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A new methodology was established in order to determine forced convective heat transfer 

film coefficients, for single-phase non-laminar flow inside tubes. A comprehensive Nusselt 

number correlation was proposed, which is able to evolve into three different functional 

forms derived from the analogies among momentum, heat and mass transfer, as proposed 

by Reynolds-Colburn, Prandtl and von-Kármán. Parameters estimation was carried out by 

applying Genetic Algorithms, using the maximum relative error as the objective function. 

The methodology was verified against six synthetic data sets, with the independent 

variables within the ranges 2.4·103 ≤ Re < 5.0·106, 0.715 ≤ Pr ≤ 84101, 0.255 < μ/μw < 

5.077, and the dependent variable Nu calculated by applying the Dittus-Boelter, Sieder & 

Tate, Petukhov, Gnielinski, von-Kármán and Camaraza-Medina correlations. Functional 

forms and initial equations coefficients were properly approximated. Comparison of 

calculated Nusselt numbers versus the reference values resulted in Pearson correlations 

higher than 99.85 %. Uncertainty related to the film coefficient calculation was found 

acceptable in all the cases. Proposed approach not only overcomes the simplicity of power-

type correlations, but also avoids the drawbacks of non-linear regression methods and, 

unlike symbolic regression, it creates mathematical expressions starting from a previous 

theoretical-physical background instead of finding random correlations. Further stages of 

this study would focus on evaluating a wider range of μ/μw and validating the methodology 

with experimental data. 
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1. INTRODUCTION

The design, sizing and rating of heat exchangers requires 

reliable calculation of the overall heat transfer coefficient. 

Conventional literature reference values or empirical 

expressions quantifying local convective heat transfer 

coefficients are assumed, when the overall coefficient cannot 

be experimentally determined by measuring both fluids mass 

flowrates, inlet and outlet temperatures [1, 2]. In such cases, 

the use of inappropriate or inexact correlations may result in 

under- or over-sizing of the equipment, as well as incorrect 

estimation of the fouling factor and thermal system efficiency. 

Therefore, besides being a crucial parameter that favors 

decision-making within the industrial field, accurate 

determination of convective film coefficients is a challenging 

problem with applications in several branches of science and 

engineering [3-5]. 

There are several empirical methods for experimental 

determination of convective heat transfer coefficients. In this 

respect, the simplest ones apply Newton’s Cooling Law to 

obtain local coefficients from measurement of the heat flux, 

the heat transfer area, and the fluid and surface temperatures 

[6, 7]. The main drawback of this direct method relies on the 

difficulty to install thermocouples on heat exchanger plates or 

tube walls when they are inaccessible [8, 9]. 

Wilson [10] found an alternative to previous limitation, 

recommending separation of the overall thermal resistance 

into the inside convective thermal resistance and the remaining 

thermal resistances participating in the heat transfer process. 

This methodology, referenced in the specialized literature as 

the Wilson Plot method, is based on measurements of both 

fluids mass flowrates, inlet and outlet temperatures, over the 

studied heat exchanger. Despite the original Wilson Plot 

method was improved by Briggs and Young [11], Khartabil et 

al. [12], Shah [13], Khartabil and Christensen [14], Rose [15], 

van-Rooyen et al. [16], among other researchers, these studies 

assume a simple power law relationship between the surface 

heat transfer coefficient and the fluid flowrate, which is often 

not valid and generates large error margins. Generally, 

monomial power-type correlations do not provide good 

approximations over a broad range of experimental data [17-

19]. Inaccuracies are largely influenced by inability of 

equations based on Reynolds analogy to describe the 

momentum and heat transfer phenomena that take place into 

the boundary layer, as it assumed that eddy diffusivity of heat 

is exactly analogous to the eddy diffusivity of momentum, 

besides no difference between viscous and turbulent eddies 

[20]. 

Non-linear regression methods overcome the restrictions 

associated with power-type correlations and the number of 

parameters to be estimated. Styrylska and Lechowska [21] 

analyzed the Wilson Plot method as a least squares adjustment 
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problem based on the Newton gradient, rather than a linearized 

regression problem. Moreover, Flores et al. [3] used the 

Nelder-Mead approach to estimate the convective heat transfer 

coefficient in a helical condenser integrated to a thermal 

transformer. Another branch of investigations took advantage 

of current computational capabilities and numerical regression 

techniques, therefore using the Levemberg-Marquardt method 

for simultaneous determination of both-sides convective heat 

transfer coefficients, as studied by Taler [22-24] and Rainieri 

et al. [25]. Although representing an advantage over linear 

methods, multi-modal minimization problems based on 

gradients calculation do not guarantee that the global 

minimum is reached and are dependent of the initial point. 

They can only operate efficiently if realistic initial values are 

selected, which is virtually impossible where large number of 

unknowns are evaluated and little prior knowledge is available 

about the expected results [17, 26]. 

The growth of artificial intelligence tools contributed to the 

development of different solution methods. In this context, 

both Artificial Neural Networks (ANN) and Genetic 

Algorithms (GA) have been used to propose new correlations. 

Although ANN were only used for specific applications, they 

were found appropriate to simulate complex-flow convection 

heat transfer processes, like those happening on complex-

geometry surfaces, streams on the transition zone, and 

uncommon chemicals experimenting phase changes [27-32]. 

In spite of the contributions introduced by the previous-

mentioned studies, the use of ANN on this field enclose the 

following disadvantages: most of the data have been gathered 

through the direct experimental method (based on Newton’s 

Cooling Law); it is practically impossible to obtain the 

correlation explicit equation and, if formulated, it would be too 

complicated for practical purposes; the friction factor has not 

been previously considered as a predictor variable; and the 

traditional method provides insufficient information about the 

influence of independent variables on model response. 

According to Mehdipour et al. [33], GA are simpler and 

faster than ANN. In addition to their significant performance 

in optimization problems, several authors have recognized 

their capability as an alternative curve-fitting and parameter 

estimation method. GA can operate with irregular non-

differentiable functions, are not initial-point dependent, and 

explore a large portion of the design space thus unlikely 

converging to a local optimum. While some studies were 

aimed to determine forced convective heat transfer 

correlations for special applications [26, 34-37], a few others 

focused on correlations being applicable for heat exchange 

equipment [33, 38-40]. Although the use of GA for film 

coefficients determination have obvious advantages over other 

procedures, application of the simple method in accessed 

papers is yet limited by the following: the correlation 

functional form needs to be assumed a priori; only four 

unknowns are determined in most studies; and the practice of 

using power-type expressions still persist. Even though the 

mathematical function relating the Nusselt number to the 

remaining dimensionless parameters is generally selected on 

the basis of simplicity, compactness and common usage, it 

cannot be just justified according to these first principles. This 

issue demands special attention, as it can significantly limit the 

estimates accuracy [29, 41]. 

In order to overcome the aforementioned problem, another 

group of researchers put into practice symbolic regression 

methods. Unlike the parametric regression, this approach 

allows to determine both the correlation functional form as 

well as the constants in it. To achieve this, Genetic 

Programming (GP) algorithms were used, which are an 

extension of the GA. However, the expressions reported in the 

reviewed literature [41-46] have different functional forms and 

it is difficult to associate a physical meaning or theoretical 

support to the regression functions. Other drawbacks from 

applying the method are: complexity of obtained correlations; 

extensive expressions that limit a broader use in practical 

applications; high computational cost; poor generalization; 

and random results since there is no consistency among 

responses from different runs. 

A previous analysis of the state of the art reveals that none 

of the preceding methods simultaneously consider the 

following premises: Correlation parameters not limited to the 

typical three unknowns of the power-type equations, 

effectiveness of the method to be independent of the initial-

point selection, and evolution of the correlation functional 

form to be allowed for best fitting to the experimental data, 

without occurring deliberately and deprived of a physical 

sense. Taking these gaps into consideration, this research 

objective was to propose a new methodology for 

determination of forced convective heat transfer film 

coefficients by simulating evolution of Nusselt equation by 

means of GA, applicable to single-phase non-laminar flow 

inside tubes. 

Following are main contributions declared for this study: 

• An improved approach to determine film coefficients, 

which does not need to assume a priori the correlation 

functional form and overcomes other limitations from 

preceding methods; 

• An inclusive solution, which links relevant analogies 

among momentum, heat and mass transfer for turbulent flows; 

• A comprehensive Nusselt number equation, with the 

capability of evolving into three different functional forms 

derived from the Reynolds-Colburn, Prandtl and von-Kármán 

analogies; 

• Usage of three types of variables (binary, discrete and 

reals) during the parameters estimation process, in order to 

enhance the optimization and evolution strategies that were 

put into practice. 

The remaining part of this paper is organized as follows: 

Section 2 describes materials and methods, focusing on the 

methodology for film coefficients determination and data sets 

collection; Section 3 shows the most relevant results, 

providing a quantitative and qualitative assessment of 

correlations obtained for each data set; and Section 4 refers to 

the main conclusions arrived by this study. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Film coefficients determination methodology 

 

Parameters estimation to determine the functional form and 

coefficients of the Nusselt correlations was carried out by 

means of GA, due to the advantages of this stochastic search 

and optimization technique [47, 48]. Selected fitness function 

was the maximum relative error, calculated from the reference 

and theoretical Nusselt values, denoted as Nu and Nu' 

respectively.  

The dependent variable reference values (Nu) were 

synthetically obtained, using acknowledged correlations to 

calculate the Nusselt number under forced convection, single-

phase non-laminar internal flow conditions. Chosen 
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independent variables were the Reynolds number (Re), the 

Prandtl number (Pr), the fluid dynamic viscosity at its mean 

temperature (μ), the viscosity at wall temperature (μw), as well 

as a binary variable which defines whether the heat exchange 

is related to a cooling or a heating process (P). 

On the other hand, the dependent variable theoretical values 

(Nu') were calculated from a novel, generalized equation, 

which have the ability to evolve into three different functional 

forms derived from the Reynolds-Colburn, Prandtl and von-

Kármán analogies. Coefficients of the correlation were 

determined, in each case, by decoding the genotype of the best 

fit individual, after running the GA. Given the random nature 

of this technique, each approximation process was run five 

times. 

Effectiveness of the proposed methodology was tested 

against six different synthetic data sets, in which the 

independent variables values are repeated, but those of the 

dependent parameter are varied because of using different 

correlations to calculate the Nusselt number. Besides 

performing a mathematical-similitude comparison between 

the initial and the obtained Nusselt equations, Pearson’s 

correlation coefficient and a few error indexes were used to 

assess the quality of the results (Figure 1). 

 

 
 

Figure 1. Methodology flowchart 

 

Film coefficients were calculated from Eq. (1), once 

obtained the Nusselt number correlation with the best fitting 

to the experimental data [1, 20]. 

 

'=
k

h Nu
d

 (1) 

 

where: h – film coefficient or local convective heat transfer 

coefficient, W/(m2·K); Nu' – Nusselt number theoretical value; 

k – fluid thermal conductivity, W/(m·K); d – tube inside 

diameter (or equivalent diameter for other duct geometries), m. 

 

2.2 Synthetic data sets collection 

 

2.2.1 Variables selection 

Mostly, equations describing the Nusselt number for forced 

convection under single-phase non-laminar flow conditions, 

inside tubes, satisfy Eq. (2) [49-51]. 

( );  ;  ; ; ;  =Nu Re Pr d L f J  (2) 

 

where: Nu – Nusselt number; Re – Reynolds number;  

Pr – Prandtl number; L – tube length, m; f – Darcy-Weisbach 

friction factor; Jμ – viscosity correction factor, commonly 

calculated through Eq. (3): 

 

( )/  =
m

wJ  (3) 

 

where: μ – dynamic viscosity at fluid bulk temperature, Pa·s; 

μw – dynamic viscosity at wall temperature, Pa·s;  

m – correction factor equation exponent. Mondal and Field 

[52] recommended m = 0.254 for cooling and m = 0.087 for 

heating, based on a classical theoretical analysis of the thermal 

boundary layer. Their proposal constitutes an update of the 

correction factor exponents provided by Sieder and Tate [53] 

and Petukhov [54]. 

 

Simplification of Eq. (2) can be performed by taking the 

following into consideration:  

• Uniform wall temperature; 

• Fully developed flow regime; 

• Tube length much greater than the inside diameter 

( L d ); 

• Friction factor is only depending on the Reynolds 

number, assuming that the relative roughness ε/d is constant 

under the same study case, for industrial tubes [55]; 

• Correction factor Jμ can be estimated as a function of the 

viscosity values, as shown in Eq. (3). 

Based on previous assumptions, Eq. (4) was deduced to 

define the predictive (independent) and response (dependent) 

variables that were used to validate the model: 

 

( );  ;  ;  ;  cooling or heating  = wNu Re Pr  (4) 

 

2.2.2 Independent variables values 

Thermo-physical properties of eight common chemicals 

were used to generate the synthetic data sets, by considering 

working temperature ranges that are usual at industrial thermal 

processes. In this way, reference values for Prandtl number 

(Pr) and fluid dynamic viscosity (μ) were taken from the 

specialized literature [49, 55] to create a record of 80 data 

points (Table 1). 

This initial data log was combined with eight values of the 

Reynolds number variable (Re), as shown on the column 

vector denoted by Eq. (5), therefore obtaining a 640 points 

database. Considered range for the Reynolds number would 

allow evaluation of flow regimes varying from the transition 

region to the fully turbulent zone. 

 
3 3 4 4 5

5 6 6

;

                                        

2.4 10 ;   5.0 10 ;   10 ;   5.0 10 ;   10

5.0 10 ;   10 ;   5.0 10

=   

 





Re
 

(5) 

 

The fluid dynamic viscosity evaluated at wall temperature 

(μw) was related to a binary variable that defines the heat 

transfer mode, using P = 1 for cooling and P = 0 for heating. 

On the first case, μw was obtained by considering the fluid 

viscosity at a temperature lower than the bulk temperature. On 

the second one, μw was considered at the higher temperature. 

Both situations are summarized in Eq. (6), which makes a 

distinction of the wall surface temperature according to the 
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chemical compound under analysis. 

 

Table 1. Initial data log 

 

Fluid 
Temp. 1 

(K) 

Data 

points 
Pr 1 

μ 1 

(Pa·s) 

Methanol 
293.15 

343.15 
6 

4.655 

7.414 

3.146·10-4 

5.857·10-4 

Isobutane 
173.15 

373.15 
9 

3.256 

12.650 

6.483·10-5 

9.305·10-4 

Glycerin 
273.15 

313.15 
9 

2697 

84101 

3.073·10-1 

10.490 

Engine oil 

(unused) 

273.15 

433.15 
9 

84 

46636 

4.500·10-3 

3.814 

Carbon 

dioxide 2 

323.15 

2273.15 
10 

0.744 

0.882 

1.612·10-5 

7.322·10-5 

Hydrogen 2 
323.15 

2273.15 
10 

0.715 

1.172 

9.430·10-6 

3.690·10-5 

Steam 2 
373.15 

973.15 
10 

0.981 

0.880 

1.200·10-5 

3.650·10-5 

Water 3 
273.15 

573.15 
17 

13.700 

0.905 

1.790·10-3 

8.590·10-5 

Total 
173.15 

2273.15 
80 

0.715 

84101 

9.430·10-6 

10.490 
    Notes: 1 Minimum and maximum values of the range are shown.   

  2 Properties at atmospheric pressure (101.3 kPa). 

  3 Properties at saturation pressure. 

 

2 2

5,      if Glycerin  

10,    if Methanol, Isobutane 
( )

20,    if Oil, Steam

50,    if CO , H , Water














= =





 
 
 
 
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w w

T

T
f T f

T

T

 
(6) 

 

where: Tw – average wall temperature, K; T∞ – fluid bulk 

temperature, K; subtraction operator (–) for cooling and 

addition operator (+) for heating. 

 

2.2.3 Dependent variable values 

In order to appraise the proposed solution effectiveness 

during approximation of different data sets, six expressions 

were used to calculate the Nusselt number, whilst using the 

same independent variables data. Selection of the following 

correlations relies on number of citations, recurrent 

publications within academic books, as well as recognition 

from the international scientific community: 

• Dittus–Boelter [56] correlation, according to Eq. (7), 

applicable to fully developed turbulent flow in smooth circular 

tubes, within the ranges 104 < Re < 5·106,  

0.6 < Pr < 160 and L/d > 60, in cases of small to moderate 

temperature differences. 

 
0.8

0.023− =  
m

D BNu Re Pr  (7) 

 

where: m = 0.3 for cooling, and m = 0.4 for heating. 

• Sieder and Tate [53] correlation, as shown in Eq. (8), 

commonly used for streams having large property variations 

due to remarkable temperature differences. It is valid when 104 

< Re < 5·106, 0.7 < Pr < 16700 and L/d > 60. 

 

( )
0.140.8 1/3

& 0.027 / =   S T wNu Re Pr  (8) 

 

• Petukhov-Kirillov [57] correlation, represented by Eq. 

(9), more complex but having increased accuracy as compared 

to previous expressions. It was derived from Prandtl [58] 

analogy, using the Lyon integral to obtain numerically the 

Nusselt number as a function of the Reynolds and Prandtl 

numbers. It is pertinent for fully developed turbulent flow 

conditions, when 104 < Re < 5·106,  

0.5 < Pr < 2000 and 0.8 < μ/μw < 40. Its major drawback 

consists on the applicability range, since it excludes the 

transition region [51]. 

 

( )

( )
( )

2/3

/ 8
/

12.7 / 8 1
 

 
= 

+  −

m

Pt w

f Re Pr
Nu

C f Pr
 (9) 

 

900 0.63
1.07

1 10
= + −

+ 
C

Re Pr
 (9a) 

 

where: m = 0.25 for cooling, m = 0.11 for heating, and  

m = 0 for uniform heat flux or gasses. 

 

• Gnielinski [59] correlation, according to Eq. (10), 

devised from previous expression but adjusting the 

coefficients to experimental data that did take into  

account the transition flow zone. It is applicable for  

3·103 < Re < 5·106, 0.5 < Pr < 2000 and 0.025 < μ/ μw < 12.5. 

 

( )

( )
( )

2/3

/ 8 ( 1000)
/

1 12.7 / 8 1
 

 − 
= 

+  −

m

Gn w

f Re Pr
Nu

f Pr
 (10) 

 

• Correlation derived from von-Kármán analogy [60], as 

described by Eq. (11). This researcher expanded Prandtl’s 

analogy by dividing the boundary layer into three sublayers: 

viscous, buffer, and turbulent core.  

 

( )

0.8

0,1

0.0288

5 1
1 0.849 1 ln

6

−

 
=

+
+   − +

  
  
  

vK

Re Pr
Nu

Pr
Re Pr

 
(11) 

 

• Correlation proposed by Camaraza-Medina et al. [61], 

according to Eq. (12), slightly less accurate than the Petukhov 

and Gnielinski models but with a much wider range of 

application: 2.4·103 < Re < 8.2·106, 0.65 < Pr < 4.71·104, 0.006 

< μ/ μw < 177 and 2 ≤ L/d ≤ 420. 

 

( )
( )

( )
2 2/3

10
/

1
 −

− 
= 

 −   −

D
m

C M w

Re Pr
Nu

A B C B Pr
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4
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91.415,     if 10                 





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=


Re
A

Re
 (12a) 

 
0.56

log
3.196

=
 
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 

Re
B  (12b) 

 
4

4

104.00,    if 2400 <  < 10   

116.74,    if 10               
=







Re
C

Re
 (12c) 
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2

4

4

0.027 (log ) +0.2 log 2.63,    

                                 if 2400 <  < 10  

0,                              if  10             

−   +

=









Re Re

D Re

Re

 (12d) 

 

2.3 Correlation coefficients and functional form 

determination 

 

2.3.1 Parameters estimation by means of Genetic Algorithms 

A methodology based on GA was developed during the 

present investigation, using MATLAB® R2013a scripts to 

determine coefficients and functional form of the convective 

heat transfer Nusselt correlations. The objective function and 

other implemented equations are described on sections 2.3.2 

and 2.3.3. Options and parameters related to the algorithm 

configuration are detailed below (Table 2). 

 

Table 2. GA configuration 

 
Category Parameter Value 

Population Population size 1000 

Fitness scaling Scaling function Rank 

Selection Selection function Stochastic uniform 

Reproduction Elite count 2 

 Crossover fraction 0.5 

Mutation Mutation function 
Constraint 

dependent 

Crossover Crossover function Scattered 

Migration Fraction 0.2 

 Interval 20 

Constraints Initial penalty 10 

 Penalty factor 100 

Stop criteria Generations 200 

 Time limit ∞ 

 Fitness limit -∞ 

 Stall generations 50 

 Stall time limit ∞ 

 Function tolerance 10-12 

 
Nonlinear 

constraint tolerance 
10-6 

 

GA are a global iterative search technique inspired by the 

Darwinian principle of natural selection. The problem is 

solved by imitating the mechanisms of species evolution 

through optimization strategies based on three basic operators: 

selection, crossover and mutation. As a concept, a group of 

individuals (population) changes from generation to 

generation, undergoing a process in which the stronger ones 

are likely to be the winners in a competing environment. Its 

mathematical analogy consists on a function to minimize (or 

maximize) and a search space for the desired solution, so that 

each point within this space corresponds to a value of the 

objective function and the target is to find the point that 

optimizes this function. In this way, the algorithm searches for 

the best optimum possible solution to the given problem [47, 

62]. 

 

2.3.2 Objective function (or fitness function) 

It was determined that the correlation that best describes the 

dependent variable reference values is the one that minimizes 

the Nusselt number maximum relative error, as expressed in 

Eq. (13).  

 

, 1

' ( , )
argmin max

  
  
  

  =  

−


X Y

X Yn
i i

ii

Nu Nu

Nu
 (13) 

 

where: Nu – dependent variable reference value; Nu' – 

dependent variable theoretical value calculated as function of 

vectors X  and Y ; n – number of data points. Vector X  

includes the parameters to be estimated by the GA, while Y  

is comprised by the values of the independent variables (Re, 

Pr, μ, μw and P). 

 

2.3.3 Comprehensive Nusselt number equation 

Several researchers have studied the analogies among 

momentum, heat and mass transfer for turbulent flow. This 

theory is based on description of the fluid flow through the 

continuity equations, the Navier-Stokes equations and 

boundary conditions, hence decoupling the momentum and 

energy expressions under constant property assumption. The 

experimental evidences and similarity among both 

dimensionless expressions indicates that solution of one of 

these processes conveys to mathematical resolution of the 

other analogous phenomenon [20, 63]. 

The link between heat and momentum transfer for turbulent 

flows in straight round pipes was firstly developed by 

Reynolds in 1874. His postulates were subsequently improved 

by Chilton and Colburn in 1934, by extending its applicability 

to fluids with Pr ≠ 1 and Sc ≠ 1 (Sc stands for the Schmidt 

number). This empirical adjustment to the original approach is 

often referenced as Reynolds-Colburn analogy. The initial 

model was also modified by Prandtl in 1928, and later by von-

Kármán in 1939, who pronounced new concepts about the 

flow-patterns distribution within the boundary layer. Since 

then, mentioned analogies have been used and enhanced by 

several researchers, consequently proving their convenience 

for physical explanation and a more accurate representation of 

the forced convection heat transfer mechanisms [20, 63, 64]. 

Unification of the main concepts, besides the need of 

integrating resultant convective heat transfer correlations, 

have encouraged the authors of this paper to formulate a 

comprehensive Nusselt number expression, without making 

distinction between the Reynolds-Colburn, Prandtl or von-

Kármán analogies, as shown on Eq. (14). 

Previous expression, used to determine the dependent 

variable theoretical value, is considered the main contribution 

of this study. It involves eight parameters (b1, b2, d1, d2, c1, c2, 

c3 y c4) that define the coefficients and functional form of the 

Nusselt number correlation. In turn, they are related to the 

vector (X) that characterizes the GA genotype (Figure 2). 

( ) ( )

1 2
1 2
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   
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b
b
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Nu J
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c Re Pr b

 
(14) 
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Figure 2. Genetic Algorithm decoding 

 

The first two parameters only admit binary values, 

according to Eq. (14a) and Eq. (14b). They were conceived to 

identify the momentum, heat and mass transfer analogy that 

best describes the experimental data: 

 

𝑏1 = {
0, if Reynolds analogy,  

1, if superior analogies (Prandtl or von-Kárán).
 (14a) 

 

𝑏2 = {
0,  if von-Kármán analogy, 

1,  if Prandtl analogy.
 (14b) 

 

The second set of parameters, as defined by Eq. (14c) and 

Eq. (14d), acquires discrete values associated with the Prandtl 

number exponent: 

 

 1 1/ 3;  2 / 5=d  (14c) 

 

 2 2 / 3;  1=d  (14d) 

 

Remaining parameters are curve-fitting correlation 

coefficients, which were intended to admit real values within 

the intervals described by Eq. (14e) to Eq. (14h). They are 

influenced by geometry of the heat transfer surface, flow 

characteristics, the heat exchanger operating conditions, and 

fouling differential effect [62, 65]. Exponent c2 also depends 

on the Prandtl number [19]. 

 

10 <  1c  (14e) 

 

20 <  1c  (14f) 

 

3  0   1500 c  (14g) 

 

40 <  20c  (14h) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Approximation of correlations derived from Reynolds-

Colburn analogy  

 

Parameter estimation results are shown below for the two 

data sets generated with the Dittus-Boelter and Sieder & Tate 

correlations, respectively (Tables 3-4). 

 

Table 3. Parameters estimation using “Dittus-Boelter” data set 

 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 0 0 0 0 0 

b2 0 1 0 1 1 

d1 2/5 2/5 2/5 2/5 2/5 

d2 2/3 2/3 2/3 1 2/3 

c1 0.023 0.023 0.023 0.023 0.023 

c2 0.8 0.8 0.8 0.8 0.8 

c3 358.5 99 805.5 1282.5 252 

c4 19.82 10.66 13.26 10.26 6.66 

Algorithm performance 

f obj 0.00004 0.00005 0.00005 0.00006 0.00008 

i 104 52 101 58 78 

sc 1 2 2 2 2 2 
    Notes: 1 Stop criteria:  

  1. Maximum number of generations exceeded; 

  2. Average change in the fitness value less than options. 

 

Table 4. Parameters estimation using “Sieder & Tate” data set 

 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 0 0 0 0 0 

b2 0 0 1 1 1 

d1 1/3 1/3 1/3 1/3 1/3 

d2 2/3 2/3 1 2/3 2/3 

c1 0.027 0.027 0.027 0.027 0.027 

c2 0.8 0.8 0.8 0.8 0.8 

c3 502.5 334.5 1270.5 195.0 277.5 

c4 8.74 1.26 1.20 16.24 11.9 

Algorithm performance 

f obj 0.0014 0.0014 0.0014 0.0014 0.0014 

i 72 96 109 92 79 

sc 2 2 2 2 2 
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where: f obj – objective function value once the algorithm stops; 

i – number of iterations. 

The algorithm conveniently identifies the functional form 

and quickly determines the exact coefficients of the Nusselt 

equation (Dittus-Boelter and Sieder & Tate cases). When 

substituting computed coefficients into Eq. (14), obtained 

correlations matches the initial ones selected to produce the 

synthetic data sets (Table 5). 

Consequently, a strong linear association between the two 

variables was observed when comparing the Nusselt number 

calculated values (Nu') against the reference ones (Nu), which 

was confirmed by Pearson correlation coefficients equal to the 

unity. Determined error indexes are negligible, and mainly 

attributed to rounding inaccuracies (Table 6). 

 

Table 5. Approximation of correlations derived from 

Reynolds-Colburn analogy 

 

Target  Obtained correlation 

Eq. (7) 
0.8 0.4

' 0.023− =  D BNu Re Pr  

Eq. (8) 
0.8 1/3

&' 0.027 =   S TNu Re Pr J  

 

Table 6. Calculated correlation and error indexes 
 

Parameters 
Data set 

Dittus-Boelter Sieder & Tate 

R 1 1 

e ave 4.9233·10-4 1.1047·10-2 

e max 3.7298·10-3 0.2300 

E ave 0.0185 0.5685 

E max 0.4271 37.7351 

 

where: R – Pearson correlation coefficient; e ave – mean relative 

error, %; e max – maximum relative error, %; E ave – mean 

absolute error; E max – maximum absolute error. 

 

3.2 Approximation of correlations derived from Prandtl 

analogy 

 

The methodology was also tested for equations derived 

from Prandtl analogy. In this context, parameter estimation 

results are shown below for data sets produced through 

Petukhov and Gnielinski correlations (Tables 7-8).  

The functional form was correctly approximated for these 

two cases, and similar coefficients were obtained as compared 

to those from Petukhov and Gnielinski expressions. Therefore, 

when substituting calculated coefficients into Eq. (14), similar 

correlations were obtained (Table 9). Note that when 

computed parameters diverge between different model runs, 

the statistical mode values were used to formulate the Nusselt 

number correlation. 

Comparison of the Nusselt number calculated values (Nu') 

against the synthetic data (Nu) resulted in a remarkable degree 

of association between the two variables and low error indexes 

(Table 10). 

The higher deviations were obtained during approximation 

of Petukhov correlation, since the comprehensive Nusselt 

number equation tries replacement of C (parameter included 

in the denominator of the original correlation) by using a fixed 

value. As observed in Eq. (9a) this is not a constant parameter, 

but depends on the Reynolds and Prandtl dimensionless 

numbers. Despite this peculiarity low relative errors were 

reached (below 3.4 %), firstly because C → 1 for most of the 

Re and Pr evaluated values, and secondly due to the Eq. (14) 

adaptability potential, which compensates existing deviations 

by adjusting other parameters considered in their functional 

form (c1, c3 and c4). 
 

Table 7. Parameters estimation using “Petukhov” data set 
 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 1 1 1 1 1 

b2 1 1 1 1 1 

d1 2/5 1/3 2/5 1/3 2/5 

d2 2/3 2/3 2/3 2/3 2/3 

c1 0.991 0.991 0.991 0.991 0.991 

c2 0.725 0.654 0.832 0.914 0.460 

c3 565.5 565.5 567.0 565.5 565.5 

c4 12.3 12.3 12.3 12.3 12.3 

Algorithm performance 

f obj 0.0334 0.0334 0.0334 0.0334 0.0334 

i 118 108 185 73 100 

sc 2 2 2 2 2 
 

Table 8. Parameters estimation using “Gnielinski” data set 
 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 1 1 1 1 1 

b2 1 1 1 1 1 

d1 2/5 2/5 1/3 2/5 1/3 

d2 2/3 2/3 2/3 2/3 2/3 

c1 1.000 0.999 0.999 0.999 0.999 

c2 0.363 0.125 0.268 0.377 0.899 

c3 1000.5 1000.5 1000.5 1000.5 1000.5 

c4 12.72 12.70 12.70 12.70 12.70 

Algorithm performance 

f obj 0.0014 0.0014 0.0014 0.0014 0.0014 

i 112 98 71 87 86 

sc 2 2 2 2 2 
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Table 9. Approximation of correlations derived from Prandtl 

analogy 

 

Target  Obtained correlation 

Eq. (9) 

( )2/3

0.991 ( 565.5)
8

'

1 12.3 1
8



 
  −  
 = 

+  −

Pt

f
Re Pr

Nu J
f

Pr

 

Eq. (10) 

( )2/3

0.999 ( 1000.5)
8

'

1 12.7 1
8



 
  −  
 = 

+  −

Gn

f
Re Pr

Nu J
f

Pr

 

 

Table 10. Calculated correlation and error indexes 

 

Parameters 
Data set 

Petukhov Gnielinski 

R 0.99981 1 

e ave 2.0200 9.9306·10-2 

e max 3.3800 0.1600 

E ave 503.7323 18.4271 

E max 1.2149·104 548.2273 

 

3.3 Approximation of correlations derived from von-

Kármán analogy 

 

Parameter estimation results are also presented for the data 

set generated using von-Kármán correlation (Table 11). 

The original equation functional form was properly 

identified through proposed solution method in four out of the 

five runs that were carried out. However, the second run 

converged to a local minimum of the objective function that 

corresponds to the Reynolds-Colburn analogy. As a result, 

when substituting computed coefficients into Eq. (14), two 

different correlations were obtained: one similar to  

von-Kármán expression, in a more precise and developed form; 

plus another one close to the Dittus-Boelter equation, but 

approximating in a lesser extent the Nusselt number reference 

values (Table 12). 

Since the GA initial population is randomly generated, in a 

few occasions the parameter estimation results did not match. 

In such cases it is advisable to perform several runs, then select 

the solution that provides the more accurate results. Although 

not being part of the scope of this study, increasing the 

population size would avoid premature convergence of the 

objective function towards a local optimum. 

Despite acceptable goodness of fit was determined when 

comparing the Nusselt number calculated values (Nu') versus 

the synthetic ones (Nu), the higher performance was achieved 

through the functional form associated to the von-Kármán 

analogy. Low error indexes were obtained by means of 

equation .1'vKNu , contrasting with average deviations beyond 

10 % for equation .2'vKNu  which is linked to the Reynolds-

Colburn analogy. Because of the higher errors, this last 

expression was rejected as a solution (Table 13). 

 

Table 11. Parameters estimation using “von-Kármán” data set  

 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 1 0 1 1 1 

b2 0 1 0 0 0 

d1 1/3 2/5 2/5 1/3 2/5 

d2 1 2/3 1 1 1 

c1 0.029 0.018 0.030 0.030 0.029 

c2 0.801 0.837 0.801 0.800 0.801 

c3 508.5 61.5 324.0 1083.0 1216.5 

c4 0.80 13.46 0.82 0.82 0.80 

Algorithm performance 

f obj 0.0785 0.2650 0.0785 0.0784 0.0785 

i 78 84 100 93 80 

sc 2 2 2 2 2 

 

Table 12. Approximation of correlations derived from 

von-Kármán analogy 

 
Target  Obtained correlations 

Eq. (11) 

    

( )

0.801

.1

0.1

0.029
'

5 1
1 0.8 1 ln

6

vK

Re Pr
Nu

Pr
Re Pr−

 
=

 +  
+   − +   

  

 

 0.837 0.4

.2' 0.018vKNu Re Pr=    

 

Table 13. Calculated correlation and error indexes 

 

Parameters 
Functional form 

von-Kármán Reynolds-Colburn 

R 0.99851 0.98698 

e ave 3.2600 10.9700 

e max 8.5500 28.1900 

E ave 75.6148 274.4738 

E max 2.2988·103 7.0395·103 

 

3.4 Approximation of novel correlations 

 

Robustness and stability of the proposed solution method 

was finally verified versus the synthetic data set generated by 

using the Camaraza-Medina correlation (Table 14). Despite 

the authors selected the Prandtl analogy to deduce their 

expression, and adjusted the correlation coefficients based on 

a wider range of experimental data, their functional form does 

not exactly reproduce the structure of other correlations 

derived from this analogy. 

Considering that no adaptation of the comprehensive 

equation matches Camaraza-Medina’s mathematical form, the 

implemented methodology has identified different 

correlations to approximate the target expression (Table 15). 

When evaluating the Pearson’s correlation coefficient to 

compare the Nusselt number estimated values (Nu') versus the 

reference data (Nu), it was determined that the functional form 

based on von-Kármán analogy ( 𝑁𝑢′𝐶−𝑀.1 ) provides the 

strongest association between the variables, followed in 

descending order by the equations consistent with Prandtl 
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( 𝑁𝑢′𝐶−𝑀.2 ) and Reynolds-Colburn ( 𝑁𝑢′𝐶−𝑀.3 ) analogies. 

Considering the above, besides calculated error indexes (Table 

16), it is recommended to use the first expression (𝑁𝑢′𝐶−𝑀.1) 

for approximation of Camaraza-Medina correlation. It 

provides relative deviations equal or lower than 20% in 

65.95 % of the evaluated data points (Figure 3). 

Although the functional form based on von-Kármán 

analogy proved to be the most accurate, maximum deviation 

values are considered high in all three cases. This is attributed 

to the fact that the proposed methodology tries a single-

equation approximation of Camaraza-Medina correlation, 

which, as observed in Eq. (12), was adjusted for two pre-

defined ranges of the Reynolds number: transition region 

(2.4·103 < Re < 104) and turbulent zone (104 ≤ Re). The 

viscosity correction factor (Jμ) constituted another source of 

errors, since Mondal and Field [52] expression was used this 

time, whose exponents differ from those recommended by 

Camaraza-Medina et al. [61]: 0.254 vs. 0.250 for cooling and 

0.087 vs. 0.110 for heating, respectively. 

The aforementioned results do not discard the proposed 

methodology under this scenario, since Eq. (14)-parameter-

estimation should be tried first in the presence of the same 

experimental data used to obtain the Camaraza-Medina 

equation. Another strategy for improving accuracy of the 

results would be to perform a regression by batches, i.e. 

defining different intervals to adjust the correlation thus 

obtaining the constants that corresponds to each interval. This 

is the reason why Žukauskas [66] equations for tubes in 

external crossflow, despite published several years ago, 

remains so precise and accepted that there are no other models 

at present going beyond. Taler [19] also achieved good 

approximations for turbulent flow inside tubes, making the 

parameter estimation for three different ranges of the Prandtl 

number. 

 

 
Note: On the above histogram, Class denotes the relative error ranges, 
while Frequency stands for the number of calculated results having each 

errors range, i.e. how many times each score occurs. 

 

Figure 3. Relative error histogram for equation .1' −C MNu  
 

Table 14. Parameters estimation using “Camaraza-Medina” data set 
 

Variables 
 Algorithm runs 

 1 2 3 4 5 

Computed coefficients 

b1 0 1 1 1 1 

b2 1 0 0 1 0 

d1 2/5 2/5 1/3 2/5 1/3 

d2 2/3 2/3 2/3 2/3 2/3 

c1 0.007 0.015 0.015 0.102 0.014 

c2 0.885 0.834 0.834 0.026 0.843 

c3 913.5 318.0 943.5 0 496.5 

c4 20.0 1.7 1.7 6.62 1.64 

Algorithm performance 

f obj 0.4079 0.3266 0.3266 0.6322 0.3293 

i 138 114 200 51 82 

sc 2 2 1 2 2 
 

Table 15. Approximation of Camaraza-Medina correlation 
 

Target Obtained correlations 

Eq. (12) ( )
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0.885 0,4

.3' 0.007 − =   C MNu Re Pr J  

 

Table 16. Calculated correlation and error indexes 
 

Parameters 

Functional form 

von-Kármán Prandtl 
Reynolds-

Colburn 

R 0.99959 0.99842 0.99725 

e ave 15.8400 40.9200 21.9900 

e max 34.6400 63.3000 44.3700 

E ave 1.509·103 2.6010·103 1.4344·103 

E max 1.1249·105 1.5981·105 5.2654·104 

3.5 Film coefficient calculation uncertainty 

 

The aforecited Nusselt number deviations, by themselves, 

did not allow estimation of errors incurred by using this 

variable in further analyses. Therefore, an uncertainty analysis 

over the dependent variable was performed for calculation of 

the film coefficient according to Eq. (1). Combined standard 

uncertainties, as shown below (Table 17), were determined by 

applying the Law for the Propagation of Uncertainty for 
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uncorrelated input variables. It is based on a first-order Taylor 

series approximation, assuming that errors distribution 

probability is almost symmetrical [67]. 

 

Table 17. Film coefficient percentage uncertainties 

 
Study case e ave Nu u h 

Dittus-Boelter 4.9233·10-4 5.0280 

Sieder & Tate 1.1047·10-2 5.0280 

Petukhov 2.0200 5.4186 

Gnielinski 9.9306·10-2 5.0290 

von-Kármán 3.2600 5.9924 

Camaraza-Medina 15.8400 16.6189 

 

where: e ave Nu – mean relative error related to the Nusselt 

number calculation, %; u h – combined standard uncertainty 

related to the film coefficient calculation, %. 

The combined standard uncertainty remained almost the 

same on the first five cases, because the thermal conductivity 

typical uncertainty exerted the greatest influence. A different 

result was perceived on the last case, since deviations related 

to the Nusselt number calculation were of a higher order. 

Despite these facts, percentage uncertainties related to 

determination of the film coefficient did not markedly differ 

from computed Nusselt number relative errors (differences are 

lesser than 5.03 %). 

 

 

4. CONCLUSIONS 

 

A new methodology was proposed for determination of 

forced convective heat transfer film coefficients under single-

phase non-laminar flow conditions, inside tubes. Effectiveness 

of the parameter estimation approach was verified against six 

synthetic data sets, enclosed within the following validity 

ranges: 2.4·103 ≤ Re < 5.0·106, 0.715 ≤ Pr ≤ 84101 and 0.255 

< μ/μw < 5.077. It was confirmed that the comprehensive 

Nusselt number expression, according to Eq. (14), has the 

capability of evolving into three different functional forms 

derived from the analogies among momentum, heat and mass 

transfer as proposed by Reynolds-Colburn, Prandtl and von-

Kármán. 

The resultant Nusselt number equations were similar to the 

initial correlations used to produce the synthetic data sets, on 

the following cases: Dittus-Boelter, Sieder & Tate, Petukhov, 

Gnielinski and von-Kármán. Comparison of the response 

variables (Nu' vs. Nu) resulted in Pearson correlations higher 

than 99.85 %, and a maximum relative error of 8.55 %. On the 

sixth case, aimed to approximate the correlation from 

Camaraza-Medina, an expression based on von-Kármán 

analogy was suggested since it provides 99.959 % correlation 

and average relative deviations of 15.84 %. The higher errors 

are mainly attributed to single-interval approximation of a 

two-Reynolds-ranges correlation and the use of a different 

viscosity correction factor. Lastly, film coefficient calculation 

uncertainties did not markedly differ from computed Nusselt 

number relative deviations. 

Attained preliminary results suggest that the implemented 

methodology has the potential to become an important 

practical solution. However, because doing the research by 

zones, this paper only examines a first interval of the 

viscosities ratio. In this respect, future research opportunities 

should focus on evaluating a wider range of μ/μw and 

validating this approach by means of experimental data.  
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NOMENCLATURE 

 

b1, b2, c1, c2, 

c3, c4, d1 and 

d2 

Eq. (14) regression parameters 

d tube inside diameter, m 

e relative error, % 

E absolute error 

f Darcy-Weisbach friction factor 

fobi objective function value 

h film coefficient, W/(m2·K) 

i number of iterations 

Jμ viscosity correction factor 

k fluid thermal conductivity, W/(m·K) 

L tube length, m 

m correction factor equation exponent 

n number of data points  

Nu Nusselt number (reference value) 

Nu’ Nusselt number (theoretical value) 

P 
binary variable defining the heat exchange 

process type (cooling or heating) 

Pr Prandtl number 

R Pearson correlation coefficient 

Re Reynolds number 
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Sc Schmidt number 

T∞ fluid bulk temperature, K 

Tw average wall temperature, K 

 

Greek symbols 

 

ε/d tube relative roughness 

μ 
dynamic viscosity at fluid bulk temperature, 

Pa·s 

μw 
dynamic viscosity at average wall 

temperature, Pa·s 

 

Matrix and vectors 

 

X 
vector containing the coefficients to be 

computed by the GA 

Y 
vector containing the independent variables 

values 

 

Subscripts 

 

ave average or mean value 

C-M referred to Camaraza-Medina correlation 

D-B referred to Dittus-Boelter correlation 

Gn referred to Gnielinski correlation 

i i-th element of the corresponding vector 

max maximum value 

Pt referred to Petukhov correlation 

S&T referred to Sieder & Tate correlation 

vK referred to von-Kármán correlation 

 

 

ABBREVIATIONS  

 

ANN Artificial Neural Networks 

GA Genetic Algorithms 

GP Genetic Programming 

sc Stop criteria 
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