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CABAC is a Context Adaptive Binary Arithmetic Coder utilized in novel AVC/H.264 

of video standard. AC (arithmetic coding) permits important enhancement in the 

compression. However, the complexity of implementation is main drawback because 

of slowness and hardware cost. In this paper, we propose the implementation of 

MPEG4/H-264 AVC against M-decoder without PE (Probability Estimation). 

Furthermore, in order to estimate an algorithm, we have compared many existing 

methods, and the comparison takes place based on power dissipation and device 

utilization. 
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1. INTRODUCTION

Throughout An entropy coding is a lossless coding 

technique which compress the data using its statistical 

information. CABAC (Context- Based Adaptive-Binary 

Arithmetic-Coding) is greatly efficient entropy coding 

technique. It has been by recent standard of video compression 

H.264 and plays eminent role in improvising its coding-

efficiency. Compared with UVLC (Universal variable-length

coding), CBAC takes full benefits of the feature of arithmetic

codes and significance statistical properties of video streams

that develops an efficiency of coding.

CABAC is higher performance of entropy coding technique 

utilized in an AVC/H.264. The main baseline of UVLC 

method is based on an Exp-Golmb codes and BAC (Binary 

arithmetic-coder) [1]. The context-based method carries out 

complex binarization symbols in the efficient manner by unary 

tree. The BAC (Binary arithmetic-coder) [2, 3] compresses the 

binary symbols attaining bit rates nearer to entropy limit.  

AC (Arithmetic coding) united with an efficient context 

modelling provides high compression rations than 

compression techniques such as Golomb-Rice and Huffman 

[2]. In an AVC context, CABAC outcomes are up-to twenty 

percent than those whose achieved with the coder of baseline 

entropy [4]. Other sources insist that the CABAC overcomes 

UVLC by 30 to 40 percent [5]. Later, the CABAC provides 

clear benefits over compression techniques implemented in the 

existing methods. Higher compression method comes with the 

price. Both AC and context modelling need higher number of 

memory and operations accesses. Henceforth, the efficient 

implementations are essential.  

Moreover, the analysis of rate-distortion significantly 

maximizes number of the operations. An image is encoded by 

following techniques (half-pixel, intra, inter pixel-MC and 

unchanged) an optimal technique is selected based on 

minimizing the distortion for minimal maximization in bit rate. 

When the analysis of rate distortion is carried out with 

CABAV instead of the UVLC. Hence, the hardware 

acceleration is required as an amount of data to process 

maximizes with quality settings and size of image.  

In this work, we represent new architecture for CABAC. 

The efficient mechanism for the context managing is 

introduced that enhances the throughput and reduces workload 

based on the mixed design of software and hardware. A novel 

architecture of AC is represented that takes the benefits of 

novel characteristics discovered in the CABAC. Thus, fast 

implementation is represented is represented capable to 

process the symbols at speed demanded by higher quality of 

video encoding. This paper is organized in such a way that 

section-2 represents CABAC, section-3 represents 

Background of BAC, section 4 represents result analysis and 

finally conclude our work.  

2. OPTIMIZED CONTEXT-BASED ADAPTIVE-

BINARY ARITHMETIC-CODING 

Figure 1. Basic diagram of CABAC 

Optimized Context- Based Adaptive-Binary Arithmetic-

Coding is CABAC utilized in an AVC/H.264 [1]. CABAC has 

two parts. At first, parameters, events and coefficients made 

by the help of video-encoder can be converted to the binary 

symbol. Each symbol is assigned to the specific context. 

Afterwards, binary symbols can be compressed with AC 
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utilizing context information. The figure above represents the 

basis diagram of CABAC. This work represents context 

information managing and BAC (binary arithmetic-coder). All 

elements highlighted in Figure 1. 

 

2.1 Context-based-compression 

 

The context-based compression is very crucial method in 

order to improvise Markov-sources compression. An 

efficiency of the entropy compressors relies on the adequate 

context-managing. The division of optimal context assigns 

various symbols in various context without any fail in the 

context atomization. Such as, four-bit numbers can be encoded 

as four-binary symbols utilizing the context for all of them. 

Anyways, it could occur 2 less important bits that does not 

profit through this context assignation. Thus, encoding bits 

within similar context could improve and simplify the 

compression.  

CABAC assumes 701 various contexts. All of them are not 

utilized in various operation of encoder modes. Such as, when 

encoding process is not interlaced the images, 240 contexts 

render are not used. The process symbol of converting generic 

to the binary ones contains more than one evaluation 

conditions. Here, we have represented 2 cases. The syntactical 

elements produce only one binary symbol and all symbols are 

encoded per frame. Afterwards, contributes to smaller part of 

arithmetic coder-workload.  

Some syntactical elements produce many binary symbols in 

the predictable fashion and encoded per frame 100 times. 

Mainly, these syntactical elements transform significance and 

coefficient maps and contribute to the workload of arithmetic 

coder. The first element classes are well suited to processed in 

the software. Second elements of syntactical class may require 

hardware-acceleration. Furthermore, those symbols are 

generated in the predictable manner, the efficient 

implementation can enhance memory access and boost the 

performance. As it is represented in Figure 1, the context 

model may be updated after each access. Because of irregular 

access patterns, the memory bandwidth can commit the 

encoder throughput. Henceforth, the context managing is 

implemented in the optimized manner to maximize the data 

reuse, enable fast update and permit pre-fetching. An effective 

throughput is improved so that the requirements of speed are 

met.  

 

2.2 Arithmetic coding 

 

AC [2] contains iterative interval division based on various 

probability symbols. The CABAC implements the binary 

coder, the particular case permits substantial reduction of 

complexity with higher compression efficiency. Specifically, 

the arithmetic coder of CABAC is associated to the family of 

Q-Coder [3]. By calling range and low to lower point and 

current interval length, an encoding equation are given as: 

 

MPS=Most-Probable Symbol 

𝐿𝑛𝑒𝑤 = 𝐿 

𝑅𝑛𝑒𝑤 = 𝑅 − 𝑟𝐿𝑃𝑆 

LPS=Least-Probable Symbol 

𝐿𝑛𝑒𝑤 = 𝐿 + 𝑅 + 𝑟𝐿𝑃𝑆 

𝑅𝑛𝑒𝑤 = 𝑟𝐿𝑃𝑆 

(1) 

 

The 𝑟𝐿𝑃𝑆 value depends of current context encoding-state 

and range value. Thus, the dependence of recursive exists in 

Figure 1.  

Figure 2 represents encoding process. At any time, lower 

values keep track in which the symbols were encoded. The 

range length minimizes faster for the LPS. Small range values 

require high precision for the encoding that means more bits. 

To utilize an integer arithmetic, the value of range is 

normalized after each iteration.  

 

 
 

Figure 2. Example of Binary Arithmetic-coding 

 

Furthermore, the CABAC contains mode for encoding of 

equally-probable-symbols. In this mode, the context accessing 

is not required. It also permits fast implementation in the 

software. The equally-probable symbols can be encoded 

utilizing similar circuit by the selection of appropriate 

operands. The encoding termination is implemented by the 

help of special encoding-process. Afterwards, the state of 

internal encoder is encoded by utilizing similar circuit by 

appropriate operands-selection. The encoding termination can 

also have implemented by the help of special process of 

encoding. Then, the state of internal encoder is flushed 

towards an output.  

As an outcome of encoding process, low value maximizes 

while range value reduces. To keep both operands size under 

control the range value is normalized in each cycle. The low 

value can be shifted as consequences; its value is shortened. 

The shortened bits constitute an outcome of encoding process. 

They are also packed into the bytes and send to an output.  

 

 

3. BACKGROUND OF BAC 

 

Here, first we represent basic principle of BAC (Binary 

Arithmetic Coding) with the particular focus on the 

implementation related features. In BAC, it is convenient to 

distinguish among 2 symbols of binary alphabet not by 

utilizing their actual symbols “0” and “1” values but rather by 

denoting to their evaluated probability-values. By 

differentiating among MPS and LPS and keep track the 

symbol value of MPS (𝑣𝑎𝑙𝑀𝑃𝑆) as probability of LPS (𝑝𝐿𝑃𝑆), 

the simple parameterization is achieved by underlying the 

given binary alphabet’s probability model.  

On the basis of given settings, BAC is carried out by 

dividing initially in given interval that is represented by the 

help of its LB (lower bound) ℒ and range of width ℛ into the 

2 given disjoint sub-intervals: first width interval ℛ𝐿𝑃𝑆 =
ℛ. 𝑝𝐿𝑃𝑆 that is connected with LPS and second width interval 

ℛ𝑀𝑃𝑆 = ℛ − ℛ𝐿𝑃𝑆 is allocated to MPS. Based on binary value 

to encode, recognized as MPS and LPS, corresponding sub-

interval is selected as novel coding interval. 

Byiterativelyapplying this, the scheme of interval-subdivision 

to every element 𝑥𝑏 of the given sequence (𝑥1, 𝑥2, … . . , 𝑥3) of 

the binary symbols to encode, the BAC finally defines a value 
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of 𝑧𝑥 in sub-interval [ℒ (𝒩), ℒ (𝒩) + ℛ(𝒩)] that outcomes after 

𝒩𝑡ℎ  process of interval sub-division. The binary 

representation 𝑧𝑥  is an arithmetic code-word of an input 

sequence 𝑥.  

In our previous work [6], we proposed M-ABRC 

(Modified-Adaptive BAC). This algorithm reduces bit-

capacity of multiplication through its architecture of VLSI, 

introduced algorithm utilizes Look-Up-table (LUT) based on 

Virtual-sliding window (VSW) for PE (Probability 

Estimation). In order to obtain high compression rate, our 

algorithm has been implemented, this in terms gives good 

adoption probability in the encoding phase and also provides 

an absolute estimation of low-entropy binary sources (EBS).  

The conventional-binary arithmetic-encoding of the symbol 

value is represented in paper [6]. In this paper, we propose the 

implementation of MPEG4/H-264 AVC against M-decoder 

without PE (Probability Estimation).  

 

Algo-1: Procedure of M-decoder without PE 

 

Step-1:ℛ𝐿𝑃𝑆 = ℛ𝑇𝐴𝐵[𝑚][ℛ ≫ 22 + 2)&3 

Step-2:ℛ𝑀𝑃𝑆 = ℛ − ℛ𝐿𝑃𝑆 

Step-3:𝐼𝑓 (𝑉 < ℛ𝑀𝑃𝑆) 

Step-4:𝑅 = ℛ𝑀𝑃𝑆 ,     𝑣𝑎𝑙 = 𝑣𝑎𝑙𝑀𝑃𝑆 

Step-5: Else 

Step-6: 𝑉 = 𝑉 − ℛ𝑀𝑃𝑆 , 𝑣𝑎𝑙 = ! 𝑣𝑎𝑙𝑀𝑃𝑆 

Step-7: ℛ = ℛ𝐿𝑃𝑆 

Step-8: while (𝑅 < 256) 

Step-9: ℛ = ℛ ≪ 1 

Step-10: 𝑉 = 𝑉 ≪ 1 

Step-11: 𝑉 = 𝑉| 𝑅𝑒𝑎𝑑_1_𝐵𝑖𝑡() 

 

where, [𝑚] is defined as fixed probability state.  

In order to ensure that the registers with 𝑦 bits precision are 

more sufficient to present ℒ (𝑦)and ℛ(𝑦) for 𝑦, the operation of 

re-norm is needed, whenever ℛ(𝑦) decreases certain limit after 

one and multiple process of sub-division. Moreover, by 

renormalizing ℒ (𝑦)and ℛ(𝑦) the leading arithmetic code-word 

bits 𝑧𝑥  can output as soon as they are unambiguously 

recognized.  

Recently, novel design of multiplication free BAC has been 

represented in 8 and 10 lines. Its eminent innovative features 

are produced by table-based interval sub-division combined 

with PE based FSM (Finite-state machine) as well as the fast 

bypass of coding mode. This is also called M coder (Modulo) 

family of the BAC methods provides parameterizable trade-

off among memory needs requirements and coding efficiency 

for underlying the LUT.  Actually, the design of M-coder can 

be assumed as the generalization of Q-coder, latter can be 

resulted through M-coder incarnation that belonging to 

simplest parameter choice.  

Another, more elaborated selection of M-coder has been 

acquired by ISO/IEC and ITU-T as the normative part of the 

standard of video coding MPEG4-AVC/H.264 [7]. It provides 

good trade-off among complexity and the performance of 

compression, as represented in paper [8, 9].  

 

3.1 M-Coder 

 

The major element of lower-complexity M-coder method of 

an interval sub-division is quantizing an admissible domain 

𝔇 = [2𝒷−2, 2𝒷−1] for range of ℝ register bring by the help of 

re-norm into smaller number of 𝐶 cells. Inorder to simplify, 

we considered 𝔇  as uniform quantization to be applied, 

resulting the representative equispaced sets with range values 

ℚ0, ℚ1, … . . , ℚ𝐶−1 , where 𝐶 is defined as constrained to the 

power of 2 such as 𝐶 = 2𝐶  for an integer value 𝐶 ≥ 0. By 

discretisation of LPS related probability-range values ℙ𝐿𝑃𝑆 ∈

[0,
1

2
] , the representative probabilities sets ℙ =

{𝓅0, 𝓅1, … … , 𝓅𝑀−1} can be reconstructed organized with set 

of the corresponding transition-rules for the FSM based PE. 

Both ℙ  and ℚ  enable the operation of multiplication 

approximation ℙ𝐿𝑃𝑆 × ℛ  for an interval sub-division by 

RTAB which consists ℳ × 𝐶 pre-computed products values 

like {𝓅𝑀 × ℚ𝐶0 ≤ 𝔪 < 𝑀; 0 ≤ 𝑐 < 𝐶}  in selected integer 

precision. An entity can be addressed by utilizing 𝕞  index of 

state and 𝑐  index of quantization cell to ℛ  value. The 

computation 𝑐 is performed by bit-shift concatenation and the 

operation of bit masking applied to ℛ , where latter is 

interpreted as the modulo operation-based operand 𝐶 = 2𝐶 , 

hence the proposed codes is defined as: 

 

𝑐 = (ℛ ≫ (𝒷 − 2 − 𝑐))&(2𝑐 − 1) 

 

For M-coder realization, 𝒷 and 𝑐 are fixed, therefore both 

operands are given as the fixed values in above equation. By 

selecting the value of 𝑐 = 0, to the linear, where all ℛ values 

have single representation-value is utilized for 𝓅𝕞 × ℛ. This 

type of case is an equivalent to the operation of sub-interval 

carried out in Q-Coder and its corresponding derivate.  

Anyways, for presentation clarity and without generality, 

we restrict ourselves in specific case with MPEG4/H.264-

AVC-compliant M-Coder that corresponds to 𝑐 = 2  and 

specification of the LUT (Lookup-table). For further 

simplification, we neglect LUT operations needed to adapt 

probability state 𝕞  during every single decoding/encoding 

cycle.  

 

3.2 Re-norm procedure 

 

In terms of the implementation costs, the re-norm part of M-

coder still suffers through bit-by-bit output/input and as far as 

the concerns of encoder side also through the bitwise carry 

over the handling. In the implementation of encoder 

computationally critical parts can be attributed to bitwise loop 

of operating re-norm and conditional branching inside this 

loop is represented in algo-1 line 11.  

Although from the decoder perspective, an issue appears to 

be marginally lessened when comparing Re-norm parts in 

algo-1, there is still substantial CO (computational overhead) 

convoluted in the implementation of conventional M-coder 

because of its sequential bits reading from bit-stream.  
 

 

4. EXPERIMENTAL RESULT 

 

Our methodology is evaluated by comparing optimized 

CABAC with the existing methodology. Our methodology is 

simulated by using Xilinx-version 14.7 and code is written by 

utilizing the VDHL. For the evaluation of optimized CABAC, 

we have compared with several existing methodologies, which 

is mentioned below, and various parameters and constraint has 

been considered and each case our methodology outperforms 

than existing methodologies. The result section is divided into 

2 section such as device utilization and dynamic and static 

power. Below Table 1 represents device utilization and Table 
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2 represents power dissipation.  

 

4.1 Device-utilization 

 
Table 1. Comparison of various coder 

 

Architecture Technology 
Logic cell 

(no.) 

Memory 

(Kbit) 

MQ Coder Dyer 

[10] 
Altera Stratix 1596 8192 

MQ Coder Dyer 

[11] 
Altera Stratix 761 2675 

MQ Coder [12] 
Xilinx Virtex 4-

LX80 
15,692 4.17 

MQ Coder Kai [13] 
Xilinx Virtex 4- 

XC4VL 
6974 4269 

ABRC [14] 
Xilinx Virtex 4-

LX80 
1688 0 

ABRC Shcherbakov 

[15] 

Xilinx Virtex 5- 

ML507 
1544 552960 

ABRC [16] Altera Stratix 1296 0 

Optimized CABAC 
Xilinx Virtex 4- 

XC4VF 
948 0 

 

Table 1 above represents the outcome of optimized CABAC 

when FPGA implementation takes place and different 

architecture is compared. First column represents different 

architecture, whereas second, third and fourth represents 

technology, Logic cell and Memory. Number of logic cells is 

considered as one of the best parameters that has been used for 

different resources by FPGA technologies. So, maximization 

in image doesn’t affect the hardware resources of optimized 

CABAC at fixed number of the block size. This methodology 

also achieves trade-off among adaption speed and precision of 

the probability of one’s due to utilization of different window 

size. Therefore, it can be preferable for image and video 

coding standards and also for non-standardized codes. So it is 

very clear that optimized CABAC consumes lower amount of 

resources whenever compared to MQ Coder [12], MQ Coder 

Dyer [10, 11], MQ Coder Kai [13], ABRCShcherbakov [15], 

ABRC [14] and ABRC [16].  

 

4.2 Power dissipation 

 

Below Table 2 represents power dissipation for optimized 

CABAC in comparison to MQ-coder and ABRC. First column 

represents architecture whereas second, third and fourth row 

represents MQ-Coder, ABRC and optimized CABAC. As we 

can see that our optimized CABAC slightly outperforms better 

than other existing methodologies. 

 

Table 2. Power dissipation for optimized CABAC 

 

Architecture 
MQ 

Coder 
ABRC 

Optimized 

CABAC 

Frequency (MHz) 48.30 105.92 182.75 

Normalized power 

(mW/MHz) 
10.117 1.19 0.114 

Dynamic power (mW) 488.67 127.05 20.77 

Power density 

(µW/(MHz × Logic cell no.)) 
0.65 0.71 0.12 

 

Static Power 

Static power is defined as power consumed when there is no 

activity takes place in the circuit. It also generates leakage 

power and standby power. In order to prove the effectiveness 

of our model, we have considered this parameter that is given 

in Figure 3 below. For the comparison analysis, we have 

considered two models i.e., MQ-Coder kai and ABRC and it 

is compared with our optimized CABAC. Furthermore, the 

dissipations of static power 624.68 and 622.55 and optimized 

CABAC is 182.75 when compared with our optimized 

CABAC as we can see that our model slightly outperforms 

than other existing models.   

 

 
 

Figure 3. Comparison of static power 

 

Dynamic Power 

Dynamic power is defined as the power that is consumed 

when inputs are in an active state. The dissipation of dynamic 

power is considered one of the best key parameters while 

comparing the model. For the comparison analysis, we have 

considered two models i.e., ABRC and MQ-Coder kai and it 

is compared with our optimized CABAC. Furthermore, the 

dissipations of static power 69.81 and 18.15 and optimized 

CABAC is 20.77 when compared with our optimized CABAC 

as we can see in Figure 4 that our model slightly outperforms 

than other existing models.   

 

 
 

Figure 4. Comparison of Dynamic power 

 

Total Power  

The comparative analysis is based on the total power which 

needed to perform a task. For an efficient model, total power 

should be as lesser as possible. For the comparison analysis, 

we have considered two models i.e., ABRC and MQ-Coder kai 

and it is compared with our optimized CABAC. Furthermore, 

the dissipations of static power 694.49 and 640.7and 

optimized CABAC is 187.56 when compared with our 

optimized CABAC as we can see in Figure 5 that our model 
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slightly outperforms than other existing models. 

Figure 5. Comparison of Total power 

5. CONCLUSIONS

This paper represented new architecture for CABAC EE 

(Entropy encoding). CABAC is main element in novel 

AVC/H.264 video standard as it provides 20% reduction of bit 

rate when compared to the entropy coder. CABAC is one type 

of CPU consuming application, which is suited to implement 

in the specialized hardware. A new architecture has been 

introduced that allows efficient and fast processing. Then, we 

propose optimized CABAC implementation of MPEG4/H-

264 AVC against M-decoder without the PE (Probability 

Estimation). Our optimized CABAC obtains better results in 

terms of device utilization and power dissipation.  

REFERENCES 

[1] Marpe, D., Schwartz, H., Wiegand, T. (2003). Context-

based adaptive binary arithmetic coding in the

H.264/AVC video compression standard. IEEE

Transactions on Circuits and Systems for Video

Technology, 13(7): 620-636.

https://doi.org/10.1109/TCSVT.2003.815173

[2] Witten, H., Neal, R.M., Cleary, J.G. (1987). Arithmetic

coding for data compression. Communications of the

ACM, 30(6): 520-540.

[3] Pennebaker, W.B., Mitchel, J.L., Langdon, G.G., Arps.

R.B. (1988). An overview of the basic principles of the

Q-Coder adaptive binary arithmetic coder. IBM Journal

of Research and Development, 32(6): 717-726.

https://doi.org/10.1147/rd.326.0717

[4] Saponara, S., Blanch, C., Denolf, K., Bormans, J. (2003).

The JVT advanced video coding standard: Complexity

and performance analysis on a tool-by-tool basis. In

IEEE Packet Video.

[5] Marpe, D., Blattermann, G., Heising, G., Wiegand, T.

(2001). Video compression using context-based

arithmetic coding. Proceedings 2001 International

Conference on Image Processing (Cat. No.01CH37205),

3: 558-561. https://doi.org/10.1109/ICIP.2001.958175

[6] Mrudula, S.T., Srinivasa Murthy, K.E., Giri Prasada,

M.N. 2(019). M-ABRC (Adaptive Binary Range Coder)

using Virtual Sliding Window technique and its VLSI

implementation. Microprocessors and Microsystems, 71:

102901. https://doi.org/10.1016/j.micpro.2019.102901

[7] Rissanen, J. (1984). Universal coding information

prediction and estimation. IEEE Trans. Inform. Theory,

30(4): 629-636.

https://doi.org/10.1109/TIT.1984.1056936

[8] Bossen F. CABAC cleanup and complexity reduction.

Joint Video Team of ISO/IEC JTC1/SC29/WG11 &

ITU-T SG16/Q. 2002 Oct;6. Taubman, D., Marcellin,

M.W. (2002). JPEG2000 Image Compression:

Fundamentals, Standards and Practice. Kluwer

Academic Publishers.

[9] Dyer, M., Taubman, D., Nooshabadi, S., Gupta, A.

(2006). Concurrency techniques for arithmetic coding in

JPEG2000. IEEE Transactions on Circuits and Systems

I: Regular Papers, 53(6): 1203-1213.

[10] Dvir, I., Allouche, A., Drezner, D., Ecker, A., Irony, D.,

Peterfreund, N., Yang, H.T., Zhou J.T. (2017).

Trapezoidal block split using orthogonal C2 transforms

for HEVC video coding. 017 25th European Signal

Processing Conference (EUSIPCO), pp. 1016-1020.

https://doi.org/10.23919/EUSIPCO.2017.8081361

[11] Liu, K., Zhou, Y., Li, Y.S., Ma, J.F. (2010). A high

performance MQ encoder architecture in JPEG2000.

Integration, 43(3): 305-317.

https://doi.org/10.1016/j.vlsi.2010.01.001

[12] Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.

(2003). Overview of the H.264/AVC video coding

standard. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7): 560-576.

https://doi.org/10.1109/TCSVT.2003.815165

[13] Vasilache, A. (2017). Order adaptive Golomb rice coding

for high variability sources. 2017 25th European Signal

Processing Conference (EUSIPCO), pp. 1789-1793.

https://doi.org/10.23919/EUSIPCO.2017.8081517

[14] Hou, J.H., Chau, L.P., Magnenat-Thalmann, N., He, Y.

(2017). Sparse low-rank matrix approximation for data

compression. IEEE Transactions on Circuits and

Systems for Video Technology, 27(5): 1043-1054.

https://doi.org/10.1109/TCSVT.2015.2513698

[15] Ding, J.R., Yang, J.F. (2007). Adaptive entropy coding

with (5, 3) DWT for H.264 lossless image coding.

TENCON 2007 - 2007 IEEE Region 10 Conference, pp.

1-4. https://doi.org/10.1109/TENCON.2007.4429056

[16] Said, A., Pearlman, W.A. (1996). A new fast and

efficient image codec based on set partitioning in

hierarchical trees. IEEE Transactions on Circuits and

Systems for Video Technology, 6(3): 243-250.

https://doi.org/10.1109/76.499834

0

100

200

300

400

500

600

700

800

MQ Coder Kai
[40]

ABRC[43] Optimized
CABAC

Total power (mW)

462




