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Sometimes in a solar system, the fluid flow is composed of two phase including steam and 

liquid water. In this research, a full three-dimensional compressible fluid dynamics model of 

a compressible turbulent temporal mixing layer (steam flow) has been developed using the 

Large Eddy Simulation (LES) method. The main purpose of present work is to compare the 

generated vortices during the mixing at three different times. For separation of large and sub-

grid scales, the Navier-Stokes equations have been filtered using top-hat filtering function and 

the dynamic eddy viscosity model has been applied for modeling of sub-grid scales. The 

numerical result for the momentum thickness has been compared with direct numerical 

simulation(DNS) and (LES) results obtained by Verman. At a five different time (steps), The 

sub-grid scale kinetic energy and the flow simulation results such as vortices, pressure, density 

and x-velocity component have been presented, The numerical results shown that the 

turbulence spread resulting from the mixing of layers in entire flow filed, and its effects on 

the main flow properties. 
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1. INTRODUCTION

Large Eddy simulation (LES) is an outstanding technique 

for numerical simulation of compressible turbulent flows. First 

in order to separate the large scales from sub-grid scales flow, 

the Navier-Stokes equations should be filtered. After filtering, 

in addition to filtered terms, the unknown unfiltered terms 

appear in equations. Filtered terms indicating the filtered 

Navier-Stokes equations, have been solved using a numerical 

algorithm. The solution results are filtered variables which 

show the large scales flow fields. The unknown terms are sub-

grid scales terms that should be modeled [1-2]. The dynamic 

eddy viscosity model has been formulated by Germano et al 

[3]. Based on mentioned model, the amount of flow kinetic 

energy is dissipatedat sub-grid scales by eddy viscosity.  On 

the other hand the square of constant coefficient in 

Smagorinsky’s [4] base model has been replaced by the 

dynamic coefficient which controls the amount of flow 

turbulence. This coefficient varies locally to determine the 

order of eddy viscosity in the flow. Subsequently, after a time 

step or several steps by reviewing the flow field, the new value 

for dynamic coefficient at any point in the flow field is 

achieved again sothe value of this coefficient is continually 

modified. Thus, the correct amount of kinetic energy 

dissipation into heat can be determined. For this purpose, in 

the dynamic eddy viscosity model, test filtering is used with 

the filter width twice the original filter [3, 5]. 

Free turbulent shear flowis one of the important parts of 

compressible flows. Compressible mixing layer as a kind of 

shear flow can be studied in tow sections: the temporal and 

spatial framework. Most of numerically simulations have been 

performed for temporal evolving mixing layers. Temporal 

mixing layers develop in time but not in space, from specified 

initial conditions. The streamwise direction is homogeneous. 

Then, periodic boundary conditions are applied in the direction 

and no inflow/outflow boundaries are necessary in this 

approach. Temporal evolving mixing layers is very important 

in turbulence and qualitative comparisons of the dominant 

mechanisms can then be made with experimental results. 

However, such an approximation is not physical in some cases, 

for example interaction between a free shear flow and shock 

waves. Temporal mixing layer contains two streams with 

equal and opposite free-stream velocity U, which is used as 

reference velocity [6-8]. In this case the free stream Mach 

number is equal to the convective Mach number that is one of 

the important compressibility effects parameters. The 

convective Mach number, introduced by Bogdanoff [9], 

measures the intrinsic compressibility of a mixing layer. 

LES and DNS of the temporal mixing layer using six sub-

grid models at different convective Mach numbers has been 

performed by Verman [6-7]. He showed that the results of 

dynamic models are better than those obtained by non-

dynamic models. Temporal mixing layer at different 

convective Mach numbers, using DNS, has been studied 

byPantano & Sarkar [10]. Kourta & Sauvage [11], simulated 

supersonic mixing layer using DNS for the study of flow 

structures. The main compressibility effects such as the 

spreading rate are predicted in their study. Direct numerical 

simulation of temporal evolving annular mixing layer, has 

been investigated by Freund et al. [12]. They studied the 

mixing of fuel and oxidizer at different convective Mach 

numbers from 0.1 to 1.8. The experimental data obtained by 

Goebel & Dutton [13], Papamoschou & Roshko [14], Elliot & 

Samimy [15] and Barre et al. [16] showed that by increasing 

the convective Mach number, compressible mixing layer 

growth rate is reduced.  

In this paper, the governing equations and LES simulation 

method are combined to form a three dimensional computer 

Progress in Solar Energy and Engineering Systems 
Vol. 1, No. 1, December, 2017, pp. 17-23 

Journal homepage: http://iieta.org/Journals/PSEES 

17



 

program based on the finite difference method. The results of 

three dimensional numerical simulation of compressible 

turbulent temporal mixing layer at convective Mach number 

of 0.2 using LES are presented. 

 

 

2. FILTERING 

 

Filtering is performed due to decompose sub-grid scales 

from large scales. The arbitrary variable 𝑓 is filtered by the 

following spatialintegration: 

 

𝑓(̅𝑥) = ∫ 𝑓(𝑥′
𝐷

)𝐺(𝑥, 𝑥′)𝑑𝑥′                                               (1) 

 

where, 𝑓̅ is the filtered part of 𝑓  which represents the large 

scales. In Eq. 1, D and G are computational domain and 

filtering function, respectively. In this study, the top-hat filter 

is applied which is defined as: 

 

𝐺(𝑥) = {
1

∆
𝐼𝑓|𝑥| ≤ ∆/2 

0          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                        (2) 

Δ is the filtering width indicating the solved scales. The 

Favre filtering is used for compressible flows which is suitable 

for LES. This filtering is denoted by a symbol ̃ that is related 

to ̅  filtering by the following relationship: 

 

𝑓 =
𝜌𝑓̅̅ ̅̅

�̅�
                                                                                                                 (3) 

 

After the Favre filtering, 𝑓 is expressed as: 

 

𝑓 = 𝑓 + 𝑓′′                                                                                               (4) 

 

𝑓  and 𝑓′′ represent the large and sub-grid scales, 

respectively. If the mesh size is considered ash𝑖 along thex𝑖, it 

is proposed to consider (∆𝑖= 2h𝑖) as filtering width. So, the 

total filtering width is obtained by ∆= (∆1∆2∆3)
1

3. This is due 

to minimize the total error in this case. The total error in LES 

consists of discretization error and sub-gridscale modeling 

error [17]. 

 

 

3. GOVERNING EQUATIONS 

 

The LES governing equations are filtered Navier-Stokes 

equations which can be written as continuity, momentum and 

energy equations for compressible flows:  

 

𝜕𝑡�̅� + 𝜕𝑗(�̅��̃�𝑗) = 0                                                                                 (5) 

 

𝜕𝑡(�̅��̃�𝑖) + 𝜕𝑗(�̅��̃�𝑖�̃�𝑗) + 𝜕𝑖�̅�– 𝜕𝑗�̌�𝑖𝑗 = −𝜕𝑗(�̅�𝜏𝑖𝑗) + 𝜕𝑗(𝜎𝑖𝑗 −

�̌�𝑖𝑗)                                                                                        (6) 

 

𝜕𝑡�̌� + 𝜕𝑗((�̌� + �̅�)�̃�𝑖) − 𝜕𝑗(�̌�𝑖𝑗�̃�𝑖) + 𝜕𝑗�̌�𝑗 = −𝛼1 − 𝛼2 − 𝛼3 +

𝛼4 + 𝛼5 + 𝛼6                                                                         (7) 

 

𝛼1 = �̃�𝑖𝜕𝑗(�̅�𝜏𝑖𝑗)                                                                                       (8) 

 

𝛼2 = 𝜕𝑗(𝑝𝑢𝑗̅̅ ̅̅ − �̅��̃�𝑗)/ (𝛾 − 1)                                                            (9) 

 

𝛼3 = 𝑝𝜕𝑗𝑢𝑗
̅̅ ̅̅ ̅̅ ̅ − �̅�𝜕𝑗�̃�𝑗                                                            (10) 

𝛼4 = 𝜎𝑖𝑗𝜕𝑗𝑢𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜎𝑖𝑗𝜕𝑗�̃�𝑖  (11) 

𝛼5 = 𝜕𝑗(𝜎𝑖𝑗�̃�𝑖 − �̌�𝑖𝑗�̃�𝑖)                                                            (12) 

 

𝛼6 = 𝜕𝑗(𝑞�̅� − �̌�𝑗)                                                                     (13) 

 

where, �̌�𝑖𝑗  is filtered viscous stress tensor,�̌�𝑗  is filtered heat 

flux and �̌� is filtered total energy density. The filtered viscous 

stress tensor is related to filtered strain rate tensor that is given 

by: 

 

�̌�𝑖𝑗 = 𝐹𝑖𝑗(�̃�, �̃�) = 𝜇(�̃�)𝑆𝑖𝑗(�̃�)/𝑅𝑒                                          (14) 

 

𝑠𝑖𝑗(�̃�) = 𝜕𝑗�̃�𝑖 + 𝜕𝑖�̃�𝑗 −
2

3
𝛿𝑖𝑗𝜕𝑘�̃�𝑘                                                (15) 

 

The filtered total energy density and filtered heat flux are 

expressed as: 

 

�̌� = 𝑬(�̅�, �̃�, �̅�) =
�̅�

𝛾−1
+

1

2
�̅��̃�𝑖�̃�𝑖                                          (16) 

 

�̌�𝑗 = 𝑄𝑗(�̃�) = −
𝜇(�̃�)

(𝛾−1)𝑅𝑒 Pr 𝑀2 𝜕𝑗�̃�                                       (17) 

 

By using of Favre filtering, the left sides of the Eqs. 5 to 7 

become similar to laminar Navier-Stokes equations. The 

filtered Navier-Stokes equations are solved using a numerical 

algorithm and its result shows the large eddy flow field. The 

right sides of the Eqs. 5 to 7 contain the sub-grid terms which 

are added after filtering. They represent the effect of sub-grid 

scales on solved scales which should be modelled by the sub-

grid scale modelling. As it is clear from the Eqn. 5, the 

continuity equation doesn’t have sub-grid scale terms while 

the momentum and energy equations have 2 and 6 sub-grid 

scale terms, respectively.  

The first sub-grid scale term of momentum equation is 

turbulent stress tensor which is the most important one in 

governing equations. It has been resulted from the nonlinearity 

of convective term described as: 

 

�̅�𝜏𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅ − 𝜌𝑢𝑖̅̅ ̅̅̅𝜌𝑢𝑗̅̅ ̅̅̅/�̅� = �̅�(𝑢𝑖𝑢𝑗̃ − 𝑢�̃�𝑢�̃�)                     (18) 

 

The second sub-grid scale term of momentum equation 

resulting from the nonlinearity of viscous term is smaller than 

the turbulent stress tensor, and it can be neglected in high 

Reynolds number flows. The sub-grid scale terms of energy 

equation are α1 to α6 which are expressed by the Eqn. 8 to 13. 

These terms can be neglected in the weakly compressible flow 

[6, 18]. 

 

 

4. MODELING OF SUB-GRID SCALE TERMS 

 

Since the implementation of Smagorinsky model causes 

some problems, the dynamic eddy viscosity model is applied 

for to modeling of sub-grid scale terms in momentum and 

energy equations. In the Smagorinsky model, the Smagorinsky 

coefficient as an experimental one should be assumed constant 

entire the flow filed. This coefficient is turbulence value 

controller which depends on the flow regimes. In order to 

solving this problem, the dynamic model was proposed by 

Germano. In this method 𝐶𝑠
2  is replaced by dynamic 

coefficient 𝐶𝑑 . The dynamic coefficient changes locally to 

determine the order of eddy viscosity in the flow. 
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Subsequently, by the review of the flow field after one or many 

time steps the new value of 𝐶𝑑 is again determined in the entire 

flow field. So, the value of 𝐶𝑑  is corrected continuously to 

provide the correct energy dissipation. For this purpose, the 

test filter is applied for the dynamic model which has a width 

twice the main width. This filter is represented by the 

symbol ̂ . 

Since the second sub-grid scale term of momentum equation 

(nonlinearity of viscous term) in high Reynolds number flows 

is neglected, the turbulent stress tensor is only modeled by the 

following equation: 

 

𝑚ij = −�̅�𝐶d∆2|𝑆(�̃�)|Sij(�̃�)                                                   (19) 

                     

where, 𝐶d is the dynamic coefficient whichchanges locally to 

determine the order of eddy viscosity in the flow, defined as: 

 

𝐶d =
<MijLij>

<𝑀ijMij>
                                                                      (20) 

 

where, 

 

𝑀ij = −�̂̅�(2∆)2|𝑆(𝑣)|𝑆ij(𝑣) + (�̅�∆2|𝑆(�̃�)|Sij(�̃�)) ̂          (21) 

 

𝑣i = 𝜌𝑢𝑖̅̅ ̅̅ ̅̂/�̂̅�                                                                          (22) 

 

|𝑆(𝑣)|2 =
1

2
𝑆ij

2(𝑣)                                                              (23) 

 

𝐿ij = (𝜌𝑢𝑖̅̅ ̅̅̅𝜌𝑢𝑗̅̅ ̅̅̅/�̅�) ̂ − 𝜌𝑢𝑖̅̅ ̅̅ ̅̂𝜌𝑢𝑗̅̅ ̅̅ ̅̂/�̂̅�                                        (24) 

 

In order to prevent numerical instability, 𝐶d  should be 

greater than and equal to zero. The symbol <> is used for 

prevention of being negative which is an average in the 

homogeneous directions. If it will be negative, it is replaced 

by zero. Rearranging in Eqn. 19:  

 

𝑚ij = −𝜈eSij(�̃�)                                                                  (25) 

 

where, 𝜈e is the eddy viscosity described as: 

 

𝜈e = �̅�𝐶d∆2|𝑆(�̃�)|                                                              (26) 

 

The eddy viscosity correlates the sub-grid scales turbulent 

stress tensor model with the strain field of large scales. In fact, 

Eqn. 25 indicates that the transferred kinetic energy form large 

eddies to small eddies is converted to heat by eddy viscosity 

[3, 6]. 

 

 

5. NUMERICAL ALGORITHM 

 

The filtered Navier-Stokes equations are discretized using 

central finite differences on a uniform grid with grid spacing 

h. The time discretization is applied with an explicit second-

order accurate four-stage Runge-Kutta method. The 

convective and viscous terms are discretized with a fourth and 

second-order central finite difference method, respectively. 

 

  

6. RESULTS AND DISCUSSION 

 

The mixing layer is solved in a cube domain [-15,-15] × [-

15,-15] × [-15,-15], where the streamwise, spanwise and 

normal directions are denoted by x1, x2 and x3, respectively. 

Boundary conditions in the stream wise and span wise are 

periodic. Free-slip walls condition is considered in the normal 

direction. A three dimensional uniform structured mesh is built 

in the Cartesian coordinate. The mesh size is 64*64*64 along 

the x, y and z axes, respectively. The time step of flow 

simulation is chosen to be 0.01 second and the numerical 

results are obtained at different times which are equal to 

iterations multiply to time steps. 

 

 

7. MODEL ASSUMPTION 

 

Air is considered as a operating fluid and ideal gas in mixing 

layer. Since in the compressible flow the energy equation is 

coupled with the momentum equation, ideal gas law should be 

applied to solve these equations. In the present simulation 

convective Mach number ( 𝑀𝐶 =
U1−U2

a1+a2
) of 0.2, upstream 

velocity of 1 m/s, downstream velocity of -1 m/s, different 

streamwise velocity of 2 m/s, Reynolds number of 50 and 

Prandtl number of 1have been considered. Specific heat 

capacity at constant pressure, specific heat ratio and gas 

constant for air are equal to 62.5(j/kg), 1.4 and 17.8571 

(j/kg°K), respectively. Viscosity and heat conduction 

coefficients are calculated from Sutherland and Fourier’ laws, 

respectively.  

 

 
 

Figure 1. Comparison of the momentum thickness obtained 

from the present simulation, DNS and LES by Verman [8] 

 

Fig. 1 shows the comparison between the results of present 

simulation, LES and DNS results obtained by Verman [8] for 

the time evolution of momentum thickness. The momentum 

thickness of the mixing layer depends on the sub-grid model 

described by the following equation: 

 

𝛿 =
1

4
∫ < �̅� > (1 −

<�̅�𝑢1>

<�̅�>
) (

<�̅�𝑢1>

<�̅�>
+ 1) 𝑑𝑧

−𝑙

2
𝑙

2

                   (27) 

 

The operator <.> represents an averaging over 

homogeneous directions x and y. Fig.1 shows that when time 

increases, the momentum thickness increases due to 

turbulence. The initial and final momentum thicknesses are 0.5 
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and 4.8, respectively. Fig. 2 demonstrates the variation of sub-

grid kinetic energy versus z axis for different times. The sub-

grid kinetic energy represents the generated energy by the flow 

turbulence ( 𝑘 =
1

2
𝜏𝑖𝑖 ). As seen from the Fig. 2, with the 

increase in time, the sub-grid kinetic energy spread over the z 

axis. The maximum value of the sub-grid kinetic energy at t=0, 

t=20, t=40 and t=80 occur in the center of the plane (z=0) 

whereas for t=100 it occurs at z= -4. Fig. 3 illustrates the time 

evolution of vorticity thickness for different times.  

 

 
 

Figure 2. Comparison of the sub-grid kinetic energy at the 

different times 

 

 
 

Figure 3. Variation of vorticity thickness versus time 

 

The vorticity thickness of mixing layer is described as: 

 

𝛿ω =
∆U

(
∂u

∂z
)max

                                                                                      (28) 

 

As it clear from the Fig. 3, the vorticity thickness increases 

along the time due to the reduction of velocity slope in the z 

direction. Figs. 4(a), 4(b), 4(c), 4(d) and 4(e) display the 

vorticity contour at t=0, t=20, t=40, t=80 and t=100, 

respectively. These figures show how the streamwise and span 

wise vorticity form in the mixing region. The shapes of formed 

vortices in the temporal mixing layer at various times are 

different. With the increase in time, the vortices spread in the 

streamwise and span wise plans and turbulence caused by 

mixing of layers increases in flow Figs. 5(a), 5(b), 5(c), 5(d) 

and 5(e) show the x component velocity contour at t=0, t=20, 

t=40, t=80 and t=100, respectively. According to these figures, 

the velocity values fluctuate between upstream and 

downstream velocity in the mixing region. These fluctuations 

occur in the center of plan at t=0 but with the increase in time, 

the fluctuation spread. It can be found from these figures that 

the turbulence caused by mixing layer, affects the upstream 

and downstream flows. Fig. 5(a), 5(b), 6(a), 6(b), 7(a) and 7(b) 

show the pressure contour, density contour and temperature 

contour at t=0 and t=100, respectively. The pressure gradient 

at t=0 occurs in the center of plan while it can be seen in the 

entire flow field at t=100. The density variations are 

significant in the center of plan at t=0 whereas the 

compressibility effects occur in the entire flow field at t=100. 

The temperature gradient only occurs in the mixing region 

(center of plan) at t=0. As the time increases, the temperature 

gradient spread on domain and as result heat transfer happens 

at t=100. Heat transfer caused by the mixing of layers and 

kinetic energy dissipation in sub-grid scales.  
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Figure 4. Contour of vorticity at different times 

 

 

 

 

 

 
 

Figure 5. Contour of x-velocity at different times 
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Figure 6. Contour of pressure at different times 

 

 

 
 

Figure 7. Contour of density at different times 

 

 

 
 

Figure 8. Contour of temperature at different times 

 

 

8. CONCLUSION 

 

In this article a full three-dimensional numerical analysis of 

compressible temporal mixing layer has been investigated 

using Large Eddy Simulation (LES) technique. Among from 

many cases in large eddy simulation of compressible flows, 

the mixing layer phenomenon is a fundamental case to study. 

At first for modeling of subgrid scales, the dynamic eddy 

viscosity has been applied and central finite difference method 

used for spatial discretization. The convective are viscous 

terms are discretized separately, and with a fourth order and 

second order, respectively. The second order accurate four-

stage Runge-Kutta method is used for temporal discretization. 

The numerical results of momentum thickness, vorticity 

thickness and sub-grid kinetic energy indicated that 

turbulences increase in the flow field which is a mixing layer 

intrinsic characteristic. The vorticity contours are presented at 

five different times. Shape of vortices it was found that varies 

at various times due to the nature of temporal mixing layer. As 

the time increases, vortices spread on the flow filed due to 

increase of the turbulence.  
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