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For autonomous mobile robots, determining the shortest path to the target is an 

indispensable requirement. In this work, two modifications of the Grey Wolf Optimization 

(GWO) method, which are called MGWO1 and MGWO2, are suggested for online path 

planning to make the mobile robot reach the goal using the shortest path and safely 

avoiding the obstacles in unknown environments. To avoid sharp curves, a cost function 

is derived using a path smoothing parameter and an integrated distance function. The 

results of the proposed approach are presented based on computer simulation in various 

unknown environments. A study was conducted to compare the performance of the 

proposed algorithm with those of other algorithms and the results indicated that the 

proposed GWO, MGWO1, and MGWO2 algorithms are competent in avoiding obstacles 

successfully including the local minima situation. Finally, the average enhancement rate 

in path length compared with Adaptive Particle Swarm Optimization (APSO), GWO is 

5.30%, MGWO1 is 5.52%, and MGWO2 is 7.44%. 
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1. INTRODUCTION

The motion planning issues of a mobile robot is an 

important topic of study in the area of mobile robots in current 

research [1]. Route planning is a process to obtain a sensible 

and collision-free route between the starting point and the 

destination, where the need to plan the route becomes 

important for a fully or partially automated process [2]. 

Generally, planning the movement of a mobile robot in an 

unfamiliar environment has been divided into two categories. 

First, the obstacles are unknown and the information about the 

obstacles is completely unknown. The most important thing in 

this situation is to avoid collisions with obstacles for mobile 

robots and not to seek the optimal planning of the movement. 

Second, the obstacles and their information are known [3]. 

Route planning can be divided into two categories: The first 

category is according to time, including online and offline 

planning. With online route planning, the route is calculated 

during movement based on sensor data, while with offline 

planning the route is calculated based on the environment 

model. The second category depends on the environment and 

it includes a dynamic environment that contains moving and 

static obstacles, while the static environment contains only 

static obstacles [4]. Many researchers have used different 

approaches in the navigation of Differential Wheel Mobile 

Robot (DWMR). For instance, Oleiwi et al. [5] applied fuzzy 

logic control for collision avoidance using only dynamic 

obstacles in partially unknown and known environments and 

they used the A-star algorithm to find the path in an offline 

manner. In another work [6], the authors proposed an 

intelligent Adaptive Particle Swarm Optimization (APSO) to 

be used for path planning in uncertain environments. Batti et 

al. [6] utilized fuzzy and neuro-fuzzy controllers to solve the 

simple static maze problem by obtaining information about 

some walls' positions in the maze using an offline approach. 

Gharajeh and Jond [7] employed an adaptive neuro-fuzzy 

network for a simple unknown static environment to find the 

best path. However, they did not apply their method in 

dynamic environments. Moreover, Pandey and Parhi [8] 

designed a fuzzy-wind-driven optimization algorithm that can 

deal with static and dynamic unknown environments. The 

drawback of this method cannot solve the local minima 

problem in U or L shape environment. 

2. PROBLEM STATEMENT

In general, while dealing with local route planning problems, 

the robot attempts to calculate its next collision-free point in 

an unknown area in steps from the start position to the finish 

position. 

The robot position used in this study is based on the 

comparative location (Odometric Localization), where each 

robot calculates its following position based on its present 

position, angle, and speed over a certain period, as shown in 

Figure 1. In particular, the following position of the robot is 

calculated using Eqns. (1) and (2) [9]. 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝐶𝑜𝑠 (𝜃𝑖) (1) 

𝑌𝑛𝑒𝑥𝑡 = 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝑠𝑖𝑛 (𝜃𝑖), (2) 

where, Xcurrent and Ycurrent are the coordinates of the current 

position and Xnext and Ynext are the coordinates of the 

succeeding nth robot position in the Cartesian coordinate. 

Moreover, the robot velocity, which is represented by vln and 

, θi represents the angle to direct the nth robot. 

In this context, we need some criteria and rules to solve 

path-planning problems. These rules are explained below: 
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1. The start and goal positions of the mobile robot are 

predefined. 

2. The robot uses its sensors to sense the nearby 

environment. 

3. The path sensing and calculation from the start to the 

end position are accomplished in a counted number of 

steps by the robot. 

4. The robot will directly navigate through its current and 

goal positions if the sensor detects no obstacles in the 

detection area, the robot goes to the goal position 

directly, otherwise, the proposed algorithm starts 

working to avoid obstacles, and then the robot goes to 

the goal position. Since the environment is unknown, 

the number of obstacles is unknown. Hence, the only 

limitation to the number of obstacles in the 

environment will be the processing ability of the 

simulation system. 

5. All obstacles taken from the environment are  circular, 

regardless of the shape of the obstacle and the area. 

 

 
 

Figure 1. Next and current positions of the mobile robot 

 

The route-planning model for the proposed system is shown 

in Figure 2. 

 

 
 

Figure 2. Path planning model of the mobile robot 

 

 

3. THE PROPOSED APPROACH 

 

In this section, the Grey Wolf Optimization (GWO) method, 

and its two modified versions proposed in this work are 

explained in detail.  

3.1 Grey Wolf Optimization (GWO) 

 

The GWO algorithm is based on the natural leadership 

hierarchy and hunting mechanism of grey wolves. For 

simulating the leadership hierarchy, four types of grey wolves 

are used: alpha (α), beta (β), delta (δ), and omega (w). 

Furthermore, the three main steps of hunting are implemented 

including: searching for the prey, encircling the prey, and 

attacking the prey. There are mathematical models of the 

social hierarchy, as well as tracking, encircling, and attacking 

the prey [10].  

 

3.1.1 The mathematical model in encircling the prey 

Wolves encircle their victim when hunting. Eq . (3) and Eq. 

(4) are used to model this situation mathematically. The hunt 

with the new position of the grey wolves will be surrounded as 

a result of this: 

 

�⃗⃗� = |𝐶 . 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | (3) 

 

𝑋 (𝑙 + 1) = 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝐴𝑋.⃗⃗ ⃗⃗ ⃗⃗  𝐷𝑋,⃗⃗⃗⃗⃗⃗  ⃗ (4) 

 

where, t indicates the present iteration �⃗⃗�  and �⃗⃗�  are coefficient 

vectors, 𝑿𝒑⃗⃗⃗⃗  ⃗ is the prey position vector, and 𝑋  indicates the 

grey wolf position vector. Eqs. (5), (6), and (7) are used to �⃗⃗� , 

�⃗⃗�  and �⃗⃗� : 
 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗⃗ − 𝑎  (5) 

 

𝐶 = 2. 𝑟1⃗⃗⃗⃗  (6) 

 

𝑎 = 2 ∗ (1 −
𝑙

𝑙𝑚𝑎𝑥

), (7) 

 

where, the components of 𝑎  are linearly decreased from 2 to 0 

over the course of iterations and 𝑟1⃗⃗⃗⃗  and 𝑟2⃗⃗⃗⃗  are random vectors 

in [0,1]. 

 

3.1.2 The mathematical model for hunting 
Grey wolves have the ability to encircle victims. The 

mathematical model assumes that the prey does not know its 

location. As a result, alpha, beta, and delta have a better 

understanding of the prey's location. The three best candidate 

answers are alpha (the first best solution), followed by beta, 

and delta. Omega wolves reposition themselves in accordance 

with the upper layer wolves. In this approach, the following 

equations, namely Eq. (8), (9), and (10) are proposed: 

 

𝐷𝛼⃗⃗⃗⃗  ⃗ = |𝐶1𝑋⃗⃗⃗⃗ ⃗⃗ ⃗⃗ . 𝑋𝛼⃗⃗⃗⃗  ⃗ − 𝑋 | ,𝐷𝛽⃗⃗⃗⃗  ⃗ = |𝐶2⃗⃗ ⃗⃗  . 𝑋𝛽⃗⃗⃗⃗  ⃗ − 𝑋 | 

𝐷𝛿⃗⃗⃗⃗  ⃗ = |𝐶3⃗⃗ ⃗⃗  . 𝑋𝛿⃗⃗⃗⃗  ⃗ − 𝑋 | 
(8) 

 

𝑋1⃗⃗⃗⃗  ⃗ = 𝑋𝛼⃗⃗⃗⃗  ⃗ − 𝐴1.⃗⃗⃗⃗⃗⃗  𝐷𝛼⃗⃗⃗⃗  ⃗ , 𝑋2⃗⃗⃗⃗  ⃗ = 𝑋𝛽⃗⃗⃗⃗  ⃗ − 𝐴2.⃗⃗⃗⃗⃗⃗  𝐷𝛽⃗⃗ ⃗⃗  ⃗ 

𝑋3⃗⃗⃗⃗  ⃗ = 𝑋𝛿⃗⃗⃗⃗  ⃗ − 𝐴3.⃗⃗⃗⃗⃗⃗  𝐷𝛿⃗⃗⃗⃗  ⃗ 
(9) 

 

𝑋 (𝑙 + 1) =
𝑋1⃗⃗⃗⃗  ⃗ + 𝑋2⃗⃗⃗⃗  ⃗ + 𝑋3⃗⃗⃗⃗  ⃗

3
 (10) 

 

3.2 The modified GWO algorithm 

 

In this work, two modifications were proposed to enhance 

the searching performance of the original algorithm. The first 
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modification was considered according to Mittal et al. [11]. In 

particular, it is worth noticing that the exploration phase of the 

original GWO algorithm is relatively complicated. Therefore, 

an effective balance among the exploitation and the 

exploration abilities in the original GWO cannot be achieved 

by the simple linear parameter 𝑎 . As a result, a nonlinear 

parameter was suggested utilizing an exponential decay term. 

It is worth mentioning that the addition of the exponential 

decay function did not significantly increase the complexity of 

computation. On the other hand, adding this function has 

positively affected the convergence speed compared to the 

original algorithm. In particular, the adaptive parameter 𝑎  is 

adjusted as expressed below [12]: 

 

𝑎 = 2 ∗ (1 −
𝑙𝑘

𝑙𝑚𝑎𝑥
𝑘) (11) 

 

The second modification was according to the ref. [12],  in 

which proposing a nonlinear parameter that utilizes the cosine 

function so that the adaptibility of the 𝑎  parameter is adjusted 

by [13]: 

 

𝑎 = 1 − 𝑐𝑜𝑠 ((1 −
𝑙

𝑙𝑚𝑎𝑥

)
𝑘

∗ 𝜋) (12) 

 

where, lmax denotes the maximum number of iterations and l is 

the current iteration. k=2 is the nonlinear adjustment parameter. 

For comparison purposes, the algorithms with the first and the 

second modifications were called MGWO1 and MGWO2, 

respectively.  

Despite the modifications above, the optimal path increases 

in length in our application, and thus another modification on 

Eq. (10) was required. Particularly, the location vector of a 

grey wolf in the original GWO algorithm is equally guided by 

the positions of α, β, and δ wolves as provided by Eq. (10). In 

this work, to calculate the location vector of a grey wolf, a 

more weight value is given to 𝛼 wolf followed by the β and the 

δ wolfs in the proposed modification, as follows: 

 

𝑋 (𝑙 + 1) =
𝑤1 ∗ 𝑋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑤2 ∗ 𝑋2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑤3 ∗ 𝑋3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

6
 (13) 

 

where, w1, w2, and w3 are the variable weight values for the 

α, β, and δ wolves, respectively. First of all, the summation of 

the weights should equal 1.0 [13], that is: 

 

w1+w2+w3=1 (14) 

 

Secondly, the weights of the alpha wolf w1, the beta wolf 

w2,  and the delta wolf w3 should always satisfy w1≥w2 ≥w3. 

Specifically, these weights were selected based on trial and 

error bases in this work to achieve the desired performance.  

 

 

4. FORMULATION OF THE COST FUNCTION FOR 

THE ROBOT PATH 

 

For safety purposes, the distance between the mobile robot 

and the obstacle must be kept to the maximum. On the other 

hand, the distance from the robot to the goal must be minimal 

to achieve the shortest path. Based on the two perspectives 

above, the cost function is designed to guarantee the optimal 

path. Particularly, the cost function has the following equation 

[14]:  

 

Cost Function =[𝛼1 × 𝑑𝑅𝐺 + 𝛼2 ÷ 𝑑𝑅𝑂 + 𝛼3 × 𝜃] (15) 

 

where, the parameter α1 is set so that the robot covers the 

minimum distance and reaches the target point as soon as 

possible [14]. Similarly, α2 controls the distance between the 

robot and the obstacle. α3 represents the path smoothing term 

utilized in the cost function so that the robot can avoid sharp 

turns in the suggested technique.  

dRO and dRG are used to calculate the distance between the 

robot and the obstacles and the distance between the robot and 

the destination point, respectively, and the Euclidean distance 

equation is employed as given below: 

 

𝑑𝑅𝑂 = √(𝑋𝑜𝑏𝑠 − 𝑋𝑟)2 + (𝑌𝑜𝑏𝑠 − 𝑌𝑟)2 (16) 

 

𝑑𝑅𝐺 = √(𝑋𝑔 − 𝑋𝑟)2 + (𝑌𝑔 − 𝑌𝑟)2 (17) 

 

In addition, θ is the deviation angle desired by the robot to 

detect the next position in the environment. Specifically, θ is 

given by Eq. (17). 

 

𝜃 = tan−1
𝑌𝑔 − 𝑌𝑟

𝑋𝑔 − 𝑋𝑟
 (18) 

 

where, Xg and Yg are the goal's coordinates in the x and y 

environment, Xr and Yr are the current robot's coordinate x and 

y values, and Xobs and Yobs are the obstacle's coordinates x 

and y in the environment. 

The complete flowchart of the proposed algorithm is 

presented in Figure 3. 

 

 
 

Figure 3. Flowchart of the optimization procedure 
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5. SIMULATION RESULTS AND DISCUSSIONS 

 

Using MATLAB R2016 b, the simulation tests were 

performed in a PC of Windows 10 OS, Intel(R) Core (TM) i7-

8550 U processor, 1.80 GHz CPU, and 20 GB RAM. The 

simulation parameters considered for the proposed algorithm 

are listed in Table 1. 

 

Table 1. Parameter settings for the simulation 

 
Parameters used in optimization 

Number of search agents 10 

Maximum number of iterations 10 

Dimension 1 

Lower bound -5 

Upper bound 5 

 

Figures 4, 5, 6, 7, and 8 show the best simulation results 

obtained by the proposed method when various situations are 

considered and compared to the APSO in reference [14]. 

Moreover, Figure 9 shows an environment that contains more 

than 30 unknown obstacles and this environment has been 

built in this work to demonstrate the effectiveness of the 

proposed approach. In this environment, the two modified 

versions, namely MWOG1 and MWOG2, were compared 

with the original GWO. To take into account the random 

nature of the above algorithms, 10 runs were performed for 

each algorithm and the average performance was considered.   

Table 2 shows the average path distance including the path 

lengths and time duration for the robot while utilizing the 

suggested method and the APSO. The suggested method 

clearly outperforms the APSO based on the tabulated data.  

Table 3 illustrates the enhancement rates in the path length 

for the modified algorithms compared to the APSO. In 

addition, the enhancement rates in the path length compared to 

the original GWO are shown in Table 4.  

Figure 10 depicts the path lengths generated by each 

algorithm for all maps, while Figure 11, depicts the execution 

times taken by each algorithm for all maps.  

 

 
a. APSO [14] Vs GWO 

 
b. APSO [14] Vs MGWO1 

 
c. APSO Vs MGWO2 

 

Figure 4. Simulation graph for single obstacle environment with a starting point at (2.5,2.5) and an endpoint at (45,45)   : (a) 

APSO[14] Vs AGWO (b) APSO[14] Vs MGWO1 (c) APSO[14] MGWO2 
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a. APSO [14] Vs GWO 

 
b. APSO[14] Vs MGWO1 

 
c. APSO[14] Vs MGWO2 

 

Figure 5. Simulation graph in obstacle avoidance in a narrow escaping environment with a starting point at (2.5,2.5) and an 

endpoint at (45,45): (a) APSO[14] Vs AGWO ( b) APSO[14] Vs MGWO1 (c) APSO[14] MGWO2 

 

 
 

a. APSO [14] Vs GWO 
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b. APSO [14] Vs MGWO1 

 
c. APSO [14] Vs MGWO2 

 

Figure 6. Simulation graph obstacle avoidance in trap condition with a starting point at (2.5,2.5) and ab endpoint at (45,45): (a) 

APSO[14] Vs AGWO (b) APSO[14] Vs MGWO1 (c) APSO[14] MGWO2 

 

 
a. APSO Vs GWO 

 
b. APSO Vs MGWO1 
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c. APSO Vs MGWO2 

 

Figure 7. Simulation graph of local minima environment with a starting point at (2.5,2.5) and an endpoint at (45,45): (a) 

APSO[14] Vs AGWO ( b) APSO[14] Vs MGWO1 (c) APSO[14] MGWO2 

 

 
a. APSO Vs GWO 

 
b. APSO Vs MGWO1 

 
c. APSO Vs MGWO2 

 

Figure 8. Simulation graph obstacle avoidance in a maze environment with a starting point at (0,0) and an endpoint at (30,20): (a) 

APSO[14] Vs AGWO ( b) APSO[14] Vs MGWO1 (c) APSO[14] MGWO2 
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Figure 9. Simulation graph of the complex environment have obstacle more than 30 with a starting point at (2.5,2.5) and an 

endpoint at (45,45) GWO vs MGWO 1 Vs MGWO2 

 

Table 2. Results of the average path lengths and average execution times 

 

Figure Number Map 
Average Path length in pixels Average Time in sec 

[14] GWO MGWO1 MGWO2 [14] GWO MGWO1 MGWO2 

4 Map (1) 1288.25 1211.04497 1206.62925 1204.15383 43.85 47.85829 50.20214 48.04653 

5 Map (2) 1285.56 1249.10671 1245.55649 1240.21618 68.05 76.45092 75.34207 82.26741 

6 Map (3) 2237.31 2223.36704 2218.05451 2215.48116 57.87 68.56733 72.63015 67.80567 

7 Map (4) 1784.71 1692.208 1687.231 1529.83347 64.87 110.4472 107.06874 108.12077 

8 Map (5) 470.45 414.6995 414.75093 414.4694 XX 34.47171 32.23354 36.02424 

9 Map (6) XX 439.19928 434.33948 433.9618 XX 61.74871 89.49583 83.12656 

Table 3. Enhancement rates in the path lengths compared to 

the APSO 

 
Figure 

Number 
Map 

Enhancement rate in path length 

GWO MGWO1 MGWO2 

4 
Map 

(1) 
5.99302% 6.33578% 6.52794% 

5 
Map 

(2) 
2.8356% 3.11176% 3.52716% 

6 
Map 

(3) 
0.6232% 0.860654% 0.975673% 

7 
Map 

(4) 
5.18303% 5.4619% 14.2811% 

8 
Map 

(5) 
11.8505% 11.8395% 11.8994% 

 

Table 4. Enhancement rates in the path lengths compared to 

the original GWO 

 

Figure 

Number 
Map 

Enhancement rate of path 

length 

MGWO1 MGWO2 

4 Map (1) 0.364621% 0.569024% 

5 Map (2) 0.284221% 0.711751% 

6 Map (3) 0.238941% 0.354682% 

7 Map (4) 0.294113% 9.59542% 

8 Map (5) 0.0124018% 0.055486% 

9 Map (6) 1.10651% 1.19251% 

 

 
 

Figure 10. Path lengths are generated by each algorithm for 

all maps 

 

 
 

Figure 11. Execution times were taken by each algorithm for 

all maps 
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To demonstrate the ability of the proposed algorithm to 

handle unknown environments, obstacles were implanted in 

the optimal path of the mobile robot. Figures (4,5,6,7,8, and 9) 

show that the mobile robot recognizes the obstacle and 

measures its dimensions then predicts the new path which 

avoids the implanted obstacles. 

 

 

6. CONCLUSIONS 

 

The proposed algorithms have been successfully 

implemented for online mobile robot navigation in simulated 

environments. Specifically, the original GWO algorithm and 

two other modified versions, namely MGWO1 and MGWO2, 

were exploited to find the shortest path in unknown 

environments. we apply all algorithms in a different case with 

complex in obstacle more than 30 obstacles the algorithms 

work successfully. In particular, the original GWO algorithm-

generated shorter paths with less time compared to the APSO 

as shown the average enhancement rate in path length 

compared with (APSO) is 5.30%. Moreover, the MGWO1 and 

MGWO2 resulted in shorter paths and less execution time 

compared to the APSO. The average enhancement rate was 

5.52%, and 7.44% of MGWO1 and MGWO2 respectively 

with APSO.The 0.38%, 2.08% of MGWO1 and MGWO2 

respectively with the original GWO.As for the modified 

versions, the MGWO2 generated shorter paths with shorter 

execution times compared to the MGWO1 due to the presence 

of the cosine function in the MGWO2. It is worth mentioning 

that the proposed algorithms can be utilized for environments 

with dynamic obstacles and several mobile robots.   
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