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The cold spot identification approach is limited due to the lack of high-resolution infrared 

thermal images. To solve the problem, infrared thermal images are enhanced using several 

ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the 

Canny edge detection method, and deep learning approaches based on denoising 

autoencoder. The comparison of several enhancement methods based on quality metric 

factors leads to the selection of the best method. The noise in the Infrared (IR) image is 

reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared 

image to a 64 x 64 resolution image is demonstrated. This study presents an information 

visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to 

improve anomalous areas in the condenser's infrared thermal images keeping in mind the 

current popularity of deep learning models in machine learning. The use of a deep learning 

autoencoder improves structural similarity index of the image, which is comprehensive. The 

structural similarity index of the image is improved when a deep learning autoencoder is 

used. In comparison to CLAHE and the Canny edge detection approach, substantial research 

indicates that the High-resolution autoencoder is best suited for IR image improvement. 

Thermal imaging, the suggested technique can improve anomalies without sacrificing 

crucial information when compared to the straight discriminant analysis. 
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1. INTRODUCTION

Nowadays, contactless imaging has become more popular 

for determining the temperature profile of an object. Infrared 

cameras are the most popular cameras used for this purpose. 

Visible lights are electromagnetic waves that can be seen 

through the naked eyes. In this visible light, we can see red to 

violet colors. The naked eye cannot see Infrared light, but it is 

useful for finding the temperature profile of the object surface 

[1]. All material emits infrared radiation, and when the 

temperature of the material increases, the wavelength of IR 

radiation decreases. Infrared light helps rescue workers 

equipped with longwave IR sensors to find out a lost person in 

forest in the night [2]. IR radiation can penetrate well in fog 

and smoke than the normal light and can reveal covered 

objects. IR sensors can detect the presence of a hotspot or cold 

spot in equipment or an electric circuit [3]. 

For some decades, Pulsed thermography (PT) could be used 

in the manufacturing industry as a non-destructive evaluation 

(NDE) method for defective spotting. It requires an external 

heating element to warm the element and would then reduce 

the temperature for a set duration of time. In the meantime, an 

infrared camera records a visual of the average temperature 

characteristics of the items. The interface, as well as close 

features of the element, could be assessed using the same 

temperature distributions. Infrared imaging can make 

tremendous applications in medical, industrial, defense, and 

agricultural fields. In industries, most of the problem occurs 

due to the mechanical or electrical issues of equipment [4]. 

Any damage in one piece of equipment leads to secondary 

damage of related equipment or interruption of the entire 

process. This will cause substantial financial loss to the 

industry. Equipment structural health can be identified in most 

of the cases using its temperature emission. The surface 

temperature profile of any object can easily be detected using 

Infrared cameras. Nowadays the Infrared thermography 

emerging technology is used for identifying the mechanical 

and electrical issues of equipment. This technology is 

contactless, fast, reliable, and can scan large areas within a 

short time. 

The steam turbine power plant efficiency depends on the 

condenser performance. The condenser performance 

degradation due to air ingress can be identified by helium leak 

test, tracer gas method, and infrared camera. But due to the 

low resolution of the thermal image and very less temperature 

difference in the surface of the condenser, it is very difficult to 

understand the leakage of the Condenser through infrared 

image assessment. The proposed research work overcomes 

these issues by using high-resolution infrared cameras and 

advanced image processing tools and deep learning networks. 

The data for the research work is collected from Ratnagiri Gas 

Power Plant Ltd with a capacity of a 1967MW combined cycle 

power plant. The study has been conducted with 500 infrared 

thermal images of the condenser to detect the cold spot 

detection of the condenser air ingress test.  

2. RELATED WORKS

In industries, most equipment failure occurs due to the 

electrical or mechanical problems of equipment parts. If the 

problem is identified earlier, it will avoid equipment failure. 

Soliman [5] in most of the issues, shows the temperature 
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difference on the surface. The infrared camera captures the 

infrared radiations emitted by the object. The camera denotes 

the surface temperature profile of the object in RGB color 

format. The infrared camera is helpful for hot spot and cold 

spot detection of equipment. In RGB color format, the hot spot 

is represented using red color. A hotspot is useful for finding 

short circuits, electric sparks, overheating parts of devices, etc. 

[6]. A cold spot means significantly less temperature 

compared to other parts of an image. In RGB color format, it 

is denoted using blue color. Cold spot detection helps find 

leakage in vacuum areas, cooling system leakage, etc. [7]. 

Advance infrared cameras Fluke 480 PRO is used for 

capturing the condenser image. It has a resolution of 640 x 480. 

Super-resolution of the 1280 x 960. The thermal sensitivity of 

the camera is less than 0.05℃. Image For improving the 

quality of IR, images use several image enhancement tools. In 

the RGB image, the cold spot is always located in the blue-

colored area. The paper describes different thermal image 

enhancement techniques such as Contrast Limited Adaptive 

Histogram Equalisation (CLAHE), Canny edge detection 

algorithm, and high-resolution autoencoder deep learning 

methods. The performance assessment of the above 

enhancement methods is depicted, which gives the suitability 

of different methods for infrared thermal image enhancement. 

 

 

3. MATERIALS AND METHODS 
 

The high-resolution autoencoder supervised learning 

method is effective for infrared thermal image enhancement. 

Through deep learning algorithms had reached the state-of-

the-art quality of picture segmentation as well as picture 

retrieval challenges, the scenario in the NDE domain seems to 

be rather opposite, because of frequently hidden defects 

beneath the ground, it is also difficult to collect 100 percent 

correct regression coefficients labeling for the learning of a 

guided deep learning algorithm. Reliable, high accuracy is 

established by undertaking disruptive examination, such as 

transversal breaking of metal. Therefore, such a strategy could 

quickly grow extremely expensive and difficult. Moreover, it 

is understood that the strength of the tagging does have a 

significant impact on the findings. Such underlines the 

significance of reliable and accurate classification algorithm 

information about the effects' position as well as 

meteorological dimensions in the NDE field. These works are 

considered a self-supervised learning approach with stacked 

DAE to analyze temperature information to solve the accuracy 

tagging difficulty because this strategy does not rely on human 

past information but rather on the information themselves. 

 

3.1 Condenser cold spot application 

 

In a thermal power plant, electricity is generated using 

steam, high-pressure steam generated in a steam generator 

expanded in a turbine produces electricity. The condenser 

converts the low-pressure steam from the turbine to water. 

Water is then pumped into the steam generator for continuing 

the cycle. The condenser always maintains a vacuum inside it. 

Transferring heat to circulate water inside the condenser tubes, 

and saturated steam is passed outside the condenser tubes. 

Condenser pressure decreases with condenser temperature 

reduction, subsequently, the power plant efficiency will 

increase [8]. Condenser air ingress can be identified using lots 

of technologies such as helium leakage test [9]. It is time-

consuming and expert knowledge is required for leakage 

detection. 

The condenser is in a vacuum, the insoluble gases present 

in steam deteriorate the condenser vacuum. This rise in the 

condenser pressure leads to a reduction in power plant output 

and efficiency. Insoluble gases will blanket the heat transfer 

surface of the tubes, which reduces the heat transfer to the 

circulating water. Condenser air ingress detection is a 

challenging process. Methods like helium leak test, passage of 

helium gases through the condenser and helium detection will 

be placed on the chances of getting leaked [10]. So, in this case, 

expert knowledge is required. This is a well-proven 

technology in the industry. 

The other emerging techniques for condenser air ingress 

tests are IR thermal image assessment and ultrasound 

assessment methods. In the case of IR imaging of condensers, 

cold spot detection is also a challenging process by 

Balamurugan et al. [11]. IR camera captures the surface 

temperature profile of the condenser. Cold spot detection is a 

challenging process due to the temperature difference between 

the surface being significantly less. Hence the method is not 

so successful in the industries for the air ingress test. So cold 

spot detection using IR imaging requires advanced Image 

enhancement and other image processing tools for locating air 

ingress. Figure 1 shows the visible and IR thermal image of a 

condenser-connected pipeline flange. 

 

 

 

 

Figure 1. Infrared thermal image 

 

3.2 Cold spot identification challenge using IR 

 

The condenser always maintains vacuum inside; hence the 

surface is concealed. Identification of surface temperature 

differences using IR imaging requires good quality IR image. 

A high-resolution camera is necessary for the same. An 

infrared image of the condenser gives us a surface temperature 

profile. The condenser surface temperature difference is 

meager. Maintain the vacuum condition in the condenser, 

which is concealed with a protective covering [12]. So the 

temperature variation in the surface area will be very low. The 

atmospheric air ingress leads to a slight reduction in the 

temperature of the surrounding area of the ingress point. The 

flanges connected to the condenser are the most probable 

location of air ingress. 

The thermal image enhancement algorithm can be used to 

improve the quality of the image. The thermal image is 

typically represented using grayscale or RGB. The different 

shades of grayscale represent the different values of 

temperature on the surface. In the grayscale image, the 

different light grey colors denote high temperature and dark 

grey colors denote less temperature on the surface. RGB image, 

red color denotes high-temperature location, and blue color 

indicates less temperature. An enhanced blue area is required 

for identifying the cold spot. 
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3.3 Deep learning in thermal information processing 

 

Several digital image challenges, like object classification 

and image analysis, have already shown that the deep learning 

algorithm works well. As a result, several researchers have 

concentrated on using certain techniques to analyze the 

information. To identify breaks in metal specimens, a deep 

conventional system is trained to point on information 

obtained using eddy current pulsing thermal imaging. 

Autoencoder, layered autoencoder, and diagnosing 

autoencoder are three types of autoencoders. 

An autoencoder seems to be a sort of deep net that converts 

model parameters into a compact space and thereafter rebuilds 

the actual information using those compressed characteristics. 

The encoding, as well as decoding, are the two halves of an 

autoencoder. The transmitter converts an input into a 

compacted space, while the decoding reshapes the information. 

It could be self-taught because the broadcaster's input could be 

utilized as a clear reference to the cable network outcome. Its 

fundamental construction is depicted in Figure 2. 

 

 
 

Figure 2. The model architecture of autoencoder 

 

 

4. PROPOSED METHOD 

 

4.1 Image acquisition 

 

The thermal image can be captured using an infrared camera. 

The spatial distribution of the surface temperature difference 

of an image is depicted in the visible image. This is possible 

by capturing infrared radiation which is emitted by the object 

and converted into visual form. Hence using an infrared 

camera represent the spatial distribution of surface 

temperature [13]. The application requires remote sensing of 

temperature; infrared imaging is more appropriate. RGB color 

format is used to depict the temperature difference. Thermal 

images can be captured using high-resolution infrared cameras 

such as Fluke Ti480 PRO. It has a super-resolution of 1280 x 

960 pixels. 

 

4.2 Enhancement of image quality 

 

The quality of the thermal image is vital for thermal image 

processing. Different techniques are available for visual image 

enhancement, including histogram equalization, and adaptive 

histogram equalization [14]. For noise reduction, different 

filters such as median filter, Gaussian filter, Weiner filter can 

be applied [15]. Hybrid image enhancement methods are based 

on the objective of thermal image processing. Image 

enhancement is applied in both greyscale and RGB format. 

Blackhat transform approach histogram equalization and 

CLAHE is used for image enhancement [16]. Canny edge 

algorithm is used for enhancement of input images in Canny 

edge color segmentation approach. 

 
 

Figure 3. A plot of frequency response of 7-taps filter 

 

The characteristic of the frequency response of the 7-taps 

kernel (Figure 3) shows Gaussian distribution. Hence the 7-

taps kernel is used for the processing of Laplacian Pyramid 

based spatial enhancement an improved Canny edge algorithm 

gives better results than the traditional Canny edge algorithm 

in infrared image enhancement which is described by Liu et al. 

[17]. Canny Edge algorithm uses morphological operation for 

smoothening and OTSU method used in the double 

thresholding. An end-to-end infrared small target detection 

model is based on a denoising autoencoder network according 

to Shi and Wang [18]. Several strategies are used to improve 

the quality of thermal images. The approaches listed below can 

be used to improve the image quality of thermal images. 

 

4.3 Contrast limited adaptive histogram equalization 

(CLAHE) 

 

It corrects for contrast overamplification. It works on small 

regions than the whole image. The surrounding tiles are mixed 

using bi-directional interpolation. When there are parts of the 

image that are much brighter or darker than the rest of the 

image, the contrast in these areas will be inadequately 

improved. AHE relies on this by transforming each pixel with 

a transformation function derived from a neighborhood region. 

Abood [19] described the contrast enhancement of Infrared 

images using CLAHE. After calculating the histogram of the 

IR image, it calculates the density function. 

 

cdfx(i) = ∑p(xi)

i

j=0

 (1) 

 

where, sk is the new distribution of the histogram () pxi is 

related to the probability of occurrence of intensity level in an 

image. After normalizing the histogram equalization 

calculates the new distribution divide the image into three 

regions according to the specification of every region that is 

different from another region. Calculate the slope of every 

region.  

Calculate the clip limit by using the equation: 

 

β =
MN

Lmax

(1 +
α

100
(Smax − 1)) (2) 

 

where, α is the cutting factor, β is the clip limit, Smax maximum 

possible slope. 

When α varies between zero and hundred, the maximum 
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slope between 1 and Smax is changed. Therefore, subdividing

the whole image into subregions. Each of the histogram is 

evaluated and it is cut into the value. This redistributes all the 

values. Figure 4 shows the representation of the input image, 

the CLAHE enhanced image. 

Algorithm 1: Enhancement of CLAHE image 

Step 1; Excess is initialized to 0 

Step 2: for m ranges from 0 to m-1 

if g(m)>α, then 

Excess+=g(m) – α 

g(m) = α 

end if 

end for  

Step 3: n=Excess/m 

for m ranges from 0 to m-1 

if g(m) < α-n, then 

g(m)+=n 

Excess+=n 

else if g(m)<α, then 

Excess-=α+g(m)  

g(m)=α 

end if 

end for  

Step 4: while Excess is greater than 0 

for m ranges from 0 to m-1 

if Excess> 0 then 

if g(m)<α-n, then 

g(m)+=1 

Excess-=1 

end if 

end if 

end for 

end while 

Figure 4. The IR image of a condenser and enhanced 

CLAHE image 

The CLAHE algorithm-based enhancement shows the clear 

visual change in the image. The image quality assessment 

values also indicate the enhancement of the image. The Signal 

to Noise Ratio and Mean Square Error of the enhanced image 

are 29 and 0.38 respectively. The human visual perception 

indicates structural similarity index measure (SSIM) is 0.7488. 

Figure 5 shows the histogram of the IR image of condenser 

and its enhanced image. 

(a) 

(b) 

Figure 5. The histogram of IR image of a condenser and 

histogram of enhanced image 

4.4 Canny edge detection algorithm 

It is thought to be a better (in terms of false alarms) edge 

detection than the others. This is primarily due to Non-

Maximum Suppression-Edges candidates that are not 

dominant in their vicinity are not considered edges and the 

Hysteresis Process entails traveling along with the candidates 

and lowering the threshold when a candidate is in the vicinity 

of an edge. 

The Canny edge detection follows the following steps 

1. Noise reduction

A Gaussian filter is used to smooth the edges. The equation

for a Gaussian filter with (2k+1)*(2k+1) is 

Hij

=
1

2πσ2
exp⁡ (−

(i − (k + 1))
2
+ (j − (k + 1))

2

2σ2
) 

(3) 

2. Calculate the gradient

It calculates the stage of edge detection and intensity of

direction by computing the image's gradient using: horizontal 

(x) and vertical (y). The derivatives Kx and Ky concerning x

and y are determined for image smoothening. It is possible to

implement it by convolving x with the Sobel kernels.

Kx = [
−1 0 1
−2 0 2
−1 0 1

] , Ky = [
1 2 1
−2 0 2
−1 −2 −1

] (4) 

The gradient's magnitude G and slope are determined as 

follows. 
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|G| = √Ix
2 + Iy

2 ,θ(x, y) = arctan (
Iy

Ix
) (5) 

 

3. Non-maximum suppression 

Non-maximum suppression works by locating the pixel in 

an edge with the highest value. 

 

4. Double threshold 

It applies the following two thresholds to the data: Values 

that are equal to or greater than the higher criterion remains 

unaffected. 

 

5. Hysteresis-based edge tracking 

The majority of thresholds employed a single threshold 

limit, which means that if the edge values move above and 

below this number, the line seems broken. Figure 6 shows the 

images of Canny edge detection algorithms. 

 

 

 

 

Figure 6. IR condenser image and Canny edge algorithm 

 

4.5 High-resolution autoencoder 

 

Auto-encoders are a type of CNN that learn how to encode 

effectively and compress data, before learning how to decode 

the compressed version and retrieve the original entry. The 

encoder and decoder network are the two most important 

components. The network of encoders retrieves the data and 

compresses it by deleting some of the unecessary elements. 

The decoding network will then use the original image 

representation to recreate the original image. If the rebuilt 

input deviates from the original input during training, the loss 

will be substantial, thus the model will learn to reconstruct the 

data as close to the original input data as possible. 

The autoencoder is used to improve the image quality, if it 

is designed correctly, it will try to restore the original data 

provided to the network. The proposed method makes modest 

adjustment in calculating loss function to achieve image 

improvement using encoders. High-resolution thermal images 

are first converted into low-resolution images, which are 

utilized as input images for training the network. The high-

resolution images are then used as targets for training the 

network. A learning algorithm is capable of converting a low-

quality picture to a high-quality picture. As a result, if any 

image is fed into the network, it will return an enhanced image. 

The encoder is a series of convolutional blocks followed by 

pooling modules that compress the input of the model into a 

small segment known as the bottleneck. The decoder follows 

the bottleneck, which comprises a set of upsampling modules 

that convert the compressed feature back into an image. When 

it comes to simple autoencoders, the outcome should be the 

same as the input with a reduction of noise. 

The major part of the encoder-decoder consists of 

convolutional blocks and pooling modules. Here it uses 2D 

convolutional block. The equation shows the convolution of 

the image, 

[Yi, j] = ∑ ∑ h[m, n]. x[i − m, j − n]

∞

n=−∞

∞

m=−∞

 (6) 

 

The Autoencoder uses 400 Infrared images for training. The 

low-resolution images are given as the input to the network. 

Here Relu is used as an activation function. The input images 

data size is set as 64*64. Table 1 shows the model summary 

of denoising high-resolution enhancement. Figure 7 depicts 

the low-resolution image of the condenser IR image and the 

high-resolution condenser IR image as the output of the 

autoencoder. 

 

Table 1. High-resolution autoencoder summary 

 
Layer (types) Outcome Structure Param 

Conv3DConv2d_l (None, 64,64,128) 3585 

(Conv2D) (None, 64,64,64) 73545 

Conv2d_2 (Conv2D) (None, 64,64,32) 18533 

Max_pooling2d (None, 32,32,32) 0 

Conv2d_3 (Conv2D) (None, 32,32,16) 4682 

Conv2d_4 (Conv2D) (None, 32,32,16) 2415 

Up_sampling2d (None, 64,64,16) 0 

Conv2d_5 (Conv2D) (None, 64,64,32) 4631 

Conv2d_6 (Conv2D) (None, 64,64,64) 18562 

Conv2d_7 (Conv2D) (None, 64,64,128) 73520 

Conv2d_8(Conv2D) (None, 64,64,32) 3481 

 

 
 

Figure 7. The low-resolution input image and high-

resolution IR image of the condenser 

 

 

5. RESULTS AND DISCUSSION 

 

Image quality can be assessed by comparing the values of 

SNR, MSE, SSIM. The image quality is good for greater SNR 

value, high entropy indicates a detailed image, MSE value will 

be closer to zero. The structural similarity measurement value 

is always in between 1 and -1. 1 indicates similarity between 

the image is more. Table 2 shows the quality assessment of 

two approaches of image and Canny color segmentation 

approach is slightly better than Blackhat transform approach. 

The peak signal-to-noise ratio (PSNR) is the ratio of an 

image's maximum achievable power to the power of 

corrupting noise that influences the representation's quality. 

To calculate the PSNR of an image, it must be compared to an 

ideal clean image with the highest possible power. PSNR is 

defined by the equation, 

 

PSNR = 10log10
(L − 1)2

MSE
 (7) 

 

MSE is the mean squared error & it is defined as: 

 

MSE =
1

MN
∑ ∑(O(i, j) − D(i, j))

2
n−1

j=0

m−1

i=0

 (8) 
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The Structural Similarity Index (SSIM) is a perceptual 

metric that measures degradation of mage quality as a result of 

processing such as data compression or data transmission 

losses. It is a full reference metric that requires two images—

a reference image and a processed image from the same image 

capture. 

 

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)
 (9) 

 

where, μx the average of x, μy the average of y,σx
2 ,σy

2  the 

variance of x and y, σxy the covariance of x and y. C1=(K1L)2, 

C2=(K2L)2 two variables to stabilize the division with weak 

denominator,⁡L the dynamic range of pixel-values, K1=0.01 

and, K2=0.03 by default. A comparative study of CLAHE, 

Canny Edge Detection algorithm, and High-resolution 

autoencoder is conducted, and the values are depicted in Table 

2 based on the output. 

 

Table 2. Quality measurement of different image 

enhancement techniques 

 
 SNR MSE SSIM 

CLAHE 29.00 0.38  0.75  

Canny Edge Detection 12.66 0.42 0.42 

High-resolution autoencoder 31.00 0.25 0.91 

 

 
 

Figure 8. Calculation of histogram 

 

The Block diagram of its hardware realization is shown in 

Figure 8. For each pixel, the histogram and excess counter can 

be updated in less than six clocks. There will be no need for a 

buffer if the clock rate of the histogram engine is at least six 

times faster than the pixel arrival rate. However, if the clock 

rate is the same as the pixel arrival rate, there is a need for a 

buffer, with the size of 64 pixels on each engine. In this case, 

when the last pixel of each regional row arrives, there are still 

53 pixels left for processing. The time for this processing is 

less than 318 clocks, which is less than the time that it takes 

for the first pixel of the next regional row, exactly 7×64=448 

V component (in HSV model) and the L component (in 

LAB model) are enhancement adopted by CLAHE. The V and 

L components are divided into 8×8 tiles. The clip limit applied 

is 0.02. We applied Uniform distribution as the histogram 

frame for the tiles of the image. The modified gray levels 

expression for standard CLAHE technique with Uniform 

Distribution can be given as 

P = (PMax − PMin) × R(f) + PMin (10) 

 

where, PMax–Maximum value of P PMin-Minimum value of P, 

R(f)-Cumulative distribution. 

Figure 9 the results of thermal image enhancement 

demonstrated respectively by several methods: a- Original 

image. b- The histogram equalization method. c- The CLAHE 

method. d- The proposed method to enhance the image. The 

analysis infers that the proposed method demonstrates more 

specifics in the gained enhanced thermal images, which gives 

preferred visual quality over the histogram adjustment method 

and CLAHE. Table 3 shows experimental results for the 

lowest Image Enhancement Measure (EME) of original 

images and applies the processing of the proposed algorithm. 

It is noted that the results of the quality gained by the proposed 

algorithm are best concerns for EME measurement. 

 

 

 
 

Figure 9. Comparison of proposed with existing systems 

 

Table 3. EME measures results 

 

Picture Original 
Histogram 

Equalization 
CLAHE 

Proposed 

Technique 

Tree 0.834 8.434 5.034 16.23 

Bus 1.523 9.834 5.322 15.243 

Road crossing 4.098 18.543 18.854 30.234 

hospital 5.873 10.823 15.012 19.532 

Original Image CLAHE Canny Autoencoder 
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6. CONCLUSIONS

Condenser air ingress is detected using the thermal imaging 

of the condenser. The location of the thermal image cold spot 

denotes the point of air ingress. A high-resolution thermal 

image is a basic prerequisite for detecting cold spots quickly, 

which can be accomplished by enhancing the infrared image. 

Various IR image enhancement techniques are used on 

thermal images of the condenser to locate cold spots. 

Comparative research contrasts and compares the thermal 

image enhancement method to various other strategies. 

CLAHE, Canny edge algorithm, and high-resolution deep 

learning autoencoder are techniques for enhancing the quality 

of infrared images. The High-resolution autoencoder has a 

signal-to-noise ratio (SNR) of 31, which indicates that it 

produces less noise. The human visual perception indicator is 

the structural similarity index measure (SSIM), which has a 

higher value of 0.91 for high-resolution autoencoders. The 

High-Resolution Autoencoder algorithm performs better for 

Condenser cold spot identification as per the results of the 

comparison study. Air ingress in the condenser is identified 

accurately using high-resolution thermal imaging. 
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