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A numerical study was carried out to investigate the laminar flow of Bingham fluid through 

an axisymmetric sudden expansion of four aspect ratios and various values of Reynolds 

number between [50~200] and Bingham number [0~2]. By using the commercial code 

Ansys-Fluent, this paper focuses on presenting Bingham's flow through an axisymmetric 

sudden expansion to determine the length and intensity of recirculation zones and shed 

light on the local loss coefficient. The results show an increase in the reattachment length 

and the eddy intensity of the recirculation zones by increasing the Reynolds number and 

the aspect ratio and decreasing with increasing the Bingham number and vice versa, the 

local loss coefficient increases as the aspect ratio increases for the Newtonian fluid this 

effect is reflected in the Bingham fluid, the increase of the Bingham number also increases 

the local loss coefficient, dimensionless equations has built to predict all the reattachment 

lengths, the eddy intensity and the local loss coefficient. 

Keywords: 

laminar flow, viscoplastic fluid, sudden 

expansion, local loss coefficient 

1. INTRODUCTION

The design of the industrial installation in the oil and gas 

processes requires knowledge of the pressure loss through the 

installation, the existence of fittings, valves and the sudden or 

gradual changes in the cross section of the duct that produces 

pressure drop. 

Evaluation of pressure loss through the sudden expansion 

requires the determination of the friction coefficient K, which 

is calculated from the experimental measurement. In the 

literature, two equations are frequently common to elbows of 

(45°, 90°, and 180°), tee and valves. The first is suggested by 

Hooper [1]. 
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Further, Darby [2] improves the accuracy of the pressure 

loss calculation by taking size changes into account and 

developing the three Ks method; 
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Another approach bases on a numerical result proposed by 

Oliveira and Pinho [3] relating the coefficient K with the 

Reynolds number in the sudden expansion, in their works, for 

a Newtonian fluid [4] they’re varying the aspect ratio and 

developed an expression to predict the friction coefficient 

through the sudden expansion. 

The mi coefficients in the following expression were given 

as a function of the aspect ratio. 
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The yield stress fluid was investigated by Kfuri et al. [5] 

through 1:2.6 and 1:4 in abrupt expansions and contractions, 

they give similar equations of the friction coefficient to these 

of Oliveira et al. [4] but as a function of the power low index 

for power low fluid and others for yield stress fluid as a 

function of the dimensionless yield stress. 

Numerically, Rosa and Pinho [6] investigate Newtonian 

fluid through axisymmetric diffusers for 2<Re<200, diffusion 

angle 0<θ< 90° and aspect ratio 1:1.5 and 1:2. They developed 

two expressions of the friction coefficient as a function of 

Reynolds number and diffusion angle.  

In the literature many studies are interested in the flows over 

the abrupt expansions, starting from Macagno and Hung [7], 

who studied experimentally a viscous Newtonian fluid over 

axisymmetric expansion, the calculation and the experiments 

reported that the streamlines and vortices presented as a 

function of Reynolds number. According to Alipour [8] the 

recirculation zone was found even at low Reynolds numbers 

and grew in size with increasing Reynolds number in step of 

the sudden expansion. 

In order to scale the recirculation zone, Scott et al. [9] have 

created a model of dimensionless equations for the 

reattachment length Lr and the eddy intensity ψ* as a function 

of Reynolds number for each aspect ratio then Badekas and 

Knight [10] developed the equation as functions of aspect ratio 

also. While Pak et al. [11] investigated a Newtonian and Non-

Newtonian fluid flow over circular sudden expansion, they 

announced that the reattachment length is a function of the 

concentration of non-Newtonian fluid in which the 

reattachment length decreases with increasing concentration 

of fluid, and it is shorter than those of Newtonian fluid for a 

laminar flow. However, in the turbulent flow, the reattachment 

length doubles twice or three times that for Newtonian flow 

and gradually increases with increasing concentration. 

Through the sudden expansion Scott et al. [12] studied 
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numerically a viscoplastic fluid flow Casson and Bingham, 

they found a reduction in the length and the strength of 

recirculation zone for the viscoplastic fluid flow compared 

with a Newtonian fluid, the same results presented by Vradis 

and Otugen [13] in which higher yield stress produces small 

recirculation zones, generally, the yield stress number has the 

opposite effect to the Reynolds number effect, this result has 

been also provided by Hammad et al. [14], and Hegaj and 

Borzenko [15] for Herschel-Bulkley fluid. The aspect ratio has 

an effect according to Hammad [16] in which the results 

showed intensive and large recirculation zones for 𝛿 =  5 

than thus of 𝛿 =  2. 

Another phenomenon related to the yielded and un-yielded 

zones was studied by Jay et al. [17] for a yield-stress fluid 

through a 1:4 sudden axisymmetric expansion, they 

announced that the yield stress generates an un-yielded zone, 

the inertia and yield stress act in opposite ways, they proved 

also that the pressure loss increases with the yield stress fluid.  

Regardless of the Reynolds number Mitsoulis and Huilgol 

[18] confirmed when the Bingham number goes to an infinite 

value, a lack of size and intensity of the recirculation zones, 

and the un-yielded zone is enlarged. 

From the aforementioned discussion, it is clear that the 

analysis of viscoplastic fluid flows through the sudden 

expansion remained limited. Due to the important role of the 

yield stress fluid in the oil industry, the aim of this study is to 

formulate mathematical model equations for the reattachment 

length, the eddy intensity, and the friction coefficient for 

Bingham fluid through an axisymmetric sudden expansion of 

a variable aspect ratio. 

 

 

2. MATHEMATICAL FORMULATION 

 

2.1 Problem description 

 

The geometry studied is an axisymmetric sudden expansion, 

different expansion ratios δ were considered 1:1.5, 1:2, 1:3, 

and 1:4 as depicted in Figure 1. 

 

 
 

Figure 1. Sudden expansion geometry and mesh distribution 

near the 1:2 expansion (Mesh III, -d1<x<+d1 and 0<r<d2) 

The entrance length of the sudden expansion Lu= d1, where 

the downstream length Ld = 120d1. 

At the entrance, the boundary condition is set to be velocity 

inlet with a fully developed velocity profile and for the laminar 

flow of Bingham fluid, this boundary condition is introduced 

by using a separated geometry of considerable length in order 

to obtain the fully developed profile. The comparison of the 

analytical and numerical velocity profile at the inlet of the 

expansion at Re = 50 for different Bingham numbers (0, 0.5, 1 

and 2) as shown in Figure 2. The results show an excellent 

agreement between the analytical and the numerical profiles. 

 

 
 

Figure 2. Inlet velocity profiles ⸺ Analytical, ‒‒ Numerical 

 

2.2 Governing equations 

 

The conservation of mass is given by: 
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While the conservation of momentum is given by 
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The extra stress tensor for power-law with yield stress 

defined by 𝜏𝑖𝑗 = 2𝜂(𝛾
.
)𝐷𝑖𝑗 . 

The plastic materials equation modified by the Bingham 

model described by the following equation of Papanastasiou 

[19]. 
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The total pressure drop through the expansion written as 

bellow: 

 

1 2 Ptot R I FP P P P P = − =  − −
 (5) 
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The fully developed wall friction terms given by equation 

bellow for the upstream and downstream of the expansion in 

which the friction at the wall for Bingham plastic flow given 

by Swamee and Aggarwal [20]. 
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The decrease of velocity across the expansion (Bernoulli 

Effect): 
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The irreversible pressure loss coefficient K: 

21
2

I

i

P
K

U


=

 

(8) 

 

 

3. NUMERICAL PROCEDURE 

 

The numerical solution was obtained using commercial 

code Ansys-Fluent. The SIMPLE algorithm was used to solve 

the pressure-velocity coupling. To discretize the convective 

terms, a Quadratic upwind differencing scheme (QUICK) was 

used, and three meshes are tested in Table 1, furthermore, the 

absolute residual values of the continuity, the axial velocity 

and the radial velocity are set at 10-6. The maximum error 

between the analytical and numerical calculation is located 

around the center of upstream sudden expansion, which 

reaches 1.27% for Bingham fluid, and it fades near the wall 

where the flow characteristics are of interest. 

 

3.1 Validation 

 

In Figure 3 the comparison of reattachment length Lr of our 

numerical calculations for a Newtonian fluid Bn = 0 and a 1: 2 

sudden expansion with the experimental values obtained in the 

work of Macagno and Hung [7] and other numerical works are 

presented. Three mesh configurations are tested. The present 

calculations show a very good agreement for all the ranges of 

Reynolds numbers studied.  

For the aspect ratio 1:1.5, 1:3 and 1:4 the present calculation 

was compared with some correlations obtained numerically by 

Scott et al. [9] and Badekas and Knight [10] the Table 2 shows 

the length of the backflow region Lr, it appears a very good 

agreement with the previous studies. 

To further establishes the validity of the present results, 

Figure 4 Representing the dependency of the length of 

backflow region Lr on the Bingham number for a yield stress 

fluid and for a variety of Reynolds number, the present result 

were compared with those of Mitsoulis and Huilgol [18] on 

1:2 aspect ratio, a slight different remarkable appears when the 

fluid goes to high value of the Bingham number, this 

difference was expected due to the different numerical method 

using to obtain the solution. 

 

 
 

Figure 3. Lr versus Re for Bn = 0, δ = 2 

 

Table 1. Computational domain and mesh characteristics of the sudden expansions 

 

Mesh 
Block δ = 2 δ = 4 

 Nx×Ny fx×fy Nx×Ny fx×fy 

M1 

I 22×13 1.08×1.125 22×13 1.08×1.125 

II 154×13 1.022×1.125 154×13 1.022×1.125 

III 154×13 1.022×1.05 154×39 1.022×1.05 

IV 39×13 1×1.125 39×13 1×1.125 

V 39×13 1×1.05 39×39 1×1.05 

VI 92×13 1×1.125 92×13 1×1.125 

VII 92×13 1×1.05 92×39 1×1.05 

M2 

I 44×26 1.08×1.125 44×26 1.08×1.125 

II 308×26 1.016×1.125 308×26 1.016×1.125 

III 308×26 1.016×1.125 308×78 1.016×1.125 

IV 56×26 1×1.125 56×26 1×1.125 

V 56×26 1×1.125 56×78 1×1.125 

VI 146×26 1×1.125 146×26 1×1.125 

VII 146×26 1×1.125 146×78 1×1.125 

M3 

I 64×52 1.057×1.06 64×52 1,057×1.06 

II 464×52 1.05×1.066 464×52 1,011×1.06 

III 464×52 1.05×1.12 464×156 1,011×1.04 

IV 99×52 1×1.066 99×52 1×1.06 

V 99×52 1×1.12 99×156 1×1.04 

VI 306×52 1×1.066 306×52 1×1.06 

VII 306×52 1×1.12 306×156 1×1.04 
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Figure 4. Lr versus Bn for δ = 2 

 

Table 2. Comparison of Lr with the previous correlations for 

Newtonian fluid Bn = 0 

 

Re δ 
P.S.Scott & 

F.A.Mirza 

Badekas & 

Knight 

Present 

Work 

50 

1.5 0.625 0.772 0.695 

3 5.5 5.295 5.285 

4 8.5 8.31 8.130 

100 

1.5 1.25 1.545 1.292 

3 11.00 10.59 10.773 

4 17.00 16.62 16.53 

150 

1.5 1.875 2.317 1.914 

3 16.5 15.885 16.341 

4 25.5 24.93 25.12 

200 

1.5 2.5 3.09 2.55 

3 22 21.18 21.949 

4 34 33.24 33.459 

 

 

4. RESULTANTS and DISCUSSION 

 

4.1 Effect of Reynolds and Bingham numbers 

 

The solutions of the present analysis of the Newtonian fluid 

and the Bingham fluid through the axisymmetric sudden 

expansion are obtained for a number of fluid parameters and 

geometrical conditions, the results show some flow 

characteristics at the downstream step of the sudden expansion, 

in this zone, the Newtonian fluid flow constructs a vortex 

region their size and intensity dependency on the Reynolds 

number and the aspect ratio of the geometry, Figure 5 indicates 

the increase in the reattachment length with increasing 

Reynolds number and the aspect ratio, this dependence is 

linear as indicated with Macagno and Hung [7], Scott et al. [9] 

and Badekas and Knight [10]. 

In the case of the Bingham fluid flows, Figure 6 present the 

reattachment length as a function of the Bingham number, the 

vortex zone is greatly affected by the Bingham number where 

any increase in this parameter decreases the length and the 

intensity of the vortex regardless of Reynolds number and 

aspect ratio values, it’s mentioned by Scott et al. [12], Vradis 

and Otugen [13] and Hammad et al. [14] for 1:2 axisymmetric 

sudden expansion. The increasing of Bingham number also 

generates another region at the corner of the sudden expansion 

known as an un-yielded zone, this region enlarges at the 

expense of the recirculation, and it changes here size and 

structure. 

The linearity of the reattachment length on the Reynolds 

number given previously in correlations forms into a 

Newtonian fluid flow by Scott et al. [9] and Badekas and 

Knight [10], based on the present calculations and for 

preserving the linearity as a function of Reynolds number the 

Eq. (9) and Table 3 be fitted to predict the reattachment length 

of Newtonian and Bingham fluid flow simultaneously. The 

dependency on the reattachment length of the Bingham 

number was also fitted on the exponential form Eq. (10) and 

Table 4. 
 

2

rL =( +βδ+γ)Re
 (9) 

 

Table 3. The coefficients of the Eq. (9) 
 

 
Bn 

0 0.5 1 2 

α 0 -0.00403 -0.00327 -0.00188 

β 0.06037 0.05134 0.0375 0.02032 

γ -0.07576 -0.05971 -0.04292 -0.02185 

 

λ ε.exp(κ. )rL Bn
 (10) 

 

with
 1 2λ δd d

 1 2ε  δe e 1 2κ δk k .
 

 

Table 4. The coefficients of the Eq. (10) 
 

 
Re 

50 100 150 200 

d1 0.2676 0.7633 1.2814 1.7937 

d2 -0.0914 -0.6723 -1.1963 -1.7797 

e1 2.6378 5.2139 7.7346 10.277 

e2 -3.4977 -6.83 -10.107 -13.518 

k1 -0.3187 -0.2113 -0.2092 -0.225 

k2 -0.4864 -0.9087 -0.975 -0.9446 

 

The proposed correlation Eq. (9) give the same 

approximation with those of Scott et al. [9] and Badekas and 

Knight [10] for Newtonian flow with a maximum error of 

1.35%, the case of Bingham fluid flows Figure 5 do not differ 

much, however it remains a linear function of Reynolds 

number, but the plastic force reduces the vortex length 

regardless of the inertia force or the geometry conditions, 

Figure 6 show the effect of Bingham number on the 

reattachment length where there is a contrast to the inertia 

forces and geometry condition on one side and the plastic force 

on the other for all aspect ratios studied. The enlargement of 

the vortex length by increasing Reynolds number and reducing 

it by increasing the Bingham number was indicated by Vradis 

and Otugen [13] for 1:2 sudden expansions. 

 

 
 

Figure 5. Lr versus Re, δ = 2 
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Figure 6. Lr versus Bn 

 

The eddy intensity appears as a nonlinear function of the 

flow parameters, a higher aspect ratio and Reynolds number 

give higher eddy intensity shown as a function of Reynolds 

number in Figure 7 and Figure 9. The fitted exponential 

formulas Eq. (11) appear to a maximum error of 4.3% with the 

earlier study for Newtonian fluid, this difference is expected 

with considering the correlation’s of Scott et al. [9] are specific 

and the present are general correlations, and it's also due to the 

different methods of solution. 

For the Bingham fluid flow, the higher Bingham number 

gives smaller eddy intensity and vice versa as shown in Figure 

8, at Bn = 0 the eddy intensity values multiply with the 

increasing the aspect ratio δ but it quickly decreases when the 

Bingham number increase, the flow go to be creeping flow at 

the infinite value of Bingham number. 

The aspect ratio effect is constant, where it is shown in 

Figure 10 the enlarges of the un-yielded zones as well as the 

recirculation zones at the step of the downstream flow. 

For the Bingham fluid flow, the higher Bingham number 

gives smaller eddy intensity and vice versa as shown in Figure 

8, at Bn = 0 the eddy intensity values multiply with the 

increasing the aspect ratio δ but it quickly decreases when the 

Bingham number increase, the flow go to be creeping flow at 

the infinite value of Bingham number. 

The aspect ratio effect is constant, where it is shown in 

Figure 10 the enlarges of the un-yielded zones as well as the 

recirculation zones at the step of the downstream flow. 

 
*

1 1 1.exp( .Re)A B C = +  (11) 

 
*

2 2 2.exp( . )A B C Bn = +  (12) 

 

 
 

Figure 7. Eddy intensity ψ* versus Re for Bn = 0 

 

 
 

Figure 8. Eddy intensity ψ* versus Bn 

 

 
 

Figure 9. Stream function contours of Newtonian fluid Bn=0 
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Figure 10. Stream function, yielded and un-yielded contours of non-Newtonian viscoplastic fluid at Re=150 and Bn=0.5 

 

 
 

Figure 11. Stream function, yielded and un-yielded contours of non-Newtonian viscoplastic fluid at Re=50 

 

The un-yielded zones start to appear separately at the corner 

and near the wall at the values of Bn = 0.5, Re = 50 and δ = 2 

Figure 11(a) and enlarges to be one solid region with 

increasing the Bingham number or decreasing the Reynolds 

number than shown in Figure 11(b)(c) for δ = 3 Figure 

11(d)(c)(f) another un-yielded zones appears at the vortex 

region, this zone depends on a higher aspect ratio or Reynolds 

number, and lower Bingham number (not 0 value), it’s goes to 

be one region with increasing of the Bingham number. At the 

centerline of the sudden expansion, the un-yielded zones 

enlarges also if the Bingham number and the aspect ratio 

increase, where the Reynolds number affect only the axial 

direction of this zone. 

 

4.2 Local loss coefficient 

 

The calculations of the local loss coefficient through the 

sudden expansion of both Newtonian and Bingham fluid flows 

are shown in Figure 12, the Newtonian fluid Bn = 0 shows 

good compatibility with the previous studies of Oliveira et al. 

[4] and Kfuri et al.[5] for the range of Reynolds number and 

aspect ratio Re = [50 ~ 200], δ = [1.5 ~ 4] respectively, in 

which any increase in Reynolds number is equivalent to a 

decrease in the local loss coefficient, this behavior appears for 

all values of δ with a remarkable increase in the local loss 

coefficient. 

For the Bingham fluid, the increases in the Bingham number 

values increase the local loss coefficient, Figure 13 show at 

higher Bingham number and for the Reynolds number values 

investigated the fluid become similar to the Newtonian fluid 

flow at lower Reynolds number that because the flow becomes 

more plastic, as opposed to the Newtonian fluid Figure 14 and 

Figure 15 shows when the aspect ratio δ increase the local loss 

coefficient decrease. 

The local loss coefficient K was fitted based on the present 

numerical solution, the previous model of Oliveira et al. [4] 
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was modified the logarithmic terms have been saved to be 

appropriate for the range of Reynolds and Bingham numbers 

studied. 

 
2

1 2 3log(Re) (log Re)K m m m
 (13) 

 

The present model shows a good compatibility in the 

Newtonian fluid flow and predict the local loss coefficient for 

Bingham fluid flows for the range of [0 ~ 2], Reynolds number 

[50 ~ 200] and the aspects ratios δ studied. This model can 

help in calculations of pressure loss through sudden expansion 

of the oil industry and also help in selecting the appropriate 

reduction. 

 

 
 

Figure 12. K versus Re for Bn = 0 

 

 
 

Figure 13. K versus Re for δ = 2 

 

 
 

Figure 14. K versus Re for Bn = 0.5 

 
 

Figure 15. K versus Re for Bn = 2 

 

The mi values at the proposed model were fitted polynomial 

as function of Bingham number for all aspects ratios as 

appearing in Table 5. 

 
3 2. . .im a Bn b Bn c Bn d

 (14) 

 

Table 5. Fitted coefficients mi polynomial 3rd order equation 

 
δ mi a b c d 

1.5 

m1 138.2 -488.4 525,7 -0.423 

m2 -119.3 413.4 -429 0.724 

m3 29.77 -99.94 96.74 -0.137 

2 

m1 58.033 -197.15 227.89 0.359 

m2 -47.414 160.48 -183.8 0.413 

m3 9.748 -32.88 37.46 -0.071 

3 

m1 25,97 -86.29 102 -2.267 

m2 -23.05 76.78 -89.13 4.256 

m3 5.061 -16.827 19.36 -1,191 

4 

m1 10.98 -27.78 38.86 1.149 

m2 -9.246 23.91 -33.16 0.214 

m3 1.808 -4.627 6.617 -0.028 

 

 

5. CONCLUSION 

 

A numerical simulation was carried out for the Bingham 

fluid flow through a sudden expansion of different aspects 

ratios, the present results confirm the earlier studies regarding 

the reduction of the length and the eddy intensity of the 

recirculation zones as a function of Bingham number for all 

aspects ratios investigated, it has also been clarified the 

difference between the presence of the entrance length or not. 

Based on the numerical results dimensionless equations were 

built for the reattachment length and the eddy intensity for 

Bingham fluid flows at a range of Reynolds number [50 ~ 200] 

and Bingham number [0 ~ 2], these equations are effective 

with a maximum error of 1.35% for a Newtonian fluid. It turns 

out also that the local loss coefficient for Bingham fluid flow 

is higher at high Reynolds number than the Newtonian fluid 

flows; the equation of Oliveira et al. [4] has been modified 

according to the range of Reynolds number studied. The aspect 

ratio affects adversely on the local loss coefficient for 

Bingham fluid flow, in which a higher aspect ratio reduces the 

K values, for that it is clear to us the effect of the geometry 

conditions in the transport of this type of fluid, it is 

recommended to using a sudden expansion (concentric 

reducer) of higher aspect ratios to minimize the pressure drop. 

51



 

ACKNOWLEDGMENT 

 

The authors are thankful for the anonymous reviews and the 

editor for the valuable comments that helped to improve the 

quality of the presented work. We also would like to thank all 

the members of the Industrial Technologies Lab. 

 

 

REFERENCES 

 

[1] Hooper, W.B. (1981). The two-K method predicts head 

losses in pipe fittings. Chemical Engineering, 88(17): 96-

100. 

https://docs.google.com/viewer?a=v&pid=sites&srcid=

ZGVmYXVsdGRvbWFpbnxtYXRlcmlhbGRlb3BlcmFj

aW9uZXMxfGd4OmQ2MzZiMTM3MzQzNjQ3Mg. 

[2] Darby, R. (1999). Correlate pressure drops through pipe 

fittings. Chemical Engineering, 106(7): 127-130. 

https://www.researchgate.net/publication/298840704_C

orrelate_pressure_drops_through_pipe_fittings_vol_106

_pg_101_1999. 

[3] Oliveira, P.J., Pinho, F.T. (1997). Pressure drop 

coefficient of laminar Newtonian flow in axisymmetric 

sudden expansions. International Journal of Heat and 

Fluid Flow, 18(5): 518-529. 

https://doi.org/10.1016/S0142-727X(97)80010-0 

[4] Oliveira, P.J., Pinho, F.T., Schulte, A. (1998). A general 

correlation for the local loss coefficient in Newtonian 

axisymmetric sudden expansions. International Journal 

of Heat and Fluid Flow, 19(6): 655-

660.https://doi.org/10.1016/S0142-727X(98)10037-1 

[5] Kfuri, S.L.D., Soares, E.J., Thompson, R.L., Siqueira, 

R.N. (2016). Friction coefficients for Bingham and 

power-law fluids in abrupt contractions and expansions. 

Journal of Fluids Engineering, 139(2): 021203 

https://doi.org/10.1115/1.4034521 

[6] Rosa, S., Pinho, F.T. (2006). Pressure drop coefficient of 

laminar Newtonian flow in axisymmetric diffusers. 

International Journal of Heat and Fluid Flow, 27(2): 319-

328. 

https://doi.org/10.1016/j.ijheatfluidflow.2005.09.003 

[7] Macagno, E.O., Hung, T.K. (1967). Computational and 

experimental study of a captive annular eddy. Journal of 

Fluid Mechanics, 28(1): 43-64. 

https://doi.org/10.1017/S0022112067001892 

[8] Alipour, F. (1994). Steady flow through modeled glottal 

constriction. International Journal of Engineering, 7(1): 

13-18. https://www.ije.ir/article_71093.html. 

[9] Scott, P.S., Mirza, F.A., Vlachopoulos, J. (1986). A finite 

element analysis of laminar flows through planar and 

axisymmetric abrupt expansions. Computers & Fluids, 

14(4): 423-432. https://doi.org/10.1016/0045-

7930(86)90016-2 

[10] Badekas, D., Knight, D.D. (1992). Eddy correlations for 

laminar axisymmetric sudden expansion flows. Journal 

of Fluids Engineering, 114(1): 119-121. 

https://doi.org/10.1115/1.2909986 

[11] Pak, B., Cho, Y.I., Choi, S.U.S. (1990). Separation and 

reattachment of non-Newtonian fluid flows in a sudden 

expansion pipe. Journal of Non-Newtonian Fluid 

Mechanics, 37(2): 175-199. 

https://doi.org/10.1016/0377-0257(90)90004-U 

[12] Scott, P.S., Mirza, F., Vlachopoulos, J. (1988). Finite 

element simulation of laminar viscoplastic flows with 

regions of recirculation. Journal of Rheology, 32(4): 387-

400. https://doi.org/10.1122/1.549976 

[13] Vradis, G.C., Otugen, M.V. (1997). The axisymmetric 

sudden expansion flow of a non-Newtonian viscoplastic 

fluid. Journal of Fluids Engineering, 119(1): 193-200. 

https://doi.org/10.1115/1.2819108 

[14] Hammad, K.J., Vradis, G.C., Otugen, M.V. (2001). 

Laminar flow of a Herschel-Bulkley fluid over an 

axisymmetric sudden expansion. Journal of Fluids 

Engineering, 123(3): 588-594. 

https://doi.org/10.1115/1.1378023 

[15] Hegaj, E.I., Borzenko, E.I. (2016). Numerical simulation 

of the steady-state Hershel-Bulkley fluid flow in a 

channel with sudden expansion. Vestnik Tomskogo 

Gosudarstvennogo Universiteta. Matematika i 

Mekhanika, 39(1): 68-81. 

https://doi.org/10.17223/19988621/39/8 

[16] Hammad, K.J. (2015). Suddenly expanding recirculating 

and non-recirculating viscoplastic non-Newtonian flows. 

Journal of Visualization, 18(4): 655-667. 

https://doi.org/10.1007/s12650-015-0279-9 

[17] Jay, P., Magnin, A., Piau, J.M. (2001). Viscoplastic fluid 

flow through a sudden axisymmetric expansion. AlChE 

Journal, 47(10): 2155-2166. 

https://doi.org/10.1002/aic.690471004 

[18] Mitsoulis, E., Huilgol, R.R. (2004). Entry flows of 

Bingham plastics in expansions. Journal of Non-

Newtonian Fluid Mechanics, 122(1): 45-54. 

https://doi.org/10.1016/j.jnnfm.2003.10.007 

[19] Papanastasiou, T.C. (1987). Flows of materials with 

yield. Journal of Rheology, 31(5): 385-404. 

https://doi.org/10.1122/1.549926 

[20] Swamee, P.K., Aggarwal, N. (2011). Explicit equations 

for laminar flow of Bingham plastic fluids. Journal of 

Petroleum Science and Engineering, 76(3-4): 178-184. 

https://doi.org/10.1016/j.petrol.2011.01.015 
 

 

NOMENCLATURE 
 

Bn Bingham Number, τy. d1/ µ. Ui 

K Friction Coefficient 

Ld Length of expansion section, m 

Lr Dimensionless reattachment length, m 

Lu Entrance length, m 

d1 Expansion upstream diameter, m 

d2 Expansion downstream diameter, m 

Re Reynolds number, ρd1Ui/ µ 

Ui Inlet velocity, m.s-1 

u,v Cylindrical coordinates 

 

Greek symbols 

 

δ Expansion ratio, d2/d1 

ρ Density (kg/m3) 

τy Yield Stress, Pa 

µ plastic viscosity, m2.s-1 

ψ* Eddy intensity (ψmax -ψwall) / (ψcl -ψwall) 
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