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Even with the significant progress that has been achieved in monocular depth estimation 

in recent years, the need for better real-time inference and reduction in computing 

resources usage associated with the network performance is persistent. In this paper, an 

enquiry into the efficacy of pruning on depth estimation models is performed. Encoder-

decoder model based on the ResNet-50 backbone architecture employing pruning based 

on channel prioritization is designed to achieve higher performance and prediction 

speed. This is while attempting to keep a balance in the trade-off between accuracy and 

performance of the network. The presented approach is trained and evaluated for 

outdoor scenery on the KITTI dataset to demonstrate the effectiveness and the 

performance improvement of the presented framework when compared to similar 

methods. This shows competitive accuracy when compared to state-of-the-art methods 

and highlights how pruning can speed up inference time by more than 16% and leading 

to fewer operations compared to the non-pruned model.  

Keywords: 

computer vision, deep learning, depth estimation 

1. INTRODUCTION

Monocular depth prediction is a complex task in computer 

vision to predict the depth of objects from a single viewpoint 

in a particular scene. Numerous applications in fields such as 

3D reconstruction [1], robotics [2], and autonomous vehicle 

perception systems [3] can make use of this task given its 

fundamental function of determining the scene’s geometrical 

relationship and acquiring a composition of its spatial structure. 

Depth prediction methods usually involve range sensors such 

as LiDARs or in the case of a system involving cameras, 

various instances and views of the scene to construct a precise 

estimation which might require sequences of videos from a 

moving camera [4] or stereo imagery [5]. This causes greater 

computational resource utilization and more costly equipment 

to deal with. Thus, the monocular depth estimation model is 

an important concept to obtain less constrained, more compact, 

and affordable results for the task.  

There are still many difficulties risen from the ill-posed 

nature of the issue given that there are infinite perspectives of 

3D scenes in a 2D image because of the scale ambiguities 

related to the variations in camera movement speeds and 

object sizes. Humans can solve these challenges by leveraging 

local cues such as being aware of occlusion and texture which 

can also be applied to monocular depth estimators in the 

learning stage. Earlier techniques in monocular depth 

estimation relied on handcrafted and probabilistic methods for 

estimation [6]. But due to the progress made in recent years in 

convolutional neural networks and deep learning along with 

the emergence of quality depth datasets enhanced the 

monocular depth prediction task performance. One of the first 

methods in this regard was proposed by Eigen et al. [7] by 

using multi-scale CNNs for depth prediction. First, they 

carried out global coarse estimation on the scene of the image. 

Then, the results are sent through an additional CNN to create 

a more accurate and refined local estimation. Liu et al. [8] 

presented feature maps up-sampling to enhance the output 

resolution of the depth prediction.  

The design of the encoder-decoder is commonly 

implemented owing to its robust ability to address the depth 

prediction task (and numerous other tasks such as sentiment 

analysis [9] and semantic segmentation [10]), the abundance 

of depth data, and its relatively easy implementation. These 

techniques usually consist of two main stages. The first stage 

is an encoder for extracting low-resolution features of the 

image using networks such as ResNet [11], DenseNet [12] 

usually for their higher accuracy, or MobileNet [13] for using 

less resources.  

The second stage is the decoder with the objective of up-

sampling the features, and fusing them by convolutions to 

upscale the spatial resolution of the image for improved 

quality. Among the many methods that can be used in the 

decoder, the bilinear method was chosen due to its smoother 

surface results, and less complicated approach when compared 

to other methods such the bicubic interpolation. It’s achieved 

by performing linear interpolation in two directions and using 

the neighboring pixels to estimate the value of the up-sampling 

block. This is done by adding padded zeros and then 

calculating the weighted average between two translated 

pixels for the output value.  

Feature extraction networks play an important role in 

determining the performance of the prediction model through 

many factors such as the number of layers and the techniques 

used to build the network which set it apart from other 

approaches. ResNet is one of the most widely used networks 

in many fields including image classification, and depth 

estimation given its innovative architecture which offers the 

use of the residual blocks to reduce the associated training 

error in addition to the large number of possible layers that can 

be added especially in ResNet-50 and ResNet-101 providing 
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50 and 101 layers respectively. 

The encoder-decoder architecture has been used in the depth 

estimation problem in Ref. [14] where they presented an 

unsupervised method that estimated depth without the need for 

prior depth data by relying on the disparity of the right and left 

images captured by a stereo camera and their novel training 

loss technique applying consistency between the prediction 

from each camera during the training. Facil et al. [15] used 

Camera Aware Multi Scale Convolutions in their encoder-

decoder architecture. This allowed the network to estimate the 

patterns of depth based on the intrinsic values of the camera. 

The convolution layers capture the camera parameters 

including the focal length, calibration, angle, etc. Yin and Shi 

[16] trained an encoder-decoder network to estimate both the 

surface normals and the depth in order to enforce the 

geometrical consistency between the planar regions to address 

the existing blur in the image.  

Alhashim and Wonka [17] demonstrated that transfer 

learning can be leveraged to construct supervised depth 

estimation with better accuracy. The network employs an 

encoder-decoder structure based on denseNet-169 backbone 

architecture. The ImageNet dataset is used to pre-train the 

network with augmentation techniques to enhance the final 

estimation of depth while Laina et al. [18] introduced up-

sampling feature maps technique to improve output resolution 

of the estimation depth and built a deeper network based on 

residual learning. They also introduced the commonly used 

reverse Huber loss function (berHu) used in this work. 

These learning-based prediction models rely on the concept 

of training a model to predict the depth value for each pixel. 

The training of these models requires substantial amount of 

data: more data available during training lead to more 

reliability in predicting depth. However, this will increase the 

complexity of these networks which means more parameters, 

larger model sizes, increased processing resources, and 

memory utilization required in addition to longer prediction 

time. This means that increasing the complexity of the model 

increases the accuracy but at the expense of runtime. Reducing 

the complexity of the model and computation requirements 

associated with it while maintaining the same performance has 

long been a popular issue which necessitates the need for 

alternative approaches in this regard. Network pruning can be 

used to mitigate the effects of the mentioned problems to 

obtain smaller and more efficient networks with faster 

inference time and less required calculations preferably 

without significant loss of accuracy [19]. Prior method [20] 

presented an encoder-decoder based network for depth 

prediction with a pruning strategy to reduce the model 

complexity and introduce faster inference time for embedded 

devices (specifically the NVIDIA Jetson TX2 GPU) using the 

lightweight MobileNet architecture. Given the work is being 

done on a lightweight network to accommodate the relatively 

low processing power of the TX2 GPU and other embedded 

devices, the trade-off between the accuracy and the size of the 

model is too big which manifests into a clear compromise in 

the quality of depth prediction. This work attempts to achieve 

an improvement in runtime performance and better accuracy 

results by carrying out the pruning process on a larger 

backbone network (ResNet-50) in order to create a solution 

that includes most types of GPUs and hardware. Data 

augmentation techniques and transfer learning are used to 

increase the accuracy of the prediction network as shown in 

the study [17]. This elaborate method can be used on larger 

systems with a pruning approach [21] based on dynamic 

pruning that relies on channel prioritization by amplifying and 

suppressing channels and skipping the unimportant at runtime. 

The neurons of the model are preserved which will reduce the 

impact on accuracy while gaining the same efficiency metrics. 

Hence, the depth estimation network shown in Figure 1 can 

adequately preserve accuracy and provide better runtime 

results. The method is evaluated on the KITTI dataset, 

demonstrating how pruning can reduce the runtime of the 

network from 90 ms to 76 ms and decrease in the multiply and 

accumulate operations (MACs) from 3.4G to 2.9G without a 

significant loss of accuracy. 

Thus, to summarize the goal of this paper: 

▪ Design an efficient depth estimation network using 

data augmentation and transfer learning.  

▪ Apply a pruning technique to provide an insight on 

how pruning affects depth estimation accuracy and 

performance of the network. 

▪ Emphasize the work on faster prediction time for the 

network. 

▪ Visualize the final depth results as demonstrated in 

Figure 2. 

The rest of the paper is organized as follows: The 

architecture of the depth estimation model and the pruning 

process are explained in Section 2. Experimental results are 

showcased and compared with other state-of-the-art methods 

in Section 3 followed by the conclusion in Section 4. 
 

 
 

Figure 1. Encoder-decoder concept 

 

 
 

Figure 2. Visualization of the final depth results before and 

after the pruning process 
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2. METHOD

This section presents the specific details of the depth 

estimation model shown in Figure 3 starting with the 

implementation of the encoder-decoder and the network 

architecture. In Section 2.1, the encoder-decoder design is 

described and with the overall framework. To improve the 

accuracy of the depth prediction online data augmentation is 

applied and reviewed in Section 2.2. The depth loss function 

is discussed in Section 2.3. In the last section, the pruning 

technique is explained to improve the performance and 

increase the efficiency of the system. 

Figure 3. Encoder-decoder architecture 

2.1 Encoder-decoder architecture 

The general structure of the model is shown in Figure 3. 

Images consist of spatial information [22] which is minimized 

by down-sampling the 𝐻 × 𝑊 × 𝑐  ( 𝑐  representing the 

number of channels) image once it gets delivered to the 

encoder to increase the network’s receptive field and decrease 

the computational operations. By applying the successive 

pooling and convolution layers, the image features are 

extracted. In this model, the encoder is based on the ResNet-

50 backbone architecture. It consists of 50 layers with 48 

convolutional layers, a max-pooling layer, and a 1 average-

pooling layer. The Res-Net model is selected over other 

encoders such as VGG and DenseNet since it’s been shown 

that the sparse models tend to better perform in pruning than 

dense ones [23]. As a substitute for random weight 

initialization, transfer learning that uses cross-domain 

knowledge transfer is employed by pretraining the model on 

the ImageNet dataset since it demonstrated that it can 

drastically improve the performance of the depth prediction 

model without any observed downsides as illustrated by the 

Ref. [17]. The last classifying and average pooling layers of 

the encoder are discarded so that the decoder can be linked to 

the encoder with various configurations for the skip 

connection implemented for the preservation of the details 

between the decoder and the encoder. The decoding layer 

consists of 5 bilinear up-sampling layers to establish the depth 

estimation by up-scaling and fusing the output of the encoder 

gradually to construct the final depth map. As mentioned 

earlier, the decoder uses the bilinear method due to its 

straightforward design and smoother surface compared to the 

other methods such as the linear interpolation and the bicubic 

interpolation.  

2.2 Data augmentation 

As mentioned earlier, depth prediction networks require 

enormous amount of data in order to obtain good accuracy and 

produce better depth quality reliably. The more data 

introduced during the training phase, the better the accuracy. 

The perpetual limited availability of depth data leads to the 

exploration of alternative methods such as data augmentation 

which includes making changes to the existing data in order to 

be used during training as new instances. Also, employing data 

augmentation methods for a specific task has been shown to 

be very effective during the learning stage to minimize the 

problem of over-fitting and adopt better generalization [24, 25]. 

These techniques are implemented based on trials and 

experiments for improved encoder extraction results: 

▪ Image mirroring horizontally by a probability of

60%.

▪ Rotating the Image with a random degree between

15 and -15.

▪ Scaling the image by a randomized number

between 1 and 2.

▪ Adjusting the saturation, brightness, and contrast

by 0.5.

▪ Multiplying the color input values globally by a

randomized RGB amount between 0.7 and 1.2.

2.3 Depth loss 

There are many considerations that can have an effect on 

the depth prediction performance and the training speed. This 

leads to many variations in the depth estimation literature for 

loss functions [14, 20, 26]. Generally, the depth loss function 

is calculated using the difference between the output of the 

depth network y and the ground truth of that depth value y*. 

Reverse Huber loss (BerHu) used in the study [18] is 

employed because it offers a good balance between the Least 

Absolute Deviations L1 in Eq. (1) providing the ability to 

propagate and the Least Square Errors L2 in Eq. (2) which 

offers lower gradient for the small residuals. The BerHu loss 

function is shown in Eq. (3) 

𝐿1(𝑦∗ − 𝑦) =  ∑|𝑦𝑖
∗ − 𝑦𝑖|

𝑛

𝑖=1

(1) 

𝐿2(𝑦∗ − 𝑦) =  ∑(𝑦𝑖
∗ − 𝑦𝑖)2

𝑛

𝑖=1

(2) 

𝐵(𝑦∗ − 𝑦) =  {

𝐿1(𝑦∗ − 𝑦) 𝑖𝑓 (𝑦∗ − 𝑦) < 𝑐

𝐿2(𝑦∗ − 𝑦)  + 𝑐2

2𝑐
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

2.4 Dynamic pruning process 

For optimal results, an established dynamic pruning 
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technique based on channel feature boosting and suppression 

[21] is modified to prune the ResNet-50. This will not only

conserve computational resources but will also reduce the

impact on accuracy in the trade-off balance without affecting

the neurons like other pruning methods. Deep sequential

CNNs are used to prune the parameters so that the information

flow can be restricted or amplified allowing the salient

information to flow from the important channels while

suppressing the rest. To demonstrate the work being done in

the original paper, the auxiliary component shown in Figure 4

determines the importance of the channels based on a

parametric function p(xl−1) that can be evaluated based on the

previous layer xl-1 using Eq. (4).

𝑝(𝑥𝑙−1) = 𝑤𝑡𝑎𝑇(𝑔(𝑥𝑙−1)) (4) 

The function wta( ) is a k-winner-takes-all function that 

returns a tensor with zeros (i.e., suppressing the unnecessary 

channels) for each entry smaller than T which represents the 

salient channels predicted by the channel saliency predictor 

g(xl−1). 

The spatial dimensions of each channel are reduced to scalar 

further to preserve computational resources by using the 

following function in Eq. (5): 

𝑠𝑐(𝑥𝑙−1) =  
𝑠(𝑥𝑙−1

1 )𝑠(𝑥𝑙−1
2 ) … 𝑠(𝑥𝑙−1

𝑐 )

𝐻. 𝑊
(5) 

where, H, W represent the height and the width of the channel 

respectively while c represents the number of channels. g(xl−1) 

may then can be calculated with the following Eq. (6) Where 

φl here denotes the weight tensor of the layer.  

𝑔(𝑥𝑙−1) = 𝑠𝑐(𝑥𝑙−1). φl (6) 

Figure 4. The pruning process 

Finally, the dynamically pruned channel can be described 

with Eq. (7) using the ReLU activation function. Where θ𝑙

representing the weight tensor for the layer.  

𝑓(𝑥𝑙−1) =  𝑝(𝑥𝑙−1). 𝑛𝑜𝑟(𝑐𝑜𝑛𝑣(𝑥𝑙−1, θ𝑙)) (7) 

From (7) we see that for each layer xl, convolution is 

performed on the previous layer xl-1 then each channel of 

features in a population of z is normalized based on Eq. (8): 

𝑛𝑜𝑟(𝒛) =  
𝒛 − 𝑚𝑒𝑎𝑛(𝒛)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒛)+ ∈
(8) 

where, ∈  is a small number to avoid division by zero. 

Normalizing layers are used to stabilize the training and enable 

learning with faster convergence at a higher rate.  

3. RESULTS AND DISCUSSION

3.1 Implementation details 

The method is implemented on the PyTorch [27] framework. 

The 50-layers ResNet-50 is pretrained on the ImageNet dataset 

for better initialization and then trained with the parameters 

according to Table 1. It takes 49 hours for the training of the 

encoder-decoder network using a GTX 3080 Ti GPU.  

Table 1. The training parameters 

Parameters 𝐕𝐚𝐥𝐮𝐞 

Learning Rate 0.0001 

Epochs 30 

Optimizer SGD 

Batch Size 8 

3.2 KITTI dataset & benchmarking suite 

The training and the evaluation process of this network are 

implemented on the KITTI dataset and benchmark suite [28]. 

KITTI is a publicly available large-scale outdoor scenes 

dataset for various tasks such as semantic segmentation, 

optical flow, object detection, and is widely used for depth 

estimation. It consists of thousands (about 21k images for 

training) of labeled RGB images with a resolution of 375 × 

1241 of diverse scenes recorded with cameras and depth 

sensing equipment (such as the Velodyne HDL-64E laser) 

from outdoor environments and streets with the conforming 

ground truth depth maps acquired using mounted equipment 

on a vehicle. It consists of 8 categories including the “car” and 

“pedestrian“ classes. The depth network is trained using 7k 

images from 32 training scenes and use 698 images for testing 

from 29 scenes. The splitting policy is based on the Eigen 

policy suggested by Liu et al. [8]. The images were resized to 

a resolution of 640×480 from 375×1241 for improved 

computation efficiency to generate an output of 320×224.  

3.3 Evaluation metrics & results 

The assessment of the proposed method is done on outdoor 

data with the KITTI dataset. The popular metrics employed for 

the depth prediction task evaluation in literature and this 

project is presented below. Let yp denote the estimated depth 

of a pixel in the image, yg is its ground truth and N is the 

number of pixels in the image.  

Root mean squared error (RMS): RMS equation is 

detailed in Eq. (9): 

√
1

𝑁
 ∑(𝑦𝑔

𝑖 − 𝑦𝑝
𝑖 )2

𝑁

𝑖=1

 (9) 
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Mean Relative Error (REL): REL equation is detailed in 

Eq. (10). 

 

1

𝑁
∑

‖𝑦𝑔
𝑖 −  𝑦𝑝

𝑖 ‖

𝑦𝑝
𝑖

𝑁

𝑖=1

 (10) 

 

RMS log: equation is detailed in Eq. (11). 

 

√
1

𝑁
 ∑‖𝑙𝑜𝑔10𝑦𝑔

𝑖 − 𝑙𝑜𝑔10𝑦𝑝
𝑖 ‖

2
𝑁

𝑖=1

 (11) 

 

Thresholded accuracy(δi): equation is detailed in Eq. (12). 

 

𝑇 >  δ = max(
𝑦𝑔

𝑖

𝑦𝑝
𝑖

 ,
𝑦𝑝

𝑖

𝑦𝑔
𝑖
) (12) 

 

where, T = 1.25, 1.252, 1.253. 
Table 2 shows a comparison using these metrics between 

the proposed method with and without pruning and other state-

of-the-art methods. The network is compared to state-of-the-

art methods and the results are obtained from original papers. 

 

Table 2. Performance comparison on the KITTI dataset  

 
 Higher is better Lower is better 

Method/ Metric 𝛅𝟏.𝟐𝟓 𝛅𝟏.𝟐𝟓𝟐  𝛅𝟏.𝟐𝟓𝟑  REL RMS RMS log 

Saxena et al. [6] 0.601 0.820 0.926 0.280 8.734 0.361 

Eigen et al. [7] 0.702 0.898 0.967 0.203 6.307 0.282 

Liu et al. [8] 0.680 0.898 0.967 0.201 6.471 0.273 

Alhashim and Wonka [17] 0.886 0.965 0.986 0.093 4.170 0.171 

Fu et al. [29] 0.932 0.984 0.994 0.072 2.727 0.120 

Lee et al. [30] 0.956 0.993 0.998 0.059 2.756 0.096 

Proposed Method 0.865 0.940 0.964 0.096 4.714 0.184 

Method + pruning 0.846 0.928 0.958 0.118 4.855 0.202 

 

Experimental results show that pruning can slightly 

decrease accuracy by lowering the values of 𝛅 by 1.5% on 

average. There’s also an increase of 3.15% on RMS. The 

method is again compared in Table 3. to the pre-pruned 

ResNet-50 model to establish how pruning affects the 

performance and accuracy of the network. 

 

Table 3. Performance comparison between the pruned and 

unpruned model 

 
Method MACs Runtime RMS 𝛅𝟏.𝟐𝟓 

Without Pruning 3.4G 90 ms 4.714 0.865 

After Pruning 2.9G 76 ms 4.855 0.846 

 

Results from Table 3 reveal an almost 16% difference in 

inference time compared to the non-pruned model on the GTX 

3080 Ti GPU. There’s also an estimated 14.7% reduction in 

the multiply and accumulate operations (MACs) without any 

significant loss to accuracy on the accuracy metrics as 

discussed before RMS (+3.15%), and Thresholded accuracy (-

1.5%) compared to the non-pruned model. Figure 5 visualizes 

the depth maps for each prediction. Colour maps are used to 

show the difference in depth. Warm-green colors indicate 

closer distance while colder colors are for farther distances. 

 

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

 
(a) 
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(b) 

 
(c) 

 

Figure 5. Qualitative depth prediction results on KITTI (a) 

Before pruning results (b) After pruning results (c) Original 

Image 

 

 

4. CONCLUSION 

 

In this work, a dynamically pruned monocular depth 

estimation network is implemented using the encoder-decoder 

architecture by leveraging transfer learning techniques. The 

method achieves competitive results compared to the state-of-

the-art methods on the KITTI dataset. The effects of pruning 

on the network were investigated and compared to showcase 

how it can affect the performance of the system. It’s been 

found that the model performs about 16% faster inference time 

and uses fewer MACs with insignificant (about 1.5% on 

average) loss of accuracy due to the trade-off balance that 

occurs in the pruning process. Demonstrating that pruning can 

be an effective technique for increasing the performance of the 

depth network. 
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