it can be preferable for image and video

coding standards and also for non-standardized codes. So it is

very clear that optimized CABAC consumes lower amount of

resources whenever compared to MQ Coder [12], MQ Coder

Dyer [10, 11], MQ Coder Kai [13], ABRCShcherbakov [15],

ABRC [14] and ABRC [16].

4.2 Power dissipation

Below Table 2 represents power dissipation for optimized

CABAC in comparison to MQ-coder and ABRC. First column

represents architecture whereas second, third and fourth row

represents MQ-Coder, ABRC and optimized CABAC. As we

can see that our optimized CABAC slightly outperforms better

than other existing methodologies.

Table 2. Power dissipation for optimized CABAC

Architecture
MQ

Coder
ABRC

Optimized

CABAC

Frequency (MHz) 48.30 105.92 182.75

Normalized power

(mW/MHz)
10.117 1.19 0.114

Dynamic power (mW) 488.67 127.05 20.77

Power density

(µW/(MHz × Logic cell no.))
0.65 0.71 0.12

Static Power

Static power is defined as power consumed when there is no

activity takes place in the circuit. It also generates leakage

power and standby power. In order to prove the effectiveness

of our model, we have considered this parameter that is given

in Figure 3 below. For the comparison analysis, we have

considered two models i.e., MQ-Coder kai and ABRC and it

is compared with our optimized CABAC. Furthermore, the

dissipations of static power 624.68 and 622.55 and optimized

CABAC is 182.75 when compared with our optimized

CABAC as we can see that our model slightly outperforms

than other existing models.

Figure 3. Comparison of static power

Dynamic Power

Dynamic power is defined as the power that is consumed

when inputs are in an active state. The dissipation of dynamic

power is considered one of the best key parameters while

comparing the model. For the comparison analysis, we have

considered two models i.e., ABRC and MQ-Coder kai and it

is compared with our optimized CABAC. Furthermore, the

dissipations of static power 69.81 and 18.15 and optimized

CABAC is 20.77 when compared with our optimized CABAC

as we can see in Figure 4 that our model slightly outperforms

than other existing models.

Figure 4. Comparison of Dynamic power

Total Power

The comparative analysis is based on the total power which

needed to perform a task. For an efficient model, total power

should be as lesser as possible. For the comparison analysis,

we have considered two models i.e., ABRC and MQ-Coder kai

and it is compared with our optimized CABAC. Furthermore,

the dissipations of static power 694.49 and 640.7and

optimized CABAC is 187.56 when compared with our

optimized CABAC as we can see in Figure 5 that our model

0

100

200

300

400

500

600

700

MQ Coder Kai
[40]

ABRC[43] Optimized
CABAC

Static power (mW)

0

20

40

60

80

MQ Coder Kai
[40]

ABRC[43] Optimized
CABAC

Dynamic power (mW)

461

slightly outperforms than other existing models.

Figure 5. Comparison of Total power

5. CONCLUSIONS

This paper represented new architecture for CABAC EE

(Entropy encoding). CABAC is main element in novel

AVC/H.264 video standard as it provides 20% reduction of bit

rate when compared to the entropy coder. CABAC is one type

of CPU consuming application, which is suited to implement

in the specialized hardware. A new architecture has been

introduced that allows efficient and fast processing. Then, we

propose optimized CABAC implementation of MPEG4/H-

264 AVC against M-decoder without the PE (Probability

Estimation). Our optimized CABAC obtains better results in

terms of device utilization and power dissipation.

REFERENCES

[1] Marpe, D., Schwartz, H., Wiegand, T. (2003). Context-

based adaptive binary arithmetic coding in the

H.264/AVC video compression standard. IEEE

Transactions on Circuits and Systems for Video

Technology, 13(7): 620-636.

https://doi.org/10.1109/TCSVT.2003.815173

[2] Witten, H., Neal, R.M., Cleary, J.G. (1987). Arithmetic

coding for data compression. Communications of the

ACM, 30(6): 520-540.

[3] Pennebaker, W.B., Mitchel, J.L., Langdon, G.G., Arps.

R.B. (1988). An overview of the basic principles of the

Q-Coder adaptive binary arithmetic coder. IBM Journal

of Research and Development, 32(6): 717-726.

https://doi.org/10.1147/rd.326.0717

[4] Saponara, S., Blanch, C., Denolf, K., Bormans, J. (2003).

The JVT advanced video coding standard: Complexity

and performance analysis on a tool-by-tool basis. In

IEEE Packet Video.

[5] Marpe, D., Blattermann, G., Heising, G., Wiegand, T.

(2001). Video compression using context-based

arithmetic coding. Proceedings 2001 International

Conference on Image Processing (Cat. No.01CH37205),

3: 558-561. https://doi.org/10.1109/ICIP.2001.958175

[6] Mrudula, S.T., Srinivasa Murthy, K.E., Giri Prasada,

M.N. 2(019). M-ABRC (Adaptive Binary Range Coder)

using Virtual Sliding Window technique and its VLSI

implementation. Microprocessors and Microsystems, 71:

102901. https://doi.org/10.1016/j.micpro.2019.102901

[7] Rissanen, J. (1984). Universal coding information

prediction and estimation. IEEE Trans. Inform. Theory,

30(4): 629-636.

https://doi.org/10.1109/TIT.1984.1056936

[8] Bossen F. CABAC cleanup and complexity reduction.

Joint Video Team of ISO/IEC JTC1/SC29/WG11 &

ITU-T SG16/Q. 2002 Oct;6. Taubman, D., Marcellin,

M.W. (2002). JPEG2000 Image Compression:

Fundamentals, Standards and Practice. Kluwer

Academic Publishers.

[9] Dyer, M., Taubman, D., Nooshabadi, S., Gupta, A.

(2006). Concurrency techniques for arithmetic coding in

JPEG2000. IEEE Transactions on Circuits and Systems

I: Regular Papers, 53(6): 1203-1213.

[10] Dvir, I., Allouche, A., Drezner, D., Ecker, A., Irony, D.,

Peterfreund, N., Yang, H.T., Zhou J.T. (2017).

Trapezoidal block split using orthogonal C2 transforms

for HEVC video coding. 017 25th European Signal

Processing Conference (EUSIPCO), pp. 1016-1020.

https://doi.org/10.23919/EUSIPCO.2017.8081361

[11] Liu, K., Zhou, Y., Li, Y.S., Ma, J.F. (2010). A high

performance MQ encoder architecture in JPEG2000.

Integration, 43(3): 305-317.

https://doi.org/10.1016/j.vlsi.2010.01.001

[12] Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.

(2003). Overview of the H.264/AVC video coding

standard. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7): 560-576.

https://doi.org/10.1109/TCSVT.2003.815165

[13] Vasilache, A. (2017). Order adaptive Golomb rice coding

for high variability sources. 2017 25th European Signal

Processing Conference (EUSIPCO), pp. 1789-1793.

https://doi.org/10.23919/EUSIPCO.2017.8081517

[14] Hou, J.H., Chau, L.P., Magnenat-Thalmann, N., He, Y.

(2017). Sparse low-rank matrix approximation for data

compression. IEEE Transactions on Circuits and

Systems for Video Technology, 27(5): 1043-1054.

https://doi.org/10.1109/TCSVT.2015.2513698

[15] Ding, J.R., Yang, J.F. (2007). Adaptive entropy coding

with (5, 3) DWT for H.264 lossless image coding.

TENCON 2007 - 2007 IEEE Region 10 Conference, pp.

1-4. https://doi.org/10.1109/TENCON.2007.4429056

[16] Said, A., Pearlman, W.A. (1996). A new fast and

efficient image codec based on set partitioning in

hierarchical trees. IEEE Transactions on Circuits and

Systems for Video Technology, 6(3): 243-250.

https://doi.org/10.1109/76.499834

0

100

200

300

400

500

600

700

800

MQ Coder Kai
[40]

ABRC[43] Optimized
CABAC

Total power (mW)

462

