
A Review on Web Application Vulnerability Assessment and Penetration Testing

Urshila Ravindran1, Raghu Vamsi Potukuchi2*

1 Security Associate, Safe Security, Okhla, Delhi 110020, India
2 Department of Computer Science and Engineering, JIIT University, Noida 201309, India

Corresponding Author Email: raghu.vamsi@jiit.ac.in

https://doi.org/10.18280/rces.090101 ABSTRACT

Received: 24 October 2021

Accepted: 22 December 2021

With the increase in the number of internet users, web applications, user data there is an

increase in the number of hackers all over the world. It is becoming challenging for

organizations to ensure the security of the data of their employees and their customers

around the world. Any cyber-attack on the organization will drastically affect the

reputation of the organization as well as the loss of trust from the users or customers.

Customers will not invest in these organizations who have encountered a cyber threat or

attack. Hence, enabling regular security testing and checks by the penetration testers or

security analysts help in preparing the organization from any security threat by testing

network and applications. Even after performing the Vulnerability Assessment and

Penetration Testing (VAPT) of the applications, it is extremely necessary to follow up the

security patches to mitigate all the existing flaws and security vulnerabilities in the web

applications under the organization. To this end, this paper presents the common web

application security vulnerabilities, prior requirements for performing any security

assessment of the web application along with the do’s and don’ts of the assessment in

accordance with each vulnerability. This paper also discusses various types of security

testing and how VAPT is essential in every organization.

Keywords:

vulnerability assessment, penetration testing,

web application, security, ethical hacking,

burp suite, application security

1. INTRODUCTION

Ensuring the security of using the internet and its resources

is the paramount importance due to the increase in the users of

this technology. Data leak can affect any organization or an

individual in terms of its reputation, money and chances of loss

of resources. Vulnerability in the security domain is defined as

the loopholes or weaknesses present in the system or network

of any organization or individual [1]. The attacker then takes

advantage of this weakness and exploits using exploitation

techniques. The security attacks on e-commerce platform are

not new, and they are happening from starting of Web 2.0 [2].

There are more than 24 million e-commerce websites are

present on the internet. According to a Forgenix survey [3, 4],

75% of e-commerce websites are at the risk of some cyber

attacks. Even reputed and branded companies have

vulnerabilities in their websites taking advantage of them these

websites are compromised by attackers. Taking the example

of reputed brands which already have hit by any type of cyber

attacks is predicted to be more than 350 million dollars during

the years 2018-19 [5-7]. The main area to focus to curb these

attacks is systematic security testing (or penetration testing or

pentesting) and vulnerability assessment.

The system can be compromised because of existing

vulnerabilities. The network, application or systems consisting

of these vulnerabilities are termed as a vulnerable application

or network. Therefore, it is important to perform the

Vulnerability Assessment and Penetration Testing (VAPT) of

the web applications before releasing to the market. The

process of vulnerability assessment is to find out the flaws and

weaknesses existing in the system by scanning the system or

the whole network. Conducting a vulnerability assessment

helps to check the security posture of the organization in the

cyber world. The key objectives of conducting a vulnerability

assessment in the organization would be risk assessment,

system accreditation, compliance checking, and network

auditing and continuous monitoring.

1.1 Related work

Security testing and various related issues such as privacy

and others in web applications, in general, are articulated in

recent survey articles [8-12]. Devi and Kumar [13] introduced

various tools such as Sparta, Network mapper (Nmap),

Zenmap, Netcraft, IP Address Tracking, Virus Total, etc. for

information gathering. During the practical experimentation of

using security tools on a particular application, it was observed

that after using OWASP ZAP tool, it was able to detect

medium high as well as low level risks. The medium high-

level severity vulnerabilities that were identified are URL

rewriting, Application error disclosure, X-frame-options

header and SQL injection. Priyanka et al. [14] presented three

web application vulnerabilities such as SQL injection, XSS

(Cross-site scripting) and CSRF (Cross-site request forgery).

It also discusses the tools that can be used for VAPT. This

paper concluded that preventive measures to consider for SQL

injection attacks are input validation, white listing and

sanitization of user input values, use of prepared statements to

pass the user input data as parameters, and avoiding the

disclosure of sensitive information through error on the web

pages. Amin et al. [15] focus on how the red team performs

the security assessments of the applications. There are largely

Review of Computer Engineering Studies
Vol. 9, No. 1, March, 2022, pp. 1-22

Journal homepage: http://iieta.org/journals/rces

1

https://crossmark.crossref.org/dialog/?doi=10.18280/rces.090101&domain=pdf

three types of teams: 1) red team, 2) purple team and 3) the

blue team. The red team imitates the activities that an attacker

would do by making the use of tools and techniques to perform

a real-world attack just like an attacker would. The blue team

refers to the organization’s internal security team that defends

against the red team attacks as well as the internal/external

attackers. The purple team is a hybrid version of the red team

and blue team. The purple team consists of Blue team's

defensive techniques and the attacking skills of the Red team.

This paper also explained rules of engagement for a red team,

some of which are execution of the required engagements,

compliance with all the laws, regulations, policies and

programs, implementation of the operational methodology of

the team, identification of the input to the target environment,

research and development of new exploit tools for testing the

functionality, perform OSINT, identification and assessment

of the actions revealing system vulnerabilities, providing

assistance to the red team lead in the development of the final

engagement report and also to perform the physical

assessment under the leadership of the red team lead. Vats et

al. [16] starts with discussing the various pentesting strategies

like external pentesting strategy, internal pentesting strategy,

blind pentesting strategy, double blind pentesting strategy and

targeted pentesting strategy. The different types of pentesting

are black box pentesting, gray box pentesting and White box

pentesting. This paper discussed some of the common

pentesting tools used by testers such as Hping, nmap, httprint,

GFI LanGuard Network Security Scanner, Brutus Security

tool and others.

Goutam et al. [1] proposed a framework that will give more

security to the applications running under any financial

institution. The proposed algorithm works in the following

manner: first, the user will be required to give his login id and

password to this framework. If the user details match with the

already registered users, then an OTP is sent to the mobile

number as well as the email id. After the OTP is verified, the

reference number is asked by the application. If the reference

number is not provided, then the user will be redirected back

to the login page. The reference number is auto-generated

when a user first registers on the application with his/her

details. This reference number unique for each customer is not

stored in the user details database. The proposed framework

was practically tested on a financial application, and it was

helpful in detecting vulnerabilities like clickjacking

vulnerability (X-frame-options header not included in the

HTTP response headers), cross-site scripting protection not

enabled, SQL injection vulnerability and private IP disclosure

which can be dangerous if accessible to any attacker as it can

be used for conducting further attacks on the application.

Functionalities of VAPT, testing checklist for assessment of

applications, OWASP top 110 security risks and the workflow

of penetration testing are presented [17]. Authors presented a

checklist that should be followed while practicing secure

coding consists of input validation, authentication, password

management, output encoding, access control, session

management, communication security, cryptographic

practices, error handling and logging, system configuration,

file management, database security and memory management.

Khera et al. [18] performed an analysis of the lifecycle of the

VAPT process. It also shortlists some useful VAPT tools for

testing and finding the target system vulnerabilities. It explains

the need for adoption of vulnerability assessment and

penetration testing at various organizational levels to prevent

any cyber attacks. It also discussed vulnerability assessment

and penetration testing in detail. The main reasons why these

vulnerabilities arise are system misconfiguration, weak

password combinations, system connected to an unsafe

network, poorly designed software and hardware. Hasan and

Meva [19] discussed in detail about the VAPT process model,

its benefits and the tools used in the process. The paper focuses

on the high-risk vulnerabilities like SQL injection, local file

inclusion, and cross-site scripting and remote file inclusion.

Hasan and Meva [19] also performed a literature survey to

perform an analysis of the generalized VAPT process used

among all of them and the tools which are actually useful when

performing the vulnerability assessment and penetration

testing. Yaqoob et al. [20] presented vulnerability assessment

and why it needs to perform in every organization. It also

discussed common network vulnerabilities, threats to the

vulnerable networks and the vulnerability management

lifecycle. In addition to this, this paper presented penetration

testing process and also performs a comparison with the

vulnerability assessment process. Hasan et al. [21, 22]

analyzed the different approaches to perform vulnerability

assessment and penetration testing in web applications to

ensure secure web applications in the ever evolving cyber

world. First, the paper [21] discussed the software

development life cycle and its phases like planning, analysis,

design, implementation, testing, integration and maintenance

in detailed manner. Next, the paper divides the vulnerability

into two categories: logical vulnerability and technical

vulnerability. Paper [22] discussed in detail about penetration

testing, how it is done step wise, how it helps in securing the

network and what are the tools for performing penetration

testing. Penetration testing is an effective way of identifying

and assessing the vulnerabilities of the system.

Haque et al. [23] presented the ways to secure the web

services, the challenges faced in the security of web services

and the recommendations to overcome those security

challenges in web services. It also discusses the 10 most

common vulnerabilities and also presented the ways to prevent

three of these vulnerabilities such as SQL injection, cross site

scripting, session management and broken authentication.

Similarly, common vulnerabilities are discussed in the studies

[24, 25]. Security controls are presented. To illustrate it, a

livestock data center is used for a case study to perform the

assessment and testing and to propose the relevant security

controls [26]. Singh et al. [27] presented methodology of

performing penetration testing. It describes what are

penetration testing, its various techniques and the reasons to

perform penetration testing. Goel et al. [28-33] presented

VAPT lifecycle to be performed on the web application

infrastructure and this procedure can be helpful in preventing

cyber attacks. A study [34-40] shows that the exploring

vulnerabilities depend on the type of programming

environments and application specifications.

All the aforementioned studies used automated

vulnerability scanning methods and tools. Alternative of the

automated testing is the manual testing, which is a best option

for modern applications. Further, these studies focused on

discussing or presenting very limited web application

vulnerabilities.

1.2 Contributions and paper organization

To this end, the main objective of this paper is to identify

and provide understanding of how different vulnerabilities

exist in the system, how the attackers can perform can exploit

2

them. Papers that provide basic understanding the web

application infrastructure, vulnerabilities and exploitation of

the application, VAPT process flow, what are the measures the

beginners of the VAPT process need to take care are very

limited. Further, as the users of the web applications are

increasing, new vulnerabilities come in to existence and the

literature also grow in accordance with it. This paper attempt

to provide all these concepts for easy understanding by the

beginners and intermediate VAPT testers. Also provides do’s

and don’ts for the testers during VAPT process.

Section 2 presents the preliminaries for understanding the

VAPT process. Section 3 presents the most commonly used

open source tools for conducting VAPT process. This section

also presents important add-ons and features available in

popularly used Burpsuite tool for web application testing.

Section 4 provides a detailed description of the VAPT process

in two modes such as active mode testing and passive mode

testing. Methods used in each mode are detailed in this section.

Section 5 presents the measures to be considered during VAPT

process. This section helps the beginners of the VAPT process

as a checklist during the testing. Finally, Section 6 concludes

the paper with future directions. The list of abbreviations used

in this paper is provided at the end of the paper.

2. PRILIMINARIES

2.1 Vulnerability management lifecycle

The vulnerability management lifecycle consists of 6 main

steps [1]: 1) discovery, 2) prioritization of assets, 3)

assessment, 4) reporting, 5) remediation and 6) verification.

The discovery step involves keeping a track of all the

vulnerabilities existing in the application or the network on a

regular basis. The second step is the prioritization of assets

basically involves the categorization and assignment of values

to the assets according to their priority. The third step is to

create a risk profile based on importance or priority of the

reported vulnerabilities. The fourth step is to measure and

report the level of business threat with respect to the existing

vulnerabilities in the organizational network. The next step is

to perform the remediation to fix the vulnerabilities and protect

the system from exploitation by the attackers. The final step is

the verification to check whether the existing system

vulnerabilities have been patched or not.

2.2 Penetration testing

Penetration testing is a type of testing method used by

ethical hackers to perform the testing of full integrated and

operational system infrastructure or network. Penetration

testing is defined as a procedure to find vulnerabilities present

in the target system or network infrastructure in order to take

certain steps to secure the network from attackers. It helps in

checking whether an attacker would be able to penetrate into

an organization’s network or not. This testing technique is

done by an ethical hacker simulated as an unauthorized user

who attacks the system or executes the penetration into the

system [41, 42].

2.3 VAPT considerations

While performing the VAPT, the CIA (Confidentiality,

Integrity and Availability) principles must be considered.

Confidentiality refers to the principle of ensuring that only the

authorized people are able to access the restricted information.

No other unauthorized person should be able to access or read

or edit the data in the application. The application should have

proper authentication and authorization mechanism to allow

only the authorized personnel’s to access the data, each

authorized role should be allowed with only a specific set of

functionalities in the application according to their level of

authorization that is, a normal user should not be able to

perform the functionalities of what an admin can do. The

unauthorized users should not be able to access any data

present in the application. The confidentiality factor fails if the

attacker is able to perform horizontal or vertical privilege

escalation. Horizontal privilege escalation is a type of attack

in which the users of the same level of authorization are able

to access the data of another user. Vertical privilege escalation

is a type of attack in which the normal users are able to access

data of users of different levels of authorization, that is, any

user of lower level is able to access the privilege rights or

functionalities of an admin in the application [43, 44].

Integrity means ensuring the sanctity of the data when in

transit. No one should be able to perform the modification of

the data while it is in transit from the client to the server side

of the application. To ensure the integrity of the data, data in

transit should use HTTPS or the data should be in encrypted

form when in transit so that no intruder in the communication

can easily read the data. By encrypting the data, sender can

prevent man-in-the-middle attacks like spoofing, hijacking

and eavesdropping in the communication channel of a network.

The last principle is to always ensure the availability of the

system or the application. It should be available to its users in

the network anytime they access it. Availability can be

affected if there is lack of request limiters in the application.

Due to lack of request limiters, an attacker can cause a DOS

(denial of service) attack and halt the system or application

from sending the response back to any of the requests received

due to the application server receiving the request more than it

can handle it [45].

To conduct a VAPT, the three areas to check the

vulnerabilities are the physical structure, logical structure and

the architecture of the target network. Network testing is

performed by the tester to find the vulnerabilities existing in

the physical design of target system.

2.4 Vulnerability assessment vs. Pentesting

The differences between Vulnerability assessment and

Pentesting are as follows [35, 36]:

1. Vulnerability assessment is the process of identification

and the measurement of the severity level of

vulnerabilities in a system. Penetration Testing is

generally a goal-oriented exercise.

2. Vulnerability Assessment holds the lists of various

security vulnerabilities, often prioritized by their severity

level along with the organizational criticality. Penetration

Testing is primarily focused on the simulation of a real-

time cyber-attack, capability testing the defense

mechanisms and figuring out the ways in which a real

attacker can conduct an attack on the network or

application or the system instead of the identification of

the vulnerabilities.

3. VA typically covers the vulnerabilities horizontally,

meaning that it provides a breadth wise approach for the

3

security position of the application whereas penetration

testing has a vertical approach, it covers the security

vulnerabilities in depth. In other words, vulnerability

assessment shows how big a vulnerability is and

penetration Testing shows how critical it is.

4. VA can be conducted with the help of automated tools

however penetration testing is generally done manually

2.5 Vulnerability assessment methodologies

There are two VA assessment methodologies: 1) automated,

and 2) manual. By using automated approach, testers can

identify the vulnerabilities present in the application with the

help of automated tools and eliminate the false positives.

Automated tools are software that interacts with the target sans

human intervention. The primary benefit of automated

scanners is that they reduce the labor-intensive work required

to accomplish the task. Automated scanners like Acunetix will

give us an overview of the possible existence of vulnerabilities

in the environment. These vulnerabilities are aligned with the

following industry-wide accepted standards such as OWASP,

SANS, ASVS, WASC.

By using manual approach, the tester will detect every

exploitable vulnerability present in the web application. The

tester looks out for logical flaws which might compromise the

authentication/authorization process, injection attacks, data

security, input validations, session management issues, etc.

The tester identifies every open port and the service running

on the API servers. After that, the tester tests them for security

vulnerabilities depending on their level of exploitability and

availability in the environment they exist in. Final step

involves the verification and validation of these vulnerabilities

based on the standard benchmark. The following checks to be

performed during manual testing security controls according

to industry security standards like OWASP, SANS, MASVS,

WASC, etc. are used for testing purposes. They are

• Every API in the application is checked against as many

controls as possible by manually fuzzing with various

payloads.

• During a security assessment, every open port/service

configured on the in-scope asset server is rigorously tested

against the respective security control.

• The tester recommended considering the references

specifically from online documents/security blogs, and

MITRE Common Vulnerabilities and Exposures (CVE)

entries [46, 47].

2.6 Web application testing strategies

There are two web application testing strategies: 1) black

box testing, and 2) grey box testing. Black box testing is a

formal technique of application testing in which the

examination of the application functionality without any

knowledge of its internal or backend working mechanism is

performed. It does not have any requirement of the past

knowledge of web application or intervention of the vendor of

application. Black Box penetration testing will be performed

on the application along with its APIs that are interacting with

the application using those APIs.

Grey box testing is a type of software/application testing

that is performed by a tester having partial prior knowledge

about the internal/backend mechanism of an application which

is given by the owners or developers in form of walk-through

of applications, application data flow, API documentation,

tech stack etc. and can most often include the design and

architecture documentation and internal access to the assets.

The tester also gets test user credentials to assess the

application/software post login functionalities. The main

intention behind a Grey box assessment is to provide a more

efficient & focused security assessment. This activity helps to

simulate an attacker which might act as a threat to the

application’s sensitive data, assets and eventually to the

organization’s reputation.

There are two types of VAPT models [31]: 1) flaw

hypothesis model and 2) attack tree model. In the first type,

there is a system analysis and penetration prediction technique

which consists of compilation of a list of flaws consisting of a

hypothesis and performs analysis of the code specification and

system documentation. In an attack tree model, the different

attack methods or exploits which are possible against a target

web application are represented in the form of a tree structure.

2.7 Skill set required for VAPT

Following are some common skills required for Web

application assessment:

• Basic understanding of Computer Networking (TCP/IP

model, OSI layers, protocols, top ports etc.)

• Basic understanding of Linux commands with hands-on

practical knowledge.

• Basic understanding of programming languages like

HTML, JavaScript, PHP, MySql etc.

• Good understanding of OWASP Top 10 Web Application

Vulnerabilities, CVSS, CVE.

• Basic understanding of Pentesting supporting operating

systems [48-51] such as kali-Linux tools, open-source and

commercial tools for web application assessment.

2.8 VAPT summary

VAPT should be performed on a regular basis especially in

the technology-based firms and organizations as they are more

prone to the cyber based attacks. The advantages that can be

achieved by performing regular Web application VAPT are

• Understanding the web application infrastructure,

functionalities and classifying the assets, resources

and the functionalities of the web application in

accordance with their significance.

• Timely detection of the vulnerabilities in the web

applications of the organizations before any attacker

performs an exploitation of the application.

• Assigning value to the resources according to their

significance and identify the most common web

security vulnerabilities and their potential threats to

each web resource using automated and manual

testing techniques.

• Mitigating and performing the elimination of the

critical vulnerabilities at high priority compared to

the others. These vulnerabilities exist in the most

important assets, resources and functionalities of the

web resources.

3. OPEN SOURCE VAPT TOOLS

There are majorly four types of open source and free VAPT

tools that can be useful such as 1) static analysis tools, 2)

4

network testing tools, 3) application testing tools and 4) social

Engineering tools [31]. Static analysis tools perform the VAPT

by analyzing the source code of the web application. Some of

the Static Analysis tools are Flawfinder, Pychecker, Pixy,

RATS and OWASP SWAAT. Network Analysis tools are

used for scanning the target network for analysis of the

loopholes in the target network. Some network analysis tools

are nmap, hping, superscan, Xprobe2, Nessus, Brutus and

Metasploit. The application testing tools are used to analyze

the cyber defence infrastructure of the organisation. Some of

the tools used for it are Nmap, Fiddler, Nikto, WebScarab,

Arachni and OWASP ZAP. Social Engineering tools are used

to check the difficulty level of extraction of the information

which is considered confidential, by interaction with the

organization’s employees. Following are some basic tools that

need to be thoroughly and practically understood in order to

start the assessment process [39, 52-55].

• Burp Suite: It is a combined and one in all platforms used

for conducting the security testing of web applications. It

works simultaneously together by supporting the entire

testing process from its initial mapping stage to the

complete vulnerability analysis of a web application [47].

• Nmap: It is an open source network scanner tool available

for free. It is specifically used for discovering the hosts

and services by sending the data packets on the computer

network and analysing the responses.

• Slap: It is a penetration testing tool available as an in-built

tool in Kali Linux operating system that enables the

automation process for the detection and exploitation of

the SQL injection vulnerabilities and weaknesses to take

over the database servers.

• Dirbuster: It is an open source, multi-threaded java-based

application specially designed for the purpose of brute

forcing the files and directory names on the web server.

• Nikto: It is a free software tool primarily used as a

command-line vulnerability scanner that performs the

scanning of the web servers for detecting the exposed

sensitive data, dangerous files/CGIs, outdated server

software and other problems.

• XSStrike: It is an open-source tool used as a penetration

testing tool whose purpose is to identify XSS (Cross Site

Scripting) vulnerabilities. This tool is equipped with an

automated payload generator, parsers, a powerful fuzzing

engine and a crawler.

• Corsy: It is a python program tool available in Kali Linux

which enables the scanning of all CORS misconfiguration

that is present in the CORS implementations of the

applications.

• SSLscan: It is a free penetration testing tool specifically

for performing the queries on SSL services, such as

HTTPS. This is done for the determination of the weak

ciphers that are supported for SSL/TLS versions.

• Tplmap: It is a penetration testing tool specifically used

for detecting and exploiting the SSTI vulnerabilities in all

template engines present in the application in order to get

access to the underlying file and operating system. The

tool is used to test if the parameters in the URL are

vulnerable or not.

• LFISuite: It is an open-source VAPT tool having the

capability to perform scanning as well as the exploitation

of the Local File Inclusion (LFI) vulnerability using

different attack techniques.

• Wireshark: It is a tool which acts as a network protocol

analyzer by capturing the packets such as from any

computer or office or the internet via the network

connection. It is open source software that performs the

analysis real time network traffic and is considered the

suitable testing tool for troubleshooting of network issues

in organization. Wireshark can help in many issues like

latency issues or dropped packets by troubleshooting the

network using it.

• OWASP ZAP: OWASP ZAP (also popularly known as

Zed Attack Proxy) is free web application security

scanner. It helps the user to perform modification of all

the network traffic passing through its proxy server

including the HTTPS traffic.

• Acunetix: Acunetix is a tool used as an automated

application security testing tool that performs the

crawling and auditing of the web application that tester

give by checking for the web security vulnerabilities in it

like Insecure Deserialization, SQL Injection, Cross-site

request forgery, Cross site scripting and other such

vulnerabilities.

These tools may be downloaded and installed individually

or specialized penetration testing operating systems are

available with all necessary security tools. Some popular

operating systems are Kali Linux [49], Parrot OS [50],

Security Onion [51], etc. Burp Suite [47] extensions can help

in the automation of the web application assessment process,

and it also reduces the time in scanning and exploiting the web

application vulnerabilities if we already have the following

Burp Suite extensions installed and setup in our Burp

application. The BApp Store consists of various types of Burp

extensions for the detection and exploitation of different web

or mobile related vulnerabilities that have been specially

written by contributors of Burp Suite to expand the capabilities

of the Burp application. Testers can directly install the BApps

burp extensions from the extender tab present in the Burp

application. Brupsuite is available in two editions: 1)

community edition and 2) professional edition (Pro version).

Community edition is free to use and it comes with limited

functions. While the professional version require licence from

the vendor and comes with many interesting features. Some of

those functionalities that are useful for web application

pentesting are as follows [33-35]:

• Logger++: Burp Suite Pro provides the functionality to

be able to proxy every HTTP request and response tester

put through it. It stores all the HTTP requests and

responses going through the client-side proxy called Burp

Suite, in an easily exported, understandable and sortable

table.

• Active Scan++: It extends the capability of the active and

passive scanning functionality of the Burp Suite Pro. This

extension is specifically designed to append a decrease in

the network overhead, it detects the possibility of an

application to be exploitable as follows: 1) possibility of

host header attacks such as password reset poisoning, web

cache deception, web cache poisoning, DNS rebinding,

and others. 2) possibility of host header attacks such as

password reset poisoning, web cache deception, web

cache poisoning, DNS rebinding, and others 3) malicious

transformation of input, 4) issues related to passive-

scanner that take place during the fuzzing process such as

installation of 'error message checks' extension for

ensuring the effectiveness, etc. 5) edge side includes, and

6) XML input handling

• Autorize: It is a burp extension focussed at helping the

penetration testers to identify the vulnerabilities existing

5

in the authorization mechanism during the web

application penetration test. It only requires the session

cookies of a user with lower privilege rights and navigates

to the webpage that highly privileged user can access. The

Burp extension repeatedly sends every request with the

session of the low privileged user automatically and finds

the authorization vulnerabilities.

• Backslash Powered Scanner: This Burp extension works

in a similar way like the Burp's active scanner using a

novel approach which is capable of identifying and

confirming both known and unknown cases of server-side

injection vulnerabilities.

• J2EEScan: This burp extension is used for enhancing the

test coverage when the penetration testing of the

applications are running in the J2EE- based applications.

J2EEScan performs the addition of some new test cases

and strategies for discovering the various kinds of J2EE

vulnerabilities such as JBoss SEAM Remote Command

Execution (CVE-2010-1871), Expression Language

Injection (CVE-2011-2730), Java Server Faces Local File

Include (CVE-2013-3827 CVE-2011-4367) and others.

• Retire.js: This burp extension performs the integration of

the Burp Suite Pro with Retire.js GitHub [40] repository

to conduct the identification of the vulnerable Bootstrap,

WordPress, and JavaScript libraries. During the passive

scan, it checks the loaded configuration data and performs

the detection of those which are considered vulnerable

due to the various signature types such as URL, filename,

file content or specific hash, etc. being used or are known

to have known vulnerabilities (CVE).

• Collaborator Everywhere: This extension integrates in-

scope proxy traffic by injecting non-invasive headers

specifically designed to expose the backend systems by

sending pingbacks to the Burp Collaborator client.

• Wsdler: This extension takes a WSDL request, performs

parsing of the WSDL request to filter out the operations

that are related to the targeted web service, and also

performs the generation of SOAP requests that are then

sent to the SOAP endpoints.

• Java Deserialization Scanner: This extension gives Burp

Suite Pro the capability to identify the existing Java

deserialization vulnerabilities in the web applications. It

can perform both the active and passive scanning and can

also be used in an intruder like manual mode or an

exploitation mode. This extension also allows the user to

perform the discovery and exploitation of Java

deserialization vulnerabilities having different types of

encodings (Raw, Base64, ASCII Hex, GZIP, Base64

GZIP) by inserting multiple payloads when the following

libraries are loaded in the target JVM using an ysoserial

jar file.

4. VAPT PROCESS FLOW

As shown in the Figure 1, the VAPT process of the web

applications will be carried in two modes: 1) Passive mode,

and 2) Active mode. During passive testing, the security

analyst attempts to understand the logic of the web application

and executes the exploration of the test application like a

normal user. Various tools that can be used for the purpose of

information gathering for example, an HTTP client-side proxy

tool like Burp Suite Pro can be used for the purpose of

observing all the incoming and outgoing HTTP requests as

well as HTTP responses on the application. After this phase

the analyst should know all the access points of the web

application (e.g., HTTP headers, parameters, cache and

cookies). The passive mode of testing will be held in the

sequence of steps 1) information gathering, 2) Fingerprinting

web server, 3) Web content scanning, 4) web page content

review, and 5) SSL verification. Section 4.1 describes these

steps, on the other hand, in the active mode of testing, the

security analyst performs active tests on the web application

which are categorized as follows: 1) server level testing, 2)

client level tests, 3) authorization and identity management

testing, 4) authentication testing, 5) input validation testing, 6)

web content testing, and 7) business logic testing. Section 4.2

presents the methods of active mode in detail.

Figure 1. Modes of VAPT process

4.1 Passive mode testing

Passing mode testing consists of the following steps:

1. Information gathering: During this step application

enumeration is performed. This is the most basic steps in

which enumeration is performed such as network

configuration, server configurations, open ports, network

topology, network devices used, and others.

2. Webserver fingerprinting: It is the process of

identification of the web server information like type,

version, and name of the target system, application or

network. It is necessary to discover the accurate web

server type of the target application. It can help security

analysts for the determination of whether the web

applications are prone to any type of cyber-attacks. Web

servers running obsolete software versions without any

timely regular patching would be vulnerable to various

publicly-known exploits related to the older versions.

Different methods used for the process of web server

fingerprinting consists of banner grabbing, HTTP

responses received in response to the requests that are

malformed, and with the help of automated testing tools

to execute the extensive and diverse scans that make use

of different types of techniques.

3. Web content scanning: Application servers can be

properly configured to perform the enumeration of the file

and directory content automatically, especially the ones

that do not consist of any index page. This can help an

attacker to perform quick identification of the resources

of a test application. The next step is to perform the

analysis and attack the application resources. Moreover, it

6

enhances the visibility of the sensitive data/files within the

directory that should not be accessible to users, such as

temp files as well as stack traces. Web Content Scanning

can be performed using many open source tools like Dirb,

Nikto, Dirbuster, Gobuster, WPScan (for Wordpress

applications), Joomscan (for Joomla based applications)

and others.

4. Web page content review: It is a very popular and

common practice for programmers and developers to

include detailed comments or metadata into their source

program code. This practice can be a risk when the source

code is exposed publicly, and these comments and

program metadata inserted in the application’s program

code may expose the sensitive information existing

internally. This sensitive information must not be exposed

or accessible to the potential attackers. In order to check

any leaked data or information, review of comments and

metadata should be performed.

5. SSL review: If the web application is making use of

HTTPS (HTTP over TLS/SSL) for inter node

communication, then the tester should verify the SSL

certificate, TLS/SSL version, TLS/SSL encryption

enabled services, supported ciphers (weak, medium or

strong) and some cryptographic flaws. This information

related to SSL.TLS details can be gathered by using testssl

tool or sslscan in Kali Linux [44].

4.2 Active mode testing

Figure 2 depicts the elaborated checks for each test under

the active mode of VAPT. Each test of the active mode VAPT

is explained in the subsections of this section [45-61].

Figure 2. Categories of active mode VAPT process

4.2.1 Server level testing

It is important to perform the proper security configuration

of the single nodes and elements that contribute to make up

web application architecture in order to prevent any risks or

mistakes that might compromise the security of the whole

application architecture. The web server or application server

configuration plays an essential role in the protection of the

site contents, and it must be reviewed carefully in order to

detect the common configuration mistakes. Checks to be

conducted for server level testing are as follows

1. Network infrastructure and configuration: After the

process of information fingerprinting of the web

application, the tester must look out for known

vulnerabilities or use of any components having publicly

known vulnerabilities and the exploits for the different

versions of software/platform/server being in use by the

web application. After the identification of the presence

of any mail servers on the web application, the tester

should check the SPF and DMARC policies

misconfiguration if it exists with the help of dig command

or spoof check tool.

2. HTTP Headers: By intercepting the application requests

in a client-side proxy tool like Burp Suite Pro, the tester

will analyse the HTTP request and response headers and

modify the request headers in order to see whether there

is any change in the behaviour of the HTTP response

headers as well as the body.

3. HTTP Strict transport security: The HTTP header is a

security procedure that websites should have. If this is

implemented in web sites, they must perform all

communication means through a secure channel, that is,

to the web browsers and then all the network traffic is

exchanged with a given domain. The secure

communication channel means that all the data will be

transferred over the HTTPS connection; this will enable

the protection of the unencrypted requests from any

intruders. It is necessary for the tester to perform the

verification regarding the web site whether it is using the

HTTP strict security header or not, so that all the data that

is travelling from browser to the server is in encrypted

form.

7

4. Slow HTTP attacks: Slow HTTP attacks are a type of web

application attack resulting in a DOS attack in which

tester will send multiple requests to the application server

within the specific time limit. If there is an incomplete

HTTP request, or if there is low transfer rate then the

server will keep its resources occupied waiting for the

response from the past requests instead of responding

back to the requests. When the concurrent connection

limit of the web server reaches its maximum threshold,

this results in a denial-of-service situation from

application server. The tester can verify for Slow HTTP

DoS with the help of an Application Layer DoS attack

simulation tool called slowhttpattack or slowloris.

5. RIA cross domain policy: Rich Internet Applications (RIA)

had performed the adoption of Adobe's policy files like

crossdomain.xml to grant the controlled cross-domain

access to the data and repair consumption with the help of

technologies like Silverlight, Flashlight, Oracle Java, and

Adobe Flash. Hence, a site can give access to its services

from a different domain remotely. In most cases, Adobe’s

policy files are configured poorly for the access

restrictions. For testing the RIA policy file vulnerability,

the analyst should be able to perform the retrieval of the

policy files. The various types of permitted permissions

would be verified under the smallest level of privileges

after retrieving all the RIA policy files. Necessary

requests should only be received from the permissible

domains and ports and requests from the overly

permissive or restricted policies should be ignored.

6. Subdomain takeover: It is a type of web application

vulnerability that appears when a corporation has

configured a DNS CNAME entry for one in all its

subdomains referring to an external service (e.g. Amazon

cloud, Heroku, Github, Bitbucket, Desk, Squarespace and

Shopify) but the service isn't any longer utilized by that

organization. An attacker can purchase and register to the

external service provider and consequently claim for the

affected subdomain. For testing the Subdomain Takeover

vulnerability, the primary step is to perform enumeration

of DNS servers of the target and other resources. The

tester checks if the subdomain is running/active or not

after it is found that it exists. If that subdomain can be

purchased, then it is considered vulnerable.

7. Cloud storage: Cloud storage services provide the

facilitation to the web applications and services for

storage and access to the objects of system existing in

cloud storage services like Google cloud, AWS. Improper

configuration in the access control, although may

conclude in exposure of sensitive information being

modified as well as data access by an unauthorized party.

A common vulnerability example is a misconfigured

Amazon S3 bucket; however, other services providing the

cloud storage may also exposure to various types of cyber

threats.

4.2.2 Client level testing

Client-Side testing is a type of testing concerned with the

code execution on the client side that typically exists within

the web browser or browser plug-in. The execution of code on

the client-side of the web application is different from the one

executing on the server side of the web application and it

returns the subsequent content. Client-side security needs

penetration testing to be performed because client-side attacks

can quickly risk and compromise the critical data assets and

information. It is essential to test the susceptibility and

application network’s capability to identify and respond back

to the client-side attacks before the damage is irreversible.

Client level testing involves checking for following:

1. HTML Injection: HTML injection is injection

vulnerability in the web application that takes place when

a user can control an input parameter and is able to

perform the injection of any malicious HTML program

into a web page having this vulnerability. This web

application flaws/weakness takes place due to an

improper input validation and sanitization and improper

encoding of the output. The attacker performs an HTML

injection attack to send an arbitrary HTML page with

malicious intentions to the victim.

2. Client side URI redirection: Client-side URL redirection

is additionally referred to as open redirection. This type of

weakness or vulnerability exists in an application when it

allows all types of untrusted input consisting of an

external URL and doesn't perform any proper sanitization.

The inserted URL could result in redirection of the user to

a different page from the application, like a malicious web

page created and then controlled by an attacker.

3. Cross origin resource sharing: CORS could also be a

mechanism that enables an internet browser to perform

cross-domain requests of the XMLHttpRequest L2 API in

a very controlled manner. The XMLHttpRequest L1 API

solely allows requests to be sent inside the identical origin

as a result of it being restricted by the identical origin

policy. Cross-origin requests have an associated origin

header that identifies the domain initiating the request and

is usually sent to the server. CORS defines the protocol to

use between a web browser and a server to figure out

whether or not a cross-origin request is allowed. Access-

Control-Allow-Origin could also be a response header

utilized by a server to purpose that domain square

measure allowed to browse the response. The analyst

ought to rummage around for insecure configurations as

for example using a wildcard (* symbol) as worth of the

Access-Control-Allow-Origin header which implies all

domains square measure allowed. Another insecure

example is once the server returns the origin header with

none further checks, which could cause access of sensitive

information. Access-Control-Allow-Credential may well

be a vicinity of a pre-flight request indicating that the last

word request will embody user credentials.

4. Click jacking: It comes under the UI redressing method, it

is a malicious and complex attacking method whereby an

internet user is mislead to click on a particular link which

redirects to a webpage which looks similar what the user

is expecting with but this is eventually an attacker page

having the actual website as a part of its frame. The tester

tests this vulnerability by investigating whether it is

possible to load the target website in an inline frame of a

sample test html page.

5. Webs sockets: Web sockets works by enabling full-

duplex communication channel between the web client or

web server allowing the client and server to ensure

asynchronous communication. It is the server’s function

to perform verification of the Origin header in the Web

socket handshake of HTTP communication. Under this

• The tester should first perform the identification

of whether the application is using Web Sockets

by inspecting the code on the client-side for ws://

or wss:// URI scheme.

8

• In the Burp suite pro, with the help of a Web

socket client, try to connect to the remote Web

Socket server. If we observe the establishment of

a successful connection then it means that the

web server would not be able to perform the

validation of the origin header.

• Verify that Web Socket connection is making

use of secure socket layer (SSL) to transmit

sensitive information with wss://

6. Browser storage: Web browsers allow the functionality

for storage functionality in the client-side for developers

to perform the storage and the retrieval of data such as

local storage, session storage, IndexedDB, cookies, etc.

Testing should be conducted to work out whether the web

site is performing the storage of the data that is considered

too sensitive to be stored at the client side. The assessment

of storage object code handling should be done in order to

determine any injection attacks in future.

7. Web messaging: Web Messaging (also noted as Cross

Document Messaging) allows the web applications that

are running on multiple domains to intercommunicate

with each other in a secure manner. Before this was

introduced, the intercommunication of different origins

(between iframes, tabs and windows) was enforced

restrictions under the same origin policy and eventually

was checked by the web browser. After this, Cross

Document Messaging was originated and was

implemented altogether with multiple browsers. It ensures

the secure communications between origins across

iframes, windows and tabs are ensured with the assistance

of Cross Document Messaging. The messaging API

introduced the postMessage() method, with which plain-

text messages are going to be sent cross-origin. It contains

two input parameters: 1) message, and 2) domain. The

checks to be made in this are

• The tester should verify whether the application code

is performing the sanitization and processing of the

messages from only the acceptable and trusted

domains. Within the sending domain, also ensure that

the receiving domain is explicitly stated, which isn't

used because of the second argument of

postMessage().

• JavaScript code is recommended to be interpreted by

tester to perform the determination of the

implementation of web messaging and specifically,

testers should have an interest about how the target

website is forming a restriction on the messages that

are coming from unknown domains, and thus the

method in which the information is processed when

they are received from trusted domains.

8. Cross site script inclusion: Cross-Site Script Inclusion

(also popularly called XSSI) is a type of vulnerability that

results in the leakage of sensitive information across

origin or cross-domain boundaries. XSSI could be a

client-side attack almost like Cross-Site Request Forgery

(CSRF) but includes a different purpose. CSRF uses the

authenticated user to perform the execution of state-

changing functions inside a victim’s page (e.g. transfer

money to the attacker's account, modify privileges, reset

the password, etc.), XSSI instead uses JavaScript on the

client-side to leak sensitive data from authenticated

sessions. to check for XSSI:

• Identify of the endpoints accountable for sending

sensitive data, what parameters are required, and

identification of all relevant dynamically and

statically generated JavaScript responses using

authenticated user sessions.

• Determine whether the sensitive data are often leaked

using JavaScript via Global Variables, Global

function parameters, JavaScript Runtime errors, or

Prototype chaining using this.

4.2.3 Authorization testing

Authorization is the concept or process of allowing access

to the restricted resources to only those users that are permitted

to use them. For testing authorization settings or configuration

in the web application, tester first needs to understand how the

authorization process works, and then use that information to

plan for the attack on the application using the weak

configuration of the authorization mechanism. Authorization

is a concept that comes after a successful authentication

process, so the analyst will perform the verification of this

point after he has the valid user credentials, related to a well-

defined set of roles and privilege rights. During the testing of

this security control, it should be checked if it is possible to

perform the authorization schema bypass, find vulnerability in

the path traversal, or tester can also find different ways to

conduct the escalation of the privilege rights assigned to the

analyst. The tests for checking the Authorization and Identity

management are given below.

1. Account enumeration: Often web applications reveal

when a username exists on a system, either as a

consequence of misconfiguration or as a design decision.

For a case, sometimes, after we submit wrong credentials,

we receive a message that states that either the username

is present on the system or the provided password as

wrong. The data obtained is employed by an attacker to

realize an inventory of users on the system. This

information is often used to attack the web application, for

instance, through a brute force or default credentials

attack. The tester should interact with the authentication

mechanism of the application to grasp if sending a

particular request causes the application to answer in

several manners. This issue exists because the data

released from an online application or web server when

the user provides a legitimate username is different than

after they use an invalid one.

2. Privilege escalation: It takes place when a user can access

many other restricted resources or restricted

functionalities than they're normally allowed to access,

and such elevation or changes should be prevented by the

web application. In every portion of the applying where a

user can create data/information within the database (e.g.,

making a payment, adding or removing a contact, or

sending a message), can receive information (account

statement, order details, etc.), or delete information

(delete or drop users, delete messages), it is necessary to

record the functionality. The tester should attempt to

access such functions as another user so as to verify if it's

possible to access a function that ought to not be permitted

by the user's role/privilege (but can be permitted as

another user). If the tester is able to access such

functionalities with a user with the identical user role then

it becomes horizontal privilege escalation. If the functions

accessed by the analyst as a traditional user belong to a

better user role, then it becomes vertical privilege

escalation.

3. Insecure direct object reference: Insecure direct object

9

references vulnerability takes place when an application

provides direct access to things supported user-supplied

input. If this vulnerability exists in the web application,

then attackers can bypass authorization and access

resources within the system directly, for e.g. database

records or files. To test for this type of vulnerability the

tester must first plan all locations within the application

where user input is employed to reference objects directly.

For instance, locations where user input is employed to

access a database row, a file, application pages and more.

Next, the analyst should modify or change the parameter

value tied to reference objects and assess whether it is

possible to retrieve objects belonging to other users or

otherwise bypass authorization. As shown in Figure 3,

consider the sample request at a link

http://foo.bar/somepage?invoice=12345, in this case, the

worth of the invoice parameter is employed as an index in

an invoices table within the database. The analyst should

change the worth of invoice and check if the

corresponding invoice number details are displayed

within the application or not.

4. Directory traversal and file inclusion: Web servers and

web applications implement authentication mechanisms

to regulate access to files and resources. Web applications

use server-side scripts to incorporate different types of

files and manage images, templates, load static texts, etc.

But there also are security vulnerabilities if these input

parameters aren't correctly validated. In order to see

which part of the web application is liable to input

validation bypassing, the analyst must enumerate all parts

of the application that accept content from the user. Few

checks which will be performed here are:

• If there is any request parameters used for file related

operations.

• If there are any interesting variables

Figure 3. Insecure direct object reference (IDOR) attack

Figure 4. Directory traversal attack

As shown in Figure 4, the next stage of testing is analyzing

the input validation functions present within the web

application. To successfully test for this flaw, the analyst has

to have knowledge of the system being tested and also the

location of the files being requested. A couple of examples for

the following scenario are as follows:

http://example.com/getUserProfile.jsp?item=../../../../etc/pa

sswd

http://example.com/index.php?file=http://localhost:8080

5. Cross-site request forgery: As shown in the Figure 5,

Cross-Site Request Forgery (also popularly known as

CSRF) is a type of web security attack that forces a user

to execute unintended actions on an internet application

within which they are currently authenticated. In order to

test for CSRF vulnerability within the web application,

audit the web application to establish if its session

10

management is vulnerable. If session management relies

only on client side values (information available to the

browser), then the web application is vulnerable. Client-

side values refer to cookies and HTTP authentication

credentials (Basic Authentication and other sorts of HTTP

authentication; application-level authentication). To

perform the exploitation of the CSRF vulnerability, the

tester then searches for HTML forms within the

application and makes an HTML web page with some

hidden fields and hosts it on an area server. Submit such

WebPages after logging web application. If the page

submits the malicious request successfully, CSRF is

exploited.

6. Server side request forgery: As shown in the Figure 6,

Server-side request forgery (SSRF) is a type of web

security vulnerability that enables an attacker to mislead

the server-side application or web server to form a call

back connection to itself and in other cases also to the

other web-based services within the organization’s

infrastructure or to an external third-party system. Manual

detection of the Server-Side Request Forgery

vulnerability consists of making a careful analysis of the

HTTP Requests, taking the inputs parameters and headers

whose input values are whole or partial URL references

to other internal web resources within or external to the

web application.

4.2.4 Authentication testing

Authentication is the mechanism of attempting to perform

the verification of the digital identity of the sender in the

communication channel. A commonly used example of the

authentication process is the login mechanism. For testing the

authentication schema, tester need to first understand how the

authentication process works and use that information to

attack the authentication process considering its flaws and

weaknesses. However, most of the web applications have a

requirement to perform the authentication process to gain

access rights to any sensitive or private information or to

execute the tasks therefore not every authentication method is

able to provide suitable security to the application. For

performing the authentication testing, checks to be conducted

are as follows:

Figure 5. Cross site request forgery

Figure 6. Server-side request forgery (SSRF) attack

11

1. Credentials over an encrypted channel: Testing for

credentials in transit refers to the verification of the user's

authentication data being transmitted via an encrypted

channel (SSL/TLS) to avoid the data from being

intercepted by any intruders or malicious users. The

analysis focuses simply on trying to know if the

information travels unencrypted from the web browser to

the web server, or if the web application takes the

acceptable and required security measures by employing

a protocol like HTTPS. The fact that the network traffic is

in encrypted form does not necessarily mean that it is

completely safe.

2. Default Credentials: Web applications often make use of

popular and free or commercial software which has the

capability to be installed on web servers with minimal

configuration or any customization by the web server

administrator. This software even has default user

credentials for initial authentication and configuration

which are not changed by the application admins or

owners. After gathering enough information about it, the

tester can find and explore for administrative/login portals

and try brute forcing them with default user credentials

considering the exact software along with its version.

3. Weak logout mechanism: Account lockout mechanisms

are accustomed to preventing and mitigate the brute force

password guessing attacks. Accounts are typically locked

after 4 to 5 unsuccessful attempts for login and might only

be unlocked after a determined time slot with the help of

a self-service unlocks mechanism, or intervention by an

administrator. To assess the capability of the account

lockout mechanism to prevent brute force password

guessing, try to enter invalid login credentials by using the

incorrect password innumerable times, before using the

valid password to verify that the account was locked out.

4. Bypassing authentication schema: For testing the

authentication schema, you might require understanding

or prior knowledge of how the authentication mechanism

works and using that procedure information to bypass the

authentication process. There are several methods of

bypassing the authentication schema that is employed by

a web application that should be tested:

• Direct Page Request (Forced Browsing): If an online

application implements access control only on the

login page, the authentication schema is also

bypassed. As an example, if a user directly requests a

singular page via forced browsing, that page may not

check the credentials of the user before granting

access.

• Parameter modification: Another problem related to

authentication design is when the web application

verifies a successful login on the premise of a group

value parameter. A user could modify these

parameters to comprehend access to protected areas

without providing valid credentials.

• Session ID Prediction: Most commonly, web

applications make use of session identifiers or session

IDs to manage the authentication process. Therefore,

if session ID generation is predictable, a malicious

user can be ready to find a legitimate session ID and

gain unauthorized access to the application,

impersonating a previously authenticated user.

5. Insecure cache management: Testers need to make sure

the testing web application doesn't leak any sensitive

information into the browser cache. To do this, they'll

certify for each page that contains sensitive information

the server instructs the browser to not cache any data.

Such a directive should be issued within the HTTP

response headers with the subsequent directives:

Cache-Control: no-cache, no-store

Expires: 0

Pragma: no-cache

These directives are generally robust, although additional

flags for Cache-Control are also necessary such as:

Cache-Control: must-revalidate, max-age=0, s-maxage=0

6. Weak password policy: Testers must check for the

following to evaluate the health of the password policy

such as:

• Password complexity

• Minimum length of password

• Whether users can set the new password as the old

one

• Whether users are forced to change password after

password recovery when password is sent in plaintext

over Email/SMS

7. Weak password change: The forgot password and alter

password functionalities should be tested for the

following:

• Check if the change password functionality asks for

current password or not. If it doesn’t, there's a

prospect of CSRF attack.

• Check if the users can manipulate or subvert the

password change or reset process to vary or reset the

password of another user or administrator.

• Check if the password reset tool shows you the

password; this offers the attacker the flexibility to log

into the account, and unless the application provides

information about the last log within the victim

wouldn't know that their account has been

compromised.

4.2.5 Session testing

Web applications consist of implementations of different

processes and mechanisms for the storage and validation of the

user credentials for a predetermined time. This type of

mechanism is called Session Management. For testing the

session management mechanism, the tester needs to check

whether the session cookies and session tokens are being

created in a secure and unpredictable manner. During the

testing of session management functionality, the checks to be

conducted are as follows:

1. Session management schema: The analysis of the session

ID variables should be performed to determine presence

of easy to guess or predictable data patterns. Session ID

analysis could also be manually executed or by using

Burp Suite to conclude the similar data patterns within the

Session ID content. Manual checks should include

comparisons of Session IDs issued for the identical login

conditions – e.g., the identical username, password, and

IP address.

2. Cookie attributes: Cookie is a small text that resides on

clients’ desk. The attributes of a cookie to be tested are:

• Secure attribute: It is a cookie attribute that instructs

online browser to forward the browser cookie

considering that the HTTP request is being sent over

HTTPS (HTTPS over SSL). This will prevent the

browser cookies from being passed as requests in an

unencrypted form. Secure attribute of a cookie should

be set to true.

12

• HTTP Only attribute: This attribute is employed for

preventing attacks like session details exposure since

it does not allow the access to a cookie via JavaScript

which is a client side script. The HTTP Only attribute

of a cookie should be set to True.

• Domain attribute: This attribute is employed for

verifying the domain of the cookie against the

server’s domain to ensure that the HTTP request is

created.

• Path attribute: It plays a significant role in the scope

setting of the cookies in relation to the specific

domain. In addition to this, the path of the URL that

the cookie is valid for is to be mentioned explicitly.

The cookies will be sent inside the request if the path

and the domain are matched.

• Expires attribute: The Expires tag attribute is used

for:

- setting persistent cookies

- restrict the time span if the session exists for

a long span

- setting the browser cookie to a past date in

order that it gets deleted fast

3. Session fixation: Session Fixation vulnerability occurs

when a web application performs the user authentication

without performing the validation of the prevailing

session identifier, henceforth continuing with the use of

the same session identifier already assigned to the user in

the previous session. The tester should make sure that a

replacement session ID is issued upon a successful

authentication.

4. Logout functionality: Session termination may be a

crucial part of the session lifecycle. A secure session

termination requires a minimum of these next components:

• Logout UI (User Interface): Verification of the

functionality of the sign off option within program.

For the testing purpose, the tester should view every

web page from the perspective of a user who wants

to sign off from web application.

• Session Timeout: Analyst should verify whether the

application logs out a user due to lack of activity in

the web application for a specific period of time,

verifying that it should be considered unacceptable to

reuse same session and also to ensure that no data gets

stored in the web browser cache. The proper value of

the session timeout is dependent on the purpose of

web application and that a balance of security and

purposefulness is maintained.

• Server Side Session Termination: Primarily, the

cookie values should be stored in the browser that is

accustomed for session identification. Trigger the

exit function and analyse the application’s response

behaviour, specifically in the case of session cookies.

Observe and then navigate through the pages that are

only visible in an authenticated user’s session. It

should be ensured that no data should be accessible

by the unauthenticated users which are only

permissible to be viewed and accessed by an

authenticated user.

5. Session puzzling: This type of vulnerability takes place in

an application which makes use of the same session

cookie for multiple sessions. The attacker can easily

access the web pages in an order not predictable by the

application developers so that the session variable is ready

in one scenario then utilized in another scenario. This type

of vulnerability is identified and then taken advantage of

by the enumeration of all session variables employed by

the web application and in which situation they are

considered valid.

6. Concurrent user sessions: It is considered suitable to

recommend the applications for having user

functionalities that enable the real-time verification of

active sessions, monitoring and alerting the original users

regarding the concurrent login sessions and also provide

a facility for terminating the sessions remotely and

manually, also there should be tracking functionality of

the account activity record by keeping a record of many

client details such as IP address, user-agent, login date and

time, idle time, etc. The analyst can check the presence of

concurrent user sessions by logging in to the identical user

account from different browsers.

4.2.6 Input validation testing

Input validation, also popularly known as data validation, is

the testing technique done on any user-supplied input

parameter on the web application. Input validation should

mitigate any improper or inaccurately formed data from being

inserted or stored into the application’s information system.

Because it is typical to identify any malicious user who is

trying to attack software, web applications should verify and

perform the validation of all the input that is entered into the

web application. Input validation mechanism should take

place when input data is received from an external third party

and especially when the data is coming from an untrusted data

source. Injection attacks, memory leakage, and compromised

systems can be caused due to improper input validation. The

following are the checks to be conducted during input

validation testing.

1. Cross site scripting: There are mainly 3 types of Cross Site

Scripting which are as follows:

• Reflected XSS: As shown in Figure 7, reflected XSS

is a cross-site scripting attack which is very

commonly found in web applications. In the case of

website application that has the reflected xss

vulnerability, it will allow the passing of the input

data without any validation, and hence it will directly

be sent to the client via the requests. Attacker's script

or exploit code is most commonly found in Javascript,

VBscript, and ActionScript. Tester first verifies each

insertion point or input vector to detect any potential

XSS vulnerabilities. For detecting this type of

vulnerability, the tester will intend to make use of a

specially generated user input into every insertion

point (input field) that is present in the application.

• Stored XSS: As shown in Figure 8, Stored Cross-site

Scripting (XSS) is the most dangerous of all XSS

attacks. It is necessary for a web application to be

vulnerable to stored cross site scripting attack to be

able to allow users to store data. For testing the stored

XSS, the tester needs to perform the identification of

all insertion points for the user-supplied input data

that are being stored into the back-end server of the

web application and then they are being displayed by

the web application. Followed by this, the attacker

then inserts a specially crafted malicious javascript

input vector into all the identified insertion data

points.

13

Figure 7. Reflected XSS attack

Figure 8. Stored cross-site scripting attack

Figure 9. DOM based cross site scripting attack

• DOM-based XSS: As shown in Figure 9, DOM-based

cross-site scripting is a type of cross-site scripting

attack related to the DOM (Document Object Model).

This is a type of XSS vulnerability that is a result of

the content on the dynamic browser-side of the

javascript page taking the user data as input from the

browser application and then doing malicious

activities with it which might harm or affect the users

data due to the execution of JavaScript code that has

been injected into the application. The DOM based

XSS vulnerability exists in a web application when

the flow control of the program code is done by using

14

the DOM elements along with an exploit script by the

attacker to perform the modification of the

functionality of the application or in other words, the

flow control of the application.

2. HTTP verb tampering: For testing the HTTP Verb

tampering vulnerability, the tester performs the analysis

of the HTTP response from the web application to a

variety of request methods for accessing the system

objects. The tester should test this vulnerability by

accessing all of these system objects with all the possible

HTTP request methods for every single object that were

identified during the web application’s spidering process.

If the server at the web application allows the HTTP

request method other than POST or GET request method,

the test comes out to be a fail or the application is

considered safe from HTTP verb tampering, considering

that the test web application does not allow the other

HTTP request methods. The only remediation is to disable

the HTTP request methods other than the GET and POST

request methods to the web application servers.

3. HTTP parameter pollution: To test this vulnerability, the

tester tests by checking the web application's HTTP

response after receiving many HTTP parameters under

the same request method or same name; let us consider an

example in which the parameter userid is inserted in the

request parameters twice. Appending many HTTP

parameters with the same name may result in the wrong

interpretation of values by the application. With the help

of these vulnerabilities to conduct the exploitation, the

tester will be able to cause functional modifications or

errors in the internal parameters to bypass the mechanism

of input validation in the web application. The tester first

has to perform the identification of any form action that

allows the input of any invalidated user input data.

4. SQL injection: As shown in Figure 10, to perform the

testing of SQL injection vulnerability, the tester first

verifies whether they can inject any input into the web

application in order to perform the execution of a user-

controlled SQL query in the web application’s database.

The tester first checks if the application takes user input

without proper input validation and inserts it into the SQL

queries directly. For an SQL Injection attack to be

successful, it is necessary for an attacker to create an SQL

Query which is syntactically correct to fulfil his malicious

intentions. If an error message is returned by the web

application after the insertion of into the user supplied

input, generating a message stating an incorrect query,

then it might help the attacker to craft and modify the logic

of the existing application query. It helps the attackers to

perform the injection attack successfully. There are a

variety of methods that exist to perform the exploitation

of SQL injection vulnerability in the web applications

such as Union Operator, Blind SQL injection, Error based

injection, Boolean conditions based injection, Out-of-

band injection, and Time delay based injection.

Figure 10. SQL injection

Figure 11. LDAP injection

15

Figure 12. XXE injection

5. LDAP injection: As shown in the Figure 11, LDAP

injection is a type of vulnerability which exists in the

server side, and it is also popularly known as the server

side attack, which allows the disclosure, modification and

insertion of the sensitive information and data about the

users depicted in an LDAP tree structure. This is

performed by the manipulation of the input data

parameters which is then forwarded to the addition,

internal search and data modification functions. If a web

application makes use of an LDAP server to perform the

verification of the user credentials in the authentication

mechanism and if it is having LDAP injection

vulnerability, then the tester, we can conduct the bypass

of the authentication check mechanism by the injection of

an always true LDAP query into the existing query

similarly like SQL injection, XML injection, X-PATH

injection.

6. XML injection: XML Injection is a type of injection attack

which is done by an attacker by injecting any XML

(Extensive Mark-up Language) document into the

application and checks for process by application. If the

XML parser fails to perform the semantic verification of

the input data then the application will send back a

positive response and results in to successful attack. The

tester first checks for the presence of a XML Injection

vulnerability in the web application by inserting the XML

meta characters such as ‘, , <, >, <!--/→ in the data

insertion points. For example, consider that there exists an

attribute like the following in the web application:

<node attrib='$inputValue'/>

Considering the condition where if the inputValue = foo’ is

instantiated and then inserted as the attrib value shown as

below:

<node attrib='foo'/>

Then this XML document is not considered valid.

By defining the new entities, tester can extend the set of

valid entities. If URI is the entity definition, then the entity is

known as an external entity. External entities usually intend to

force the XML parsers for the purpose of accessing the URI

specified resources, e.g., a file on a remote system or the local

machine. As shown in Figure 12, this configuration makes the

application vulnerable to XXE attacks (External XML Entity),

which can in turn, be used to perform DOS attack on the local

system to gain unauthorized access to perform unauthorized

activities like accessing the files on the local machine or a

remote system, scanning the remote machines, and perform

DOS on the remote systems.

7. SSI injection: SSI Injection, also known as Server-Side

Includes injection, is special directives that are parsed by

the web server before forwarding this page to the user.

Appending an SSI directive into a static HTML document

can be done by the following: -

<!--#echo var=DATE_LOCAL →

to print the current date and time.

The first thing that is done by the tester while testing for an

SSI Injection vulnerability is to check whether the web server

supports SSI directives or not. Followed by the tester tries to

find the page in the web application where the insertion point

is present in order to submit any input data, then tester

performs a verification of whether the application has

implemented a proper input validation mechanism.

8. XPATH injection: XPath is a type of programming

language that is specifically designed for the purpose of

addressing various sections of a document in an XML

format. To perform the XPath injection testing, it is first

checked whether injection can be done with the XPath

query into the HTTP request that is going to be read or

interpreted by the application, hence this allows the tester

to execute the user-controlled XPath queries. After the

successful exploitation of this vulnerability, it becomes

possible for the tester to perform the authentication

mechanism bypass and then gain the access to the

restricted information without any authorization.

9. IMAP/SMTP injection: The purpose of performing this

test is to check whether anyone can perform the injection

of any arbitrary IMAP/SMTP exploit payload commands

and send it to the mail servers due to improper sanitization

of the input data. This type of injection attack allows the

unauthorized access to the mail server which should not

be accessed from the Internet directly. The tester’s role is

to perform the analysis of the application’s capability in

the input data handling in order to detect the vulnerable

input parameters. It is necessary for the tester to send a

malicious request to the web application server during the

input validation testing phase and then perform an

16

analysis of the response. Finally, after the identification of

all the vulnerable parameters, the tester needs to perform

the determination of the level of injection that is possible

in the application and further exploit the application by

designing the test plan.

10. Code injection: To perform the testing of code injection,

the tester need to perform the submission of the input data

to be dynamically processed by the application’s web

server. These types of tests can target different types of

scripting engines present in the server-side, e.g.., ASP,

JSP and PHP. In order to protect against these types of

attacks, secure coding practices and proper input

validation is required.

11. Command injection: Command injection, also popularly

known as an OS command injection, is a type of attack

which takes place through a web application interface by

executing the OS commands on the web application

server. The web interface is known to be vulnerable to this

type of exploit if it is not properly sanitized. The tester

will test if this vulnerability exists in the application or not

by injecting an OS exploit payload or command to the

web application with the help of an HTTP request.

12. HTTP splitting/smuggling: HTTP splitting and smuggling

details are as follows:

HTTP Splitting: HTTP Splitting is a type of vulnerability

that performs the exploitation of the lack of sanitization of

input by allowing an intruder to do the insertion of CR and LF

(Carriage Return and Line Feed) characters into the response

headers of the web application and to perform the 'splitting' of

the HTTP response into two different parts of the HTTP

response body. The headers that are most likely to be used by

an attacker for conducting this attack are Set-cookie and

Location header. The analyst must first detect all the identify

all the insertion points present in the application that will

directly affect the HTTP response headers, and then perform

the verification of whether the insertion of a CR+LF sequence

was successful or not.

HTTP Smuggling: HTTP Smuggling is a type of

vulnerability that involves different techniques in which a

modified HTTP message body can be successfully parsed and

then understood by various types of web browser agents or

WAF (Web Application Firewall). This attack technique

allows the attacker to send one type of request to one device

while the other device receives a different type of request.

HTTP Request smuggling further provides the facilitation of

several possible exploitations like XSS, partial cache

poisoning and also bypassing the firewall protection.

13. Host header injection: The main reason why the host

header exists is there are situations when there are

multiple web applications hosted on the same IP address

by the single web server. The HTTP header (or host

header) mentions explicitly the website or web

application to perform the incoming HTTP/HTTPS

request processing. The host header value is used by the

web application server for forwarding the HTTP request

to the specified web application. The tester checks for the

proper validation of the value of this header field by

providing another domain in the host header request field.

This type of injection attack turns out to be successful

when the web application server performs the input

processing to send the request to a host controlled by an

attacker. Web cache poisoning, Web cache deception and

password reset poisoning can be performed by host header

injection.

14. Server side template injection: SSTI vulnerabilities occur

when the user supplied input data is integrated into the

server-side template of the application in an insecure way

this improper function setting on the server can cause a

remote code execution. Server side template injection

vulnerabilities are present in both text and programming

language format. In normal text format, users can insert

any type of text within the HTML program. Considering

the programming language format, the user supplied input

data must be inserted inside a template code statement. In

both the cases the methodology for testing this

vulnerability consist of the following steps:

• Detection of the insertion points in the application

vulnerable to template injection

• Identification of the application’s template engine

• Creating an exploit code for the vulnerability

exploitation

15. CSV injection: It is a type of injection attack that takes

place when the web applications embed the untrusted

input inside CSV files. CSV injections are also popularly

known as the formula injection. Microsoft Excel or

LibreOffice Calc which is a spreadsheet program can be

used to open a CSV file, so any cells starting with ‘=’ will

be understood by the software as a formula. The tester can

check for CSV injection in web applications which have

the functionality of generating and exporting the files of

CSV format of user supplied data or user input.

16. Rate limiting: Rate Limiting, also popularly known as

request limiting, is primarily used for controlling the

amount of incoming and outgoing traffic to or from the

server or network. Implementation of the limit on

upcoming requests to the server is to allow for a better

flow of data and to increase the security by preventing

attacks such as Distributed DoS attack. Rate Limiting can

be checked in the following components:

• HTML Forms: Any application having login forms,

contact forms, registration forms, feedback forms,

submission forms, etc., need to be checked.

• Emails: Any application having send email

functionality can be verified for request limiting.

• OTPs: Any application having OTP functionality can

also be tested for request limiting.

4.2.7 Business logic testing

For testing the flaws present in the business logic of a multi-

functional dynamic web application, it requires

unconventional method. If an application's authentication

mechanism is developed with the intention of performing a

standard procedure following the same steps again and again

in a specific order to authenticate a user, the pattern become

predictable by any potential attacker and then they might be

able to mess up with the actual web application logic and

framework. For conducting these tests, the testers to think

differently, develop abused and misuse cases or in other words,

attack scenarios and use multiple testing techniques followed

by the software functional testers. The application must be

able to have a functionality to check whether logically valid

data is being directly sent to the front end and the server side

of an application. Some of the web controls or testing

indicators for the business logic testing is as follows

1. Unrestricted file upload: The file upload functionality can

pose a considerable risk or threat to the web applications

if the file uploaded by any anonymous user turns out to be

malicious after uploading it to the web servers or the

17

application servers. The primary step in the invalidated

file upload functionality attacks is to send the malicious

code to the target system. In order for this harmful attack

to be successful, the attacker needs to find a way to get the

code executed at the user’s end. One of the most important

factors while testing this vulnerability is to check what the

application does with the file which is being uploaded,

where it is stored and how it will be executed.

The security analyst should ensure if the application has the

file upload functionality, then it should not allow the uploads

of files having malicious extensions that are not relevant to the

application’s intended functionality. The analyst should also

find ways to test if it is possible to bypass any filtering that the

developer might have employed in the application’s file

upload functionality in order to mitigate and avoid any

unwanted file uploads. The analyst performs the front-end

(graphical user interface) functional valid testing to check that

only the valid values are accepted in the application. Next, the

analyst looks for variables where the insertion points take the

cost or quality values. After the insertion points are found, the

tester starts with the interrogation of the input fields with

logically invalid data like unique identifiers. Tester has to

check if they are working properly or not and that it does not

accept any logically invalid data.

5. GUIDELINES IN CONDUCTING VPAT PROCESS

This section presents the do’s and don’ts during the general

assessment and technical assessment of web applications.

General assessment is the code inspection and walkthroughs

held during the development of code. Technical assessment (or

specific) inspection focuses on specific possible vulnerability

of the web application and will be tested while running the

program.

5.1 Do’s & don’ts during the general assessment

Do’s

• Test all parameters for different kinds of attacks

• Tamper the Request headers and test.

• On a UAT (User Acceptance Test), dev instances must

use tools like nikto, dirb etc. Observe if any critical details

are being reflected anywhere or are using encoding such

as base64.

Don'ts

• On a production environment don’t test for rate limiters

with large threads as it might cause a DOS attack.

• Don’t reveal the vulnerability to any other person or take

advantage of it for prank or own benefit

• Running automated scans on production environments,

even Burp scans, should be avoided.

• Avoid Spidering/Crawling on POST requests in critical

applications.

• Changing another user’s data (even on UAT it should be

avoided)

• If gained remote access by any means, just run basic

commands for POC like whoami, hostname etc. Do not

enumerate all files/folders on the server. Do not execute

any harmful commands like deleting files, opening a

remote port that may open a backdoor for others.

5.2 Do’s & don’ts during the vulnerability specific

assessment

Table 1 presents the list of Do’s and Don’ts during the

vulnerability specific assessment.

Table 1. Do’s and Don’ts during the vulnerability specific assessment

S.No. Vulnerability Do’s Don’ts

1. SQL Injection

In a black box test on a production environment just check SQL

injection using time delay to confirm time-based SQL injection, error

to confirm error based SQL Injection

Don’t use any payload which deletes / updates /

inserts any new record in the existing tables of

database.

In a grey box test on a UAT environment try to extract database name

or version number as a POC
Don’t drop any table

In a grey box test on a UAT environment try to attain Remote Code

Execution. After RCE, don’t enumerate everything; instead run

whoami and hostname to gain information.

On a production environment don’t try to extract

data from existing database tables or try to get

Remote Code Execution

If above test fail try to test Double query and Second Order SQL

Injection

Don’t execute harmful commands after gaining shell

like shut down, or opening a port and creating a

backdoor.

2.
Cross Site

Scripting

Check for any user input that is being reflected in the response/ at

some different page. If anything is being reflected in the response try

to add a JavaScript code

(example: <script>alert(1)</script>)

In a production environment don’t fuzz the

parameters with a list of XSS payloads as it can lead

to unwanted payloads getting stored in the website.

Also it would generate huge traffic.

If there exits places where images can be uploaded, try uploading

malicious svg files with JavaScript code embedded.

Be careful with Stored XSS on production. After

taking POC modify the entity to clear off the script.

If not possible then intimate client for the same so

that other user’s do not get unnecessary pop ups

3.
Cross Site

Request Forgery

Intercept the requests of some actionable items on the website and

verify the presence of an anti CSRF token. If the token is not present

generate a CSRF POC using Burp Suite

During assessment on a production environment do

not delete/add/modify any file or perform any action

which harms the website.

If the CSRF token is present, try to bypass it by removing the token,

adding any random value of the same characters or look if a sequence

is being followed.

On Production, don't change the sensitive field. Do

it for non-sensitive fields for POC.

18

4.

Missing SPF /

DMARC

Records

For testing purpose use tools like spoofcheck.py

Do not send mail to any other person even for testing

purposes by exploiting the misconfigured

SPF/DMARC records.

If either of the two - SPF or DMARC records is / are found to be

missing then try to send a mail from a spoofed fictitious email of a

website that is being tested (example: admin@website.com) to your

email id.

5.
XML External

Entity Injection

Test for XXE wherever the request body contains XML. Try to craft

payloads of XML by which either some information is leaked through

response in the error or

Do not try the Billion laugh attack or any such xxe

attack which can harm / compromise the server.

6. Click Jacking
If there are any pages on the website that has important input fields,

load that page in an iframe

7.
Invalidated File

Upload

Try to upload file other than the expected file type (example -

uploading PHP, html, JS files in place where image is expected) and

navigate to the URL of the upload file to see if it is executed

On a production environment, do not upload a

reverse/bind shell or any other type of file that can

harm the infrastructure of the website

Try to bypass the file upload check using double extension on a file

to be uploaded

On a production environment do not upload very

large files as it might caught DoS on the website

Try to use Magic bytes of a valid file type (expected file type) and

contents of a file we want to be uploaded (example - contents of a

PHP file like :

<? php echo hello?>)

If any harmful file gets uploaded make sure to

intimate the team to delete those files later.

In a UAT environment if an invalidated file is uploaded successfully,

try to upload a reverse/bind shell and see if it gets executed.

8.
Lack of Request

Limiters

It should be tested wherever there is a function of sending an OTP or

Email.

Do not provide email or mobile number of some

other person while testing

For a black box test try only with 10 -15 requests in intruder with a

single thread set in Burp intruder options.

In a production environment do not send multiple

requests using multiple threads, as it might cause a

DoS attack

For a grey box test on a UAT environment try with 100 requests with

5 threads set in Burp intruder options

For testing rate limiters on POST fields, do not over

populate the database. Send minimal requests

necessary for POC.

9. LFI / RFI

In a grey box test on a UAT environment, in every parameter try to

traverse directories and see if any file’s content can be used. Use

payloads like (../../../etc/passwd if on a linux system)

If config files are obtained, make sure to obfuscate

passwords in report.

In parameters try to access files from some other domain. If you are

able to access then it is vulnerable to RFI

10. Slow HTTP DoS
Use tools like slowloris/slowhttptest to check for the following

vulnerability.

Don’t test this on a production website.

Do not put the script in an infinite loop. Causing

many open connections, Stop the script once POC is

taken.

11.
Host Header

Injection

On intercepting the request using Burp Suite tamper with the Host

header value and instead provide some other domain.

If on forwarding the request, the Location header in the Response

shows the tampered website, it shows that site is vulnerable to this

attack.

While testing don’t redirect to any website, redirect

to a domain that belongs to you.

Try changing HTTP/1.1 to HTTP/1.0 and completely remove the

Host Header. After forwarding the request, check if the Location

parameter in the Response header shows some private IP

Do not try to reset any legitimate user’s password

(by email) by host header injected request.

Try adding X-Forwarded-Host Header in the captured request and add

a domain that belongs to you. After forwarding the request, check

whether the Location header in the Response has the domain that was

entered in X-Forwarded-Host header in the request.

6. CONCLUSION AND FUTURE WORK

In this paper, the main emphasis made on the most common

vulnerabilities found in the web applications.

The paper also discusses in detail about the tools that can be

used for automated testing such as Nmap, Acunetix, Nessus,

OWASP ZAP, Dirbuster and many other such tools. The most

common and popular tool used for penetration testing is tested

by the white hat hackers/security analysts using automated and

manual testing procedures. The paper provides the security

testing techniques that can be done on any web application in

an ethical way. The testing techniques are broadly categorized

into two types, Black box and Gray box testing. This paper

concludes that vulnerability assessment is the identification of

the security vulnerabilities and penetration testing is the real

time simulation of how an actual exploitation or attack will

take place when the weakness, misconfiguration or security

flaw existing in the web application. Burp Suite Professional.

It can be used for manual exploitation as well as automated

crawl and auditing of the web applications. This paper also

suggested many burp extensions that can be installed in Burp

Suite and can be helpful during the VAPT. Tools which can be

helpful for manual exploitation are Metasploit, Wireshark,

Burp Suite and many such tools. This paper concludes that

VAPT is highly recommended to be performed in every

organization as nowadays the data is stored on the internet, and

this can pose a threat to the organizations reputation or money

if any attack takes advantage of the security flaws existing in

the organizations network. As a future work, we attempt to

work on the VAPT process of mobile applications.

19

ACKNOWLEDGMENT

Authors would like to thank Team Lead at Safe Security Pvt.

Ltd, Okhla, Delhi, India. (Formerly Lucideus Technologies

Pvt Ltd) for providing supporting environment for conduction

of this study.

REFERENCES

[1] Goutam, A., Tiwari, V. (2019). Vulnerability assessment

and penetration testing to enhance the security of web

application. 2019 4th International Conference on

Information Systems and Computer Networks (ISCON),

pp. 601-605.

https://doi.org/10.1109/iscon47742.2019.9036175

[2] Kuruwitaarachchi, N., Abeygunawardena, P.K.W.,

Rupasingha, L., Udara, S.W.I. (2019). A systematic

review of security in electronic commerce- threats and

frameworks. Global Journal of Computer Science and

Technology, 33-39.

https://doi.org/10.34257/gjcstevol19is1pg33

[3] Kashif, M., Javed, M.K., Pandey, D. (2020). A surge in

cyber-crime during COVID-19. Indonesian Journal of

Social and Environmental Issues (IJSEI), 1(2): 48-52.

https://doi.org/10.47540/ijsei.v1i2.22

[4] Foregenix Survey: https://www.foregenix.com/blog

/over-75-of-global-magento-websites-at-high-risk-from-

hackers-due-to-a-simple-security-oversight, accessed on

9 Aug. 2021.

[5] Humayun, M., Niazi, M., Jhanjhi, N., Alshayeb, M.,

Mahmood, S. (2020). Cyber security threats and

vulnerabilities: A systematic mapping study. Arabian

Journal for Science and Engineering, 45(4): 3171-3189.

https://doi.org/10.1007/s13369-019-04319-2

[6] Asaduzzaman, M. (2020). Security Aspects of e-

Payment System and Improper Access Control in

Microtransactions (No. 3717). EasyChair. Available at:

https://yahootechpulse.easychair.org/publications/prepri

nt_download/ZFhp.

[7] Pentest monkey. http://pentestmonkey.net/, accessed on

15 Aug. 2021.

[8] Seng, L.K., Ithnin, N., Said, S.Z.M. (2018). The

approaches to quantify web application security scanners

quality: A review. International Journal of Advanced

Computer Research, 8(38): 285-312.

https://doi.org/10.19101/ijacr.2018.838012

[9] Toch, E., Bettini, C., Shmueli, E., Radaelli, L., Lanzi, A.,

Riboni, D., Lepri, B. (2018). The privacy implications of

cyber security systems. ACM Computing Surveys, 51(2):

1-27. https://doi.org/10.1145/3172869

[10] Thomas, T.W., Tabassum, M., Chu, B., Lipford, H.

(2018). Security during application development.

Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems.

https://doi.org/10.1145/3173574.3173836

[11] Vamsi, P.R., Jain, A. (2021). Practical security testing of

electronic commerce web applications. International

Journal of Advanced Networking and Applications,

13(1): 4861-4873.

https://doi.org/10.35444/IJANA.2021.13109

[12] P Raghu Vamsi, A.J. (2021). Getting started with android

mobile applications security testing. Scientific and

Practical Cyber Security Journal. (Available at:

https://journal.scsa.ge/papers/getting-started-with-

android-mobile-applications-security-testing/).

[13] Devi, R.S., Kumar, M.M. (2020). Testing for security

weakness of web applications using ethical hacking.

2020 4th International Conference on Trends in

Electronics and Informatics (ICOEI) (48184), pp. 354-

361. https://doi.org/10.1109/icoei48184.2020.9143018

[14] Priyanka, A.K., Sai Smruthi, S. (2020). Web application

vulnerabilities: Exploitation and prevention. 2020

International Conference on Electrotechnical Complexes

and Systems (ICOECS), pp. 729-734.

https://doi.org/10.1109/icoecs50468.2020.9278437

[15] Amin, K., Sharma, P. (2020). Red team analysis of

information security measures and response. Available

https://www.academia.edu/download/64372201/IRJET-

V7I4823.pdf.

[16] Vats, P., Mandot, M., Gosain, A. (2020). A

comprehensive literature review of penetration testing &

its applications. 2020 8th International Conference on

Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), pp. 674-680.

https://doi.org/10.1109/icrito48877.2020.9197961

[17] Umrao, S., Kaur, M., Gupta, G.K. (2016). Vulnerability

assessment and penetration testing. International Journal

of Computer and Communication Technology, 200-203.

https://doi.org/10.47893/ijcct.2016.1367

[18] Khera, Y., Kumar, D., Sujay, Garg, N. (2019). Analysis

and impact of vulnerability assessment and penetration

testing. 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing

(COMITCon).

https://doi.org/10.1109/comitcon.2019.8862224

[19] Hasan, A., Meva, D. (2018). Web application safety by

penetration testing. International Journal of Advanced

Studies of Scientific Research, 3(9). Available:

https://www.academia.edu/download/58290599/SSRN-

id3315587.pdf.

[20] Yaqoob, I., Hussain, S.A., Mamoon, S., Naseer, N.,

Akram, J., UR Rehman, A. (2017). Penetration testing

and vulnerability assessment. Journal of Network

Communications and Emerging Technologies (JNCET),

7(8): 10-18. Available at:

https://www.jncet.org/Manuscripts/Volume-7/Issue-

8/Vol-7-issue-8-M-03.pdf.

[21] Hasan, A.M., Meva, D.T., Roy, A.K., Doshi, J. (2017).

Perusal of web application security approach. 2017

International Conference on Intelligent Communication

and Computational Techniques (ICCT), pp. 90-95.

https://doi.org/10.1109/intelcct.2017.8324026

[22] Hussain, M.Z., Hasan, M.Z., Taimoor, M., Chughtai, A.,

Taimoor, M., Chughtai, A. (2017). Penetration testing in

system administration. International Journal of Scientific

& Technology Research, 6(6): 275-278. Available:

https://www.ijstr.org/final-print/june2017/Penetration-

Testing-In-System-Administration.pdf.

[23] Haque, M.F., Miah, M.B.A., Masud, F.A. (2017).

Enhancement of web security against external attack.

European Scientific Journal, 13(15): 228.

https://doi.org/10.19044/esj.2017.v13n15p228

[24] Nagpure, S., Kurkure, S. (2017). Vulnerability

assessment and penetration testing of web application.

2017 International Conference on Computing,

Communication, Control and Automation (ICCUBEA).

https://doi.org/10.1109/iccubea.2017.8463920

20

https://doi.org/10.1145/3172869

[25] Shinde, P.S., Ardhapurkar, S.B. (2016). Cyber security

analysis using vulnerability assessment and penetration

testing. 2016 World Conference on Futuristic Trends in

Research and Innovation for Social Welfare (Startup

Conclave).

https://doi.org/10.1109/startup.2016.7583912

[26] Nyambo, D., Yonah, Z., Tarimo, C. (2016). On the

identification of required security controls suitable for

converged web and mobile applications. International

Journal of Computing and Digital Systems, 5(1).

https://doi.org/10.12785/ijcds/050105

[27] Singh, H., Surender, J., Pankaj, K.V. (2016). Penetration

testing: Analyzing the security of the network by

Hacker’s mind. Volume V IJLTEMAS, 56-60.

https://www.academia.edu/download/46153650/56-

60.pdf.

[28] Goel, J.N., Mehtre, B.M. (2015). Vulnerability

assessment & penetration testing as a cyber defence

technology. Procedia Computer Science, 57: 710-715.

https://doi.org/ 10.1016/j.procs.2015.07.458

[29] Lamba, A. (2014). Cyber Attack prevention using VAPT

tools (vulnerability assessment & penetration testing).

Cikitusi Journal for Multidisciplinary Research, 1(2).

http://www.cikitusi.com/gallery/9-996.pdf.

[30] Shah, S., Mehtre, B.M. (2014). An overview of

vulnerability assessment and penetration testing

techniques. Journal of Computer Virology and Hacking

Techniques, 11(1): 27-49.

https://doi.org/10.1007/s11416-014-0231-x

[31] Shah, S., Mehtre, B.M. (2013). A reliable strategy for

proactive self-defence in cyber space using VAPT tools

and techniques. 2013 IEEE International Conference on

Computational Intelligence and Computing Research.

https://doi.org/10.1109/iccic.2013.6724216

[32] Lallie, H.S., Shepherd, L.A., Nurse, J.R.C., Erola, A.,

Epiphaniou, G., Maple, C., Bellekens, X. (2021). Cyber

security in the age of COVID-19: A timeline and analysis

of cyber-crime and cyber-attacks during the pandemic.

Computers & Security, 105: 102248.

https://doi.org/10.1016/j.cose.2021.102248

[33] Kumar, B., Roy, S. (2021). An empirical study on

usability and security of E-commerce websites.

Advances in Intelligent Systems and Computing, 735-

746. https://doi.org/10.1007/978-981-15-7527-3_69

[34] Toapanta Toapanta, S.M., Mera Caicedo, H.A., Naranjo

Sanchez, B.A., Mafla Gallegos, L.E. (2020). Analysis of

security mechanisms to mitigate hacker attacks to

improve e-commerce management in ecuador. 2020 3rd

International Conference on Information and Computer

Technologies (ICICT).

https://doi.org/10.1109/icict50521.2020.00044

[35] Khera, Y., Kumar, D., Sujay, Garg, N. (2019). Analysis

and impact of vulnerability assessment and penetration

testing. 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing

(COMITCon).

https://doi.org/10.1109/comitcon.2019.8862224

[36] Rahman, M.A., Amjad, M., Ahmed, B., Siddik, M.S.

(2020). Analyzing web application vulnerabilities.

Proceedings of the International Conference on

Computing Advancements.

https://doi.org/10.1145/3377049.3377107

[37] Lis, A. (2019). Comparison and analysis of web

vulnerability scanners (Bachelor's thesis).

https://elib.uni-

stuttgart.de/bitstream/11682/10634/1/bachelorthesis_ale

xander_lis.pdf.

[38] Abdullah, H.S. (2020). Evaluation of open source web

application vulnerability scanners. Academic Journal of

Nawroz University, 9(1): 47.

https://doi.org/10.25007/ajnu.v9n1a532

[39] Amankwah, R., Chen, J., Kudjo, P.K., Towey, D. (2020).

An empirical comparison of commercial and open‐

source web vulnerability scanners. Software: Practice

and Experience, 50(9): 1842-1857.

https://doi.org/10.1002/spe.2870

[40] Pan, Y. (2019). Interactive application security testing. In

2019 International Conference on Smart Grid and

Electrical Automation (ICSGEA), pp. 558-561.

https://doi.org/10.1109/icsgea.2019.00131

[41] Vega, E.A.A., Orozco, A.L.S., Villalba, L.J.G. (2017).

Benchmarking of pentesting tools. International Journal

of Computer and Information Engineering, 11(5): 602-

605. https://doi.org/doi.org/10.5281/zenodo.1130587

[42] Building a Pentesting Lab. (2020). The Pentester

Blueprint, 65-81.

https://doi.org/10.1002/9781119684367.ch5

[43] Felderer, M., Büchler, M., Johns, M., Brucker, A.D.,

Breu, R., Pretschner, A. (2016). Security testing: A

survey. In Advances in Computers, 101: 1-51.

https://doi.org/10.1016/bs.adcom.2015.11.003

[44] Sołtysik-Piorunkiewicz, A., Krysiak, M. (2020). The

cyber threats analysis for web applications security in

Industry 4.0. Studies in Computational Intelligence, 127-

141. https://doi.org/10.1007/978-3-030-40417-8_8

[45] Dang, Q.H. (2015). Secure Hash Standard.

https://doi.org/10.6028/nist.fips.180-4.

[46] Common Vulnerabilities and Exposures. Available

online: https://cve.mitre.org/, accessed on 15 Aug. 2021.

[47] Rahalkar, S. (2020). Extending burp suite. A Complete

Guide to Burp Suite, 131-145.

https://doi.org/10.1007/978-1-4842-6402-7_9

[48] GitHub, I. (2016). GitHub. URl: https://github.com/,

accessed on 15 Aug. 2021.

[49] Kali Linux. URl: https://kali.org/, accessed on 15 Aug.

2021.

[50] Parrot Security. URl: https://parrotlinux.org/, accessed

on 15 Aug. 2021.

[51] Security Onion. URl: https://securityonion.net/, accessed

on 15 Aug. 2021.

[52] Sy, E., Mueller, T., Burkert, C., Federrath, H., Fischer,

M. (2020). Enhanced performance and privacy for TLS

over TCP fast open. Proceedings on Privacy Enhancing

Technologies, 2020(2): 271-287.

https://doi.org/10.2478/popets-2020-0027

[53] Mendez, X. Wfuzz—The Web Fuzzer. Available online:

https://github.com/xmendez/wfuzz, accessed on 15 Aug.

2021.

[54] Exploit database. https://www.exploit-db.com/, accessed

on 15 Aug. 2021.

[55] Klein, A. (2008). Attacks on the RC4 stream cipher.

Designs, Codes and Cryptography, 48(3): 269-286.

https://doi.org/10.1007/s10623-008-9206-6

[56] Alenezi, M., Nadeem, M., Asif, R. (2021). SQL injection

attacks countermeasures assessments. Indonesian

Journal of Electrical Engineering and Computer Science,

21(2): 1121-1131.

https://doi.org/10.11591/ijeecs.v21.i2.pp1121-1131

21

[57] Fossati, T., Tschofenig, H. (2016). Transport layer

security (TLS)/datagram transport layer security (DTLS)

profiles for the internet of things. Transport.

https://doi.org/10.17487/rfc7925

[58] Viega, J., Messier, M., Chandra, P. (2002). Network

security with openSSL: cryptography for secure

communications. " O'Reilly Media, Inc.".

[59] Pentester Land. https://pentester.land/, accessed on 15

Aug. 2021.

[60] Harris, J.K. (2018). Heartbleed: A case STUDY. Issues

in Information Systems, 19(2):

https://doi.org/10.48009/2_iis_2018_99-108

[61] Calzavara, S., Roth, S., Rabitti, A., Backes, M., Stock, B.

(2020). A tale of two headers: A formal analysis of

inconsistent click-jacking protection on the web. In 29th

{USENIX} Security Symposium ({USENIX} Security

20), 683-697. Available at:

https://www.usenix.org/system/files/sec20fall_calzavara

_prepub.pdf.

LIST OF ABBREVIATIONS

API Application Programming Interface

ARP Address Resolution Protocol

ASVS Application Security Verification Standard

CIA Confidentiality Integrity and Authentication

CLI Command Line Interface

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheets

CRLF Carriage Return and Line Feed

CVE Common Vulnerabilities and Exposure

CVSS Common Vulnerability Scoring System

DHCP Dynamic Host Configuration Protocol

DMARC Domain Based Message Authentication

Reporting

DNS Domain Name Server

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ID Identifier

IDS Intrusion Detection System

IMAP Internet Message Access Protocol

IP Internet Protocol

IPS Intrusion Prevention System

ISS Internet Security Scanner

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

LFI Local File inclusion

MASVS Mobile Application Security Verification

Standard

MITRE MITRE Adversarial Tactics, Techniques, and

Common Knowledge

ORM Object Relational Model

OS Operating System

OSI Open System Interconnection

OSINT Open-source intelligence

OTP One Time Password

OWASP Open Web Application Security Project

POC Proof of Concept

PT Penetration Testing

RARP Reverse Address Resolution Protocol

RATS Remote Access Trojan

SANS SysAdmin, Audit, Network and Security

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Mail Protocol

SOAP Simple Object Access Protocol

SPF Sender Policy Framework

SQL Structured Query Language

SSI Server Sides Include

SSL Secure Sockets Layer

SSTI Server-Side Template Injection

SWAAT Securing Web Application Technologies

TCP Transfer Control Protocol

TLS Transport Layer Security

UAT User Acceptance Test

URI Uniform Resource Identifier

URL Uniform Resource Locator

VA Vulnerability Assessment

VAPT Vulnerability Assessment and Penetration

Testing

WAF Web Application Firewall

WASC Web Application Security Consortium

WSDL Web Services Description Language

XML Extensive Markup Language

XSS Cross Site Scripting

XXE External XML Entity

ZAP Zed Attack Proxy

22

