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 Emotion detection from an ECG signal allows the direct assessment of the inner state of a 

human. Because ECG signals contain nerve endings from the autonomic nervous system 

that controls the behavior of each emotion. Besides, emotion detection plays a vital role in 

the daily activities of human life, where we lately witnessed the outbreak of the (COVID-

19) pandemic that has a bad influence on the affective states of humans. Therefore, it has 

become indispensable to build an intelligent system capable of predicting and classifying 

emotions in their early stages. Accordingly, in this study, the Parallel-Extraction of 

Temporal and Spatial Features using Convolutional Neural Network (PETSFCNN) is 

established. So, in-depth features of the ECG signals are extracted and captured from the 

suggested parallel 2-channel structure of 1-dimensional CNN network and 2-dimensional 

CNN network and then combined by feature fusion technique for more dependable 

classification results. Besides, Grid Search Optimized-Deep Neural Network (GSO-DNN) 

is adopted for higher classification accuracy. To verify the performance of the proposed 

method, our experiment was implemented on two different datasets. The maximum 

classification accuracy of 97.56% and 96.34% on both valence and arousal were gained, 

respectively using the internationally approved DREAMER dataset. While the same model 

on the private dataset achieved 76.19% for valence and 80.95% for arousal respectively. The 

classification results of the PETSFCNN-GSO-DNN model are compared with state-of-the-

art methods. The empirical findings reveal that the proposed method can detect emotions 

from ECG signals more accurately and better than state-of-the-art methods and has the 

potential to be implemented as an intelligent system for affect detection. 
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1. INTRODUCTION 

 

Emotion is an intricate set of interactions of a human's 

psycho-physiological state that reflects his/her mood. As a 

result, emotional states can play a vital role in the daily 

activities of human life. And for emotional and valid 

interaction between human and computer, human emotion 

recognition is one of the essential stages that resulted in the 

advent of the field of affective computing (AC), which has 

become a hot topic in computer science and emotional 

intelligence for human-computer interaction [1, 2]. The field 

of affective computing aims to design systems that are capable 

of perceiving and expressing emotions [3]. We have recently 

noticed the COVID-19 pandemic spreading all over the world, 

especially in China. The peril of this pandemic caused not only 

fear of infection but also unbearable psychological stress [4]. 

During the COVID-19 pandemic, we also observed that most 

individuals were experiencing anxiety, stress, despair, 

loneliness, and fear. Thus, this will have a detrimental effect 

on a person's emotional well-being. Therefore, creating 

intelligent emotional recognition systems has become 

important in predicting such negative emotional states in the 

early stages, as well as it can provide assistance to clinicians 

in detecting and diagnosing mental disorders of people. In the 

last sixty years, the topic of human emotion has become 

researched increasingly across a wide range of domains, such 

as mental health care, e-learning, transportation companies, 

social security, and others. Human emotion recognition can be 

performed by recognizing facial expressions [5], body posture, 

speech tone [6, 7], and others. However, the physical signals 

[8] are easy to be camouflaged or hidden, it is hard to exclude 

the effect of individual factors, and it may be unable to 

recognize the inner true affective state. For example, a human 

might smile or pretend to be happy on a social occasion even 

if he/she is in a nonpositive affective state [9, 10]. Generally, 

we observed physiological signal-based emotion recognition 

has grown increasingly in the affective computing field [11]. 

Because physiological signals have several advantages over 

physical signals due to their sensitivity to inner emotions [12]. 

Therefore, physiological signals can show the inner emotions 

of the human without the tendency to hide or camouflage an 

affective state on social reasons [13].  

Currently, new methods and tools have been introduced by 

researchers and scholars to develop intelligent systems for 

detecting emotions in their early stages [14] as well as in the 

field of healthcare systems [15]. Building an accurate and 

reliable model has become important in detecting and 

recognizing human emotions via psychophysiological data 

[16]. Consequently, our study focuses specifically on emotion 

detection using ECG signals, because the neural cues can 

reflect human affective states more accurately and cannot be 

controlled or hidden by individual factors, so detecting and 

recognizing human affective states based on ECG cues has 

attracted scholars’ interest. ECG cues are the most commonly 

Traitement du Signal 
Vol. 39, No. 1, February, 2022, pp. 43-57 

 

Journal homepage: http://iieta.org/journals/ts 
 

43

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390105&domain=pdf


 

utilized compared to other cues because ECG contain-emotion 

related information [17, 18]. The ECG signal reflects the 

heart's electrical activity, non-invasive, and commonly utilized 

in a variety of applications. Figure 1 illustrates a typical 

depiction of the ECG signal. 

 

 
 

Figure 1. The main components of an ECG signal include a 

P wave, a QRS complex, and a T wave 

 

Furthermore, some of studies as in the study [19] used 

traditional machine learning techniques for classifying 

emotional states. In these studies, hand-crafted features 

extracted from ECG signals are typically applied as inputs to 

the classifiers. However, the performance of these features is 

limited by human expertise and the intricacy of classification 

problems. Due to those limitations, traditional methods cannot 

provide most daily human emotion recognition tasks. In recent 

years, human emotion recognition has made notable advances 

by using deep learning techniques to recognize human 

emotions. Instead of manual feature extraction and selection, 

deep learning makes it possible to extract and select features 

automatically. Compared to conventional machine learning 

techniques, feature extraction and classification tasks are 

usually conducted simultaneously in deep learning models. 

Building an emotion recognition system based on ECG 

signals to accurately classify emotional states according to 

their levels in terms of low valence vs. high valence and low 

arousal vs. high arousal is a challenging task. To build such a 

model, several methodological issues need to be addressed 

such as feature extraction and classification task is among the 

most important issues that if are not addressed well, can hinder 

building a practical system. 

The purpose of this research is to detect and classify ECG 

signals-based emotional states using convolutional neural 

networks (CNNs for feature extraction) and deep neural 

networks (DNNs for classification tasks). This study can be 

applied in several fields such as mental healthcare and to 

detect stress. Besides, in the classroom, detecting the negative 

affective states of students can help to enhance student 

learning experiences and improve their performance. In the 

area of transportation safety, recognizing various emotions 

such as anger, fatigue and stress can assist to issue an alert to 

the driver of a vehicle before a potential crash. 

The main contributions of this paper are as follows: 

1- The main contribution of this paper is improving the 

classification accuracy of ECG signals-based affective states. 

2- PETSFCNN-GSO-DNN model is proposed for 

classifying emotional states based on ECG signals. It is clear 

from the current findings that the performance of the proposed 

model has improved the accuracy of the emotions’ 

classification better than state-of-the-art mentioned studies. 

3- Methods of the data preprocessing, segmentation, 

normalisation, reshaping, and feature fusion method for a 2-

channel network model are introduced for effective detection. 

4- Evaluating the performance of the PETSFCNN-

GSO-DNN model on two datasets, the first is a private new 

dataset and the second is a public DREAMER dataset. 

The remainder parts of the paper are organized as follows. 

Section 2 presents background and related work. Section 3 

describe the data and methods. Results and discussion are 

introduced in section 4. Lastly, section 5 provides the 

conclusion and future works of the proposed PETSFCNN-

GSO-DNN model. 

 

 

2. BACKGROUND AND RELATED WORK  

 

2.1 Dimensional model (valence - arousal model) 

 

It is difficult to model or judge human emotions because 

individuals express their emotional states differently based on 

such factors as their subjective feeling and cognitive process. 

Over the past decades, several scholars have devoted to 

developing different emotion models for modelling human 

affective states. In the discrete models, users must select a 

specified list of word labels to tag/label emotional states in 

discrete categories for denoting their current emotion. Thereby, 

the stimuli may evoke mixed emotions that cannot be 

sufficiently expressed in words since the meanings of the 

selected words are culturally dependent. Thus, the discrete 

models need more than one word to specify blended emotions. 

While in the emotional dimensional models, individuals need 

to scale affective states in multiple dimensions for classifying 

emotions. Lately, two popular scales used for classifying 

emotions are valence and arousal planes. And most of the 

former studies have focused on using the 2D model to model 

emotions. So, rather than modeling emotional states of ECG 

signals as discrete emotions, they can be categorized by level 

of valence and arousal each (see Figure 2). For the 

aforementioned reasons, we applied the 2-dimensional 

Russell's model [20] to facilitate ECG-based emotion 

recognition. This model demonstrates that affective states are 

distributed in a 2D space with dimensions of valence and 

arousal. Valence plane indicates the horizontal axis and 

reflects the degree of pleasure that extends from highly 

negative to highly positive, while arousal plane represents the 

vertical axis and reflects the strength of emotional activity that 

ranges from low/passive to high/active. 

 

 
 

Figure 2. Valence-arousal model/theory of emotions. X-axis 

denotes the valence plane, while Y-axis indicates the arousal 

plane 
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We can observe from Figure 2 how emotional states are 

categorized by this model. As we can also note that emotional 

states mapped in the lower-left quadrant are classified to be 

“Low Valence-Low Arousal”, whereas in the upper-right 

quadrant are categorized to be “High Valence-High Arousal”. 

Regarding the emotional states mapped in the lower-right 

quadrant are classified to be “High Valence-Low Arousal”, 

while in the upper-left quadrant are categorized as “Low 

Valence-High Arousal”. However, by determining the value 

of valence with arousal for some emotions, we can recognize 

affective states as four categories. In this study, the recognition 

task of emotional states is split into a binary classification 

method. This indicates that, the private and the DREAMER 

datasets are categorized in a two-category format by assigning 

a threshold at the average output value that divides the outputs 

into low and high. Thus, in our dataset, we split the rating scale 

of 1 to 9 into a binary classification method (low-high) with a 

threshold value of 5. While for the DREAMER dataset, we 

divided the rating scale of 1 to 5 into a binary classification 

method (low-high) with a threshold value of 3. 

 

2.2 Related work 

 

Therefore, several studies have been suggested to provide 

an ECG based detection system for classifying emotional 

states.  

Among those studies, model selection is a challenging task 

facing most researchers in the field of affective computing 

(AC). Besides, feature extraction is also considered a 

challenging issue and represents a critical stage in the emotion 

classification.  

In addition to the model/classifier selection, we have 

categorized the feature extraction frameworks for emotion 

detection into two main groups namely: (1) hand-crafted 

features, (2) automatic features.  

The hand-crafted features need human expertise to extract 

useful information from ECG signals manually, which include 

different features such as (time-domain features, frequency 

domain features, time-frequency features, statistical features, 

and others). While regarding the automatic-extracted features, 

there is no need to extract features manually, where deep 

learning techniques such as convolutional neural networks 

(CNNs) can automatically extract robust features from raw 

ECG data. We reviewed different studies based on traditional 

and deep learning techniques that have been conducted in 

recent years, as presented below. 

Subramanian et al. [21] proposed a Naive Bayes (NB) 

classifier for classifying emotional states. The authors used 

ASCERTAIN dataset that composed of 58 participants, and 

they used 36 emotive movie clips for eliciting affective states 

based on ECG signals. They also employed various features 

from ECG data such as frequency features and statistical 

features. The NB classifier achieved a classification accuracy 

of 60% and 59% for valence and arousal respectively. Wiem 

and Lachiri [22] suggested a support vector machine (SVM) 

classifier for detecting emotional states. They utilized 

MAHNOB database, which consisted of 24 subjects who 

participated in this experiment. The affective states were 

triggered using 20 video clips. Statistical features were 

extracted from ECG signals for recognizing affective states. 

The SVM classifier achieved a classification accuracy of 

68.75% for valence emotions and 64.23% for arousal 

emotions. Hsu et al. [23] proposed a Least Squares SVM 

classifier to recognize and classify emotions based on ECG 

signals. The affective states were elicited using music from 61 

subjects. Time-domain, frequency-domain, and nonlinear 

features were extracted from ECG signals. Thereafter, the LS-

SVM classifier achieved a classification accuracy of 82.78% 

and 72.91% for both valence and arousal respectively. A study 

by Katsigiannis and Ramzan [24] introduced a SVM+RBF 

Kernel classifier for classifying emotional states. The 

classifier was applied to the DREAMER dataset that consisted 

of 23 subjects. Besides, the affective states were provoked 

using 18 various Audio-Video video clips. Heart Rate 

Variability (HRV) features and PQRST features were used in 

their proposed study. Finally, the SVM+RBF Kernel classifier 

attained a classification accuracy of 62.37% and 62.37% for 

valence and arousal respectively. Baghizadeh et al. [25] 

proposed a SVM-Polynomial and SVM-Linear for detecting 

human emotional states. Moreover, the researchers used time-

domain, frequency-domain, time-frequency domain, and 

nonlinear features, afterward the SVM-Polynomial classifier 

attained a classification accuracy result of 78.07% for valence 

emotions, while the SVM-Linear achieved a classification 

accuracy of 82.17% for arousal emotions on the MAHNOB 

dataset.  

In contrast to these five conventional methods for feature 

extraction, there is a deep learning technique. Deep learning 

(DL) is becoming an important method in bio-medical signal 

processing applications. 

Santamaria-Granados et al. [26] proposed a developed deep 

convolutional neural network (DCNN) model for recognition 

of emotion. They obtained 75% and 76% results of 

classification accuracy for valence and arousal on the 

AMIGOS dataset that collected from 40 subjects, while they 

were watching 16 different video clips. Sarkar and Etemad 

[27] suggested and developed a self-supervised method based 

on a convolutional neural network (CNN). They achieved an 

average accuracy of 85% and 85.9% for both low/high valence 

and low/high arousal respectively on the DREAMER dataset. 

Finally, Harper and Southern [28] presented a developed 

CNN-LSTM model for classifying affective states based on 

ECG signals. On the DREAMER dataset, the CNN-LSTM 

model achieved a classification accuracy of 86% for low/high 

valence emotions. 

 

 

3. DATA AND METHODS  

 

In this section, the proposed system for classifying 

emotional states using ECG signals includes five key tasks: 

datasets description, signal processing, feature extraction, 

feature fusion, and classification (see Figure 3). The 

introduced method is implemented and evaluated on two 

different datasets are as follows: 1- Private dataset; 2- Publicly 

available dataset known as the DREAMER database. So, the 

description of both datasets is presented in the next section. 

 

3.1 Private dataset 
 

To detect emotions and to test the proposed model 

performance, we created a private dataset that was newly 

gathered from 23 subjects (fourteen male and nine female), 

aged between 20 and 60 years, while they viewed IAPS images. 

The emotional images were selected from the International 

Affective Picture System (IAPS) database, which gives a 

group of emotional stimuli to evoke emotions, and it is often 

used in the field of affective computing (AC). Therefore, the 
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images of IAPS were utilized as visual stimuli for triggering 

thirteen diverse emotional states (calm, relaxed, content, glad, 

delighted, bored, annoyed, depressed, others, gloomy, afraid, 

angry, excited) from 23 subjects. So, after viewing each IAPS 

image, the subjects were asked to self-assess the emotions they 

felt by assigning values ranging from 1 to 9 to two different 

statuses are valence and arousal (see Figure 4, which shows 

the self-assessment form designed in MATLAB environment). 

 

 
 

Figure 3. Block diagram of presented ECG-based emotion detection system 

 

 
 

Figure 4. A snapshot for individual emotion rating 

 

The private dataset is categorized in a two-category format 

by assigning a threshold at the average output value that 

divides the outputs into low and high. Thus, we split the rating 

scale of 1 to 9 into a binary classification method (low/high 

valence and low/high arousal) with a threshold 5. Besides, 

during the ECG cues recording, each subject was viewing 60 

10-sec images for each, as well as a ten-sec gap between each 

viewed image which is still affected by the prior image. 

Therefore, the total time of each viewed image plus its related 

gap reached 20 sec. Figure 5 demonstrates the experimental 

protocol utilized for triggering the affective states. BIOPAC  

MP150 system was used for recording ECG cues at a 

sampling rate of 1000 Hz by placing 2 electrodes on the wrists 

of the subject and one was placed on the left leg. In addition, 

two subjects were removed from the twenty-three subjects due 

to technical issues, which resulted in incomplete data. 

Therefore, recordings from 21 out of 23 subjects were utilized 

in this experiment. The overall period for recording ECG cues 

for each subject lasted nearly thirty minutes. 

 

3.2 DREAMER dataset 

 

DREAMER dataset [24] involves a recording of subject 

responses to audio-video content. Nine diverse affective states 

(calmness, excitement, fear, surprise, happiness, anger, 

amusement, sadness) were elicited from 23 subjects (14 M and 

9 F), aged between 22 and 33 years. DREAMER dataset 

encompasses two physiological cues including ECG signal 

that contains 2-channels were sampled at 256 Hz using 

SHIMMER™ sensor [29]. For eliciting emotional states, 18 

diverse (Audio-Video) clips were offered for each subject with 
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a period lasting between (67-394 sec.). Moreover, baseline 

cues were also recorded as neutral cues (with no affect) before 

each stimulus clip with a period of 61 sec. On the other hand, 

the subjects used the self-assessment method from 1 to 5 for 

rating emotions. After that, the emotions were split into 2-

classes by setting 3 as a threshold. 

 

 
 

Figure 5. The empirical protocol used for eliciting emotional states using visual stimuli (IAPS images) 
 

 

4. SIGNAL PROCESSING METHODS  

 

In this section, before the raw data are fed into the proposed 

system for detecting ECG-based emotion, they are required to 

be processed first according to the following steps: 

 

4.1 Filtering 

 

The second step filtered the ECG signal from noise and 

artifacts for both datasets. The ECG signal is typically 

contaminated by several types of noise, such as powerline 

interference and artifacts caused by body movements, 

respiration, and others which can affect extracting the 

information related to emotion from ECG signals. Therefore, 

it has become necessary to eliminate potential powerline 

interference and baseline drifts before being fed into the model 

for classifying affective states. As reported in the study [23], 

we filtered the ECG signal by applying two median filters, the 

first with a sliding window of length (600 ms) and the second 

with a sliding window of length (200 ms). Consequently, the 

resulting signal from the two median filters was passed to a 

(12-order) low pass filter with a cut-off frequency of (35 Hz) 

for removing the powerline interference resulted of the 

electrical network that ranges between (50 Hz - 60 Hz), as 

mentioned by Cuomo et al., and Berkaya et al. [30, 31]. 
 

4.2 Downsampling and segmentation 

 

Concerning our dataset, the third step down-sampled the 

ECG signal to 250 Hz from 1000 Hz by a factor of 4 and then 

segmented it into 20-second windows with no-overlapping 

between the windows as depicted in Figure 6. Accordingly, the 

segmentation of the ECG signal resulted in 1260 chunks (21 

subjects × 60 image) with a length of 5000 (20-sec × 250 Hz) 

data samples in each chunk (𝒙 ∈ ℝ𝟓𝟎𝟎𝟎) from 21 subjects.  

Regarding the segmentation of the ECG signals of the 

DREAMER dataset, some of the studies use only the 

emotional signals without considering the impact of the 

neutral baseline signals (without emotional activity). ECG 

signals produced by the same participant under the same 

stimulations are often different due to the instability of human 

ECG signals and their sensitivity to some alternations in the 

surrounding environment. Therefore, in this study, we 

considered the baseline signals that were recorded through 

eighteen neutral video clips. As the neutral clips have no 

emotional activity was shown before each stimuli video clip 

(containing emotional activity) in order to help the participant, 

return to the neutral affective state. Whereas, these signals 

have proved their role and competence in improving the 

accuracy of emotion classification. Thus, these signals can be 

used as neutral signals to remove effects from the ECG signals 

while preserving the emotional content of the ECG data. To do 

this, we first must split the baseline signals and the 

experimental/emotional signals into chunks as follows: 

1- In the first step we used N = 57-second of the baseline 

signals after omitting a 4-second out of 61-seconds of it. 

2- In the second step we divided the 57-seconds of the 

neutral signals into 57 1-second chunks, then calculate the 

average of all chunks, as formulated in Eq. (1). 

 

𝐵𝐿̅̅̅̅ =
(∑ 𝐵𝐿𝑛

𝑁
𝑛=1 )

𝑁
 (1) 

 

where, 𝐵𝐿̅̅̅̅  represents the mean of all the 57 chunks of 1-

second each. 

3- In the third step we used N=60-second of the 

emotional/experimental signals, which means that used the 

last 60-seconds of those signals. 

4- In the fourth step we also divided the last 60-second of 

the emotional signals into 60 1-second segments (𝐸𝑚𝑜_𝑆𝑒𝑔𝑖).  

5- In the fifth step we subtracted the mean value 

𝐵𝐿̅̅̅̅  (computed in step 2) from each 1-second segment of the 

emotional signals mentioned in step 4, to get baseline removed 

segments and stack them in a matrix (𝐵𝐿𝑟𝑆𝑒𝑔𝑖
), as indicated in 

Eq. (2). 

 

𝐵𝐿𝑟_𝑆𝑒𝑔𝑖 = (𝐸𝑚𝑜_𝑆𝑒𝑔𝑖) − 𝐵𝐿̅̅̅̅  (2) 
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Figure 6. The data segmentation, normalization and reshaping process 

 

The aforementioned steps were intended to eliminate the 

neutral influences from ECG data while maintaining its 

emotional content. Eventually, the process of segmentation of 

the ECG signals resulted in 828 chunks (2-channels, 18-videos, 

23-participants) with a length of 15360 samples each (𝒙 ∈
ℝ𝟏𝟓𝟑𝟔𝟎) (60-second each chunk × 256 Hz). 

 

4.3 ECG segments normalisation 

 

The next step after segmentation is the normalisation 

process. As aforementioned, there are a lot of factors that can 

impact the ECG signals such as the DC offset as well as the 

amplitude variance. To address such problems and to improve 

the quality of the ECG signals before being fed into the model, 

we have normalised and converted all the ECG data points to 

a common interval between [0,1] (Figure 6) through using the 

(min-max) normalisation method. The (min-max) method can 

be expressed as follows: 

 

𝑋𝑖
𝑛 =

𝑋𝑖
𝑛 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (3) 

 

where, (𝑋𝑖
𝑛)  represents the ( 𝑖𝑡ℎ)  data point of the ( 𝑛𝑡ℎ) 

sample, while (𝑋𝑚𝑖𝑛) and (𝑋𝑚𝑎𝑥) denotes the minimum and 

maximum value of the (𝑛𝑡ℎ) sample respectively. 

 

4.4 ECG segments reshaping 

 

Generally, 2D image signals contain more detailed and 

high-dimensional information, making them better for model 

generalisation, while real images have relatively redundant 

data. As a result, 1-dimensional ECG segments can be 

reshaped into a 2-dimensional gray-level map as an input to 

the model to decrease the adverse impacts. Thus, it improves 

the signal quality from noise comparatively as well as the 

utilisation efficiency of computing resources. Therefore, in 

this study, we have used both one and two-dimensional ECG 

signals as the input of our concurrent multi-channel model for 

their respective functions of representing various dimensions 

of information to improve the reliability of ECG data. Figure 

6 depicts the process of normalising and reshaping ECG data 

that is segmented into 20-second windows. Regarding the 

normalised 1-dimensional ECG segments are kept as inputs to 

the 1D-CNN model for extracting temporal features. 

Meanwhile, according to the normalisation rule that the scaled 

samples values between 0 and 1 corresponding to the gray-
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level between (light = 0 and dark = 1), the 1-dimensional ECG 

segments are reshaped to create gray-level maps each. To do 

that, we take each 50 sample points of the normalised segment 

and stack them as the first column of the map, and so on to the 

remaining sample points. Thus, we will get a gray-level map 

of 100 columns each containing 50 grayscale color values 

corresponding to the sample points of the signal which were 

normalised between 0 and 1. Lastly, the generated gray level 

map can be fed as input to the 2D-CNN model for spatial 

features extraction. 

 

4.5 Overview of the convolutional neural network (CNN) 
 

This section provides a brief review of the most prominent 

deep learning methods, where the CNN algorithm is one of the 

common types of deep learning techniques based on artificial 

neural network structures, which can be 1-dimensional, 2-

dimensional, or 3-dimensional. Generally, the traditional 

machine learning methods are composed of three different 

layers as follows: an input layer, one hidden layer, and an 

output layer, unlike the artificial neural network that has more 

than one hidden layer in its structure. Therefore, the artificial 

neural networks (ANNs) structure is inspired by the network 

of biological neurons of the brain working system that 

involves several hidden layers [32]. Each hidden layer 

includes many neurons that act as processing units for the 

inputs from other neurons in the previous layer, meaning that 

they provide a new representation of features that were 

extracted from the input data. The output of each neuron is 

calculated by the weighted sum of its inputs (𝑋𝑖
𝑙−1 ×  𝑊𝑖𝑗

𝑙 ), 

then adding a static value called bias propagated thru a 

nonlinear activation function as defined in Eq. (4) for the 

neuron activation and Eq. (5) for its output respectively. 
 

𝑎𝑗
𝑙(𝑿𝑙−1) = ∑ (𝑋𝑖

𝑙−1 ×  𝑊𝑖𝑗
𝑙

𝑁𝑙−1

𝑖=1

) + 𝑏𝑗
𝑙 (4) 

 

𝑋𝑗
𝑙(𝑿𝑙−1) = 𝜑(𝑎𝑗

𝑙) = 𝜑 ( ∑ (𝑋𝑖
𝑙−1 ×  𝑊𝑖𝑗

𝑙

𝑁𝑙−1

𝑖=1

) + 𝑏𝑗
𝑙) (5) 

 

where, (𝑋𝑗
𝑙)  represents the output of each neuron  in the 

network at the l-th layer and the j-th index of the neuron within 

the layer, that obtains its inputs from all neurons in the earlier 

layer (𝑋𝑖
𝑙−1), 𝑊𝑖𝑗

𝑙  and 𝑏𝑗
𝑙  are the neuron’s weights and bias 

respectively, 𝜑 indicates the neuron activation function.  

Artificial Neural Networks (ANN) have been applied in 

several various fields such as computer vision, bioinformatics, 

natural language processing, and speech recognition, etc. 

Indeed, the CNNs is a type of artificial neural network, unlike 

the conventional neural network that cannot fully benefit from 

temporal or spatial features in the data. 

In addition, the CNN network presents a new approach 

based on the spatially local connection and shared weights to 

integrate this information while considerably reducing the 

network complexity [33]. Therefore, the structure of the CNN 

network is essentially consisted of three main operations as 

follows: convolution, non-linearity and subsampling/pooling 

[34]. In short, CNNs can automatically extract and classify 

useful features from the input data using the operator of a 

convolution without the need for hand-learned features [35, 

36]. As a result of which CNNs have gained a lot of interest in 

the visual field that includes images and videos. 

Besides, the CNN algorithm is a feedforward network and 

it includes convolution layers, activation layers, and pooling 

layers. The principal functions of these layers are learning and 

extraction of robust features from the input data. Therefore, 

CNN is appropriate for addressing the problems of emotion 

detection from physiological signals and it is widely applied 

for learning and extracting optimal features from raw data, as 

well as classification tasks in different domains [37]. And to 

overcome the handcrafted features and to model the temporal 

and spatial structure in the ECG signals, 1D-CNN and 2D-

CNN architectures are proposed in this research for ECG 

signals-based emotions classification. 

 

4.6 The architecture of the proposed model 

 

In this section, after performing the pre-processing steps of 

the ECG signals, the data are ready to be input into the 

PETSFCNN-GSO-DNN model, as depicted in Figure 8, which 

is based on deep learning (DL) techniques for classifying 

emotional states. Since the feature-learning process, which 

plays a significant role in classifying emotional states from 

ECG signals, is automated with CNNs, thus their use has 

become popular in this domain. Accordingly, the temporal and 

spatial features are extracted from ECG segments that have 

been normalized and reshaped with 2 parallel architectures, 

each of them containing convolutional, non-linearity, pooling, 

and dropout layers. Afterward, the outputs of both streams are 

first flattened, then fused using the concatenation method. 

Lastly, the GSO-DNN layer is followed to classify emotional 

states below. 

 

4.6.1 Parallel-extraction of temporal and spatial features using 

convolutional neural network (PETSFCNN) 

In this study, we proposed a novel end-to-end (PETSFCNN-

GSO-DNN) model for detecting emotional states from ECG 

signals and classifying them according to the valence and 

arousal levels. The structure of the PETSFCNN-based feature 

extraction contains a parallel architecture of two types of 

CNNs are 1D-CNN for modeling temporal features and 2D-

CNN for modeling spatial features. 1D-CNN is mainly used 

for modeling time-series or sequential data, which performs 

well in the extraction of their features [38]. For the above-

mentioned reason, we have applied 1D-CNN for extracting 

temporal features. Besides, to extract more robust and useful 

features for classifying emotional states, we used 2D-CNN to 

extract spatial features from ECG signals after reshaping the 

1-dimension ECG segments into a 2-dimensional gray-level 

map, as mentioned in part 3.2.4. The cause why we used 2D-

CNN is that the two-dimensional convolution and pooling 

layers are convenient for filtering the spatial position of the 2D 

image signals. In extreme summary, convolutional neural 

networks extract deep features in both temporal and spatial 

dimensions of data, and thus, achieve a generalization 

performance for detecting emotions using physiological cues.  

Finally, the architecture of the proposed model for 

extracting ECG features consists of two networks, as 

mentioned before. But for more information about the two 

networks, we have explained them in detail as follows. The 

first network is a 1D-CNN which is consisted of 2 

convolutional blocks. The first block includes one 

convolutional layer composed of 32 kernels of size (1×5), 

followed by an activation function layer of type (Leaky ReLu), 

a max-pooling layer of size (1×2), and a dropout layer with a 

drop-rate (0.2). While the second block contains the same as 
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the previous layers, except for the number of filters in the 

convolutional layer is increased to 64 filters of size (1×3), with 

adding a new flatten layer to it at the end. The 2D-CNN is the 

second network that has the same structure as the 1D-CNN 

network, but the only difference between them is, for example, 

that instead of being the kernel size is (1×m) will be (m×n). 

Both networks include the following layers : 

(1) Convolution layer 

Each 1-dimensional convolutional layer contains several 

feature maps, where each feature map consists of many 

neurons. Thus, the ECG signals in each convolutional layer are 

subjected to a 1-dimensional convolution filter/s to extract 

emotional features from those signals. Therefore, the extracted 

feature maps using 1-D convolution can be expressed as:  

 

𝐹𝑗
𝑙 = ∑(𝑋𝑖

𝑙−1⨂𝐾𝑖𝑗
𝑙

𝑚

𝑖=1

) + 𝑏𝑗
𝑙 (6) 

 

where, ⨂ indicates the convolution operator, 𝐹𝑗
𝑙  denotes the 

outputted feature map by j-th convolutional filter within the l-

th layer, which obtains its input from the prior layer (𝑋𝑖
𝑙−1), 

𝐾𝑖𝑗
𝑙  and 𝑏𝑗

𝑙  are the filter’s weights and bias respectively, m 

represents the size of the input vector in 𝑋𝑙−1. Likewise, the 2-

D convolution process can be calculated by: 

 

𝐹𝑖𝑗
𝑙 = ∑ ∑(𝑋(𝑖+𝑚,𝑗+𝑛)

𝑙−1 ⨂𝐾𝑚𝑛
𝑙

𝑝

𝑛=1

𝑝

𝑚=1

) + 𝑏𝑖𝑗
𝑙  (7) 

 

where, each feature 𝐹𝑖𝑗
𝑙 , acquired from multiplying 𝑋(𝑖+𝑚,𝑗+𝑛)

𝑙−1  

which indicates the spatial location of the feature map at the 

previous layer (𝑙 − 1)  with the 𝐾𝑚𝑛
𝑙  that represents the 

convolutional kernel/filter at layer (𝑙) with size (𝑝 ∗ 𝑝), then 

summed. Hence, the volume of feature maps can be calculated 

as defined Eq. (8): 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = (
𝐼 − 𝐾 + 2 ∗ 𝑃𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
) + 1 (8) 

 

where, 𝐼  denotes the input size, 𝐾  indicates the kernel/filter 

size. 

(2) Activation function layer  

The activation function increases or improves the network's 

nonlinearity [39]. And since the output of each convolutional 

layer is a linear computation process. Therefore, a non-linear 

activation is added to the linear action. Thus, the outputted 

feature map from convolutional layer is passed through an 

activation function of type leaky rectified linear unit 

(LeakyReLU). It is notable that the use of LeakyReLU 

activation after each convolutional output instead of using 

ReLU activation is for addressing the dying ReLU problem for 

negative values. The function of the LeakyReLU operation is 

displayed in Eq. (9). 

 

𝐹𝑗
𝑙 = 𝜑(𝑋𝑖

𝑙−1) = 𝑚𝑎𝑥(𝛼 ∗ 𝑋𝑖
𝑙−1, 𝑋𝑖

𝑙−1), 

𝑚𝑎𝑥(𝛼 ∗ 𝑋𝑖
𝑙−1, 𝑋𝑖

𝑙−1) = {
𝑋𝑖

𝑙−1,          𝑖𝑓 𝑋𝑖
𝑙−1 > 0

𝛼 ∗ 𝑋𝑖
𝑙−1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(9) 

 

where, 𝜑 indicates the (LeakyReLU) activation function and 

𝛼  stands for a small value  called alpha which was set to 

(𝛼=0.01). It is necessary to note that applying a (LeakyReLU) 

function decreases the death of neurons in the network when 

the input 𝑋𝑙−1<0, which means that the output of LeakyReLU 

will have a small negative slope of (𝛼 = 0.01) in contrast to the 

ReLU function the output will be zero. Figure 7 shows the 

difference between the Leaky ReLU and ReLU function [40]. 

 

 
 

Figure 7. Visualizing the LeakyReLU and ReLU functions 

 

(3) Pooling/downsampling layer 

Thereafter, the outputted features from the previous layer 

are passed into the pooling layer or so-called subsampling 

layer. The pooling layer performs downsampling based on 

local connection to decrease unnecessary data while keeping 

the beneficial information. The features generated by the max-

pooling function can be defined as: 

 

𝐹𝑖𝑗
𝑙 = 𝑚𝑎𝑥(𝑓(𝑖−1)1+𝑘,(𝑗−1)1+𝑘

𝑙−1 , … , 𝑓𝑘𝑖,(𝑗−1)1+𝑘
𝑙−1 , …, 

𝑓(𝑖−1)1+𝑘,𝑘𝑗
𝑙−1 , . . . , 𝑓𝑘𝑖,𝑘𝑗

𝑙−1 ) 
(10) 

 

where, 𝐹𝑙 is the output feature at layer l that derived from the 

previous layer 𝐹𝑙−1, here k × k denotes the spatial region size, 

and (1 ≤ 𝑖, 𝑗 ≤ (𝑝 − 𝑞 + 1) ∕ 𝑘), p represents the input size of 

feature map, and q refers to the kernel/filter size. Anyway, the 

max function simply decreases the input features within the 

spatial region based on the maximum value. 

(4) Dropping layer 

One of the most prominent obstacles in deep models is 

overfitting. And to increase the model’s generalization and 

regularization better, the dropout method is used. As some of 

the neurons randomly will be ignored during the training 

process according to a given ratio called dropout rate. Thus, 

the dropout operation [41] not only protects or prevents the 

model from over-fitting but also speeds up the model's 

performance. The dropout operation can be formulated as 

follows: 

 

𝐷𝑜𝑢𝑡 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝐹𝑖𝑗
𝑙

) (11) 

 

4.6.2 Feature flattening strategy 

As can be seen from the 1D-CNN network (Figure 8), the 

overall number of temporal features extracted from input data 

was 79872 ( 𝐹𝑇 ∈ ℝ79872 ). Whereas from the 2D-CNN 

network, the total number of spatial features extracted from 

input data was 14720 (𝐹𝑆 ∈ ℝ14720). Anyhow, the next step 

after extracting features is the flattening operation, which 

reshapes the different dimensions to have a 1-D shape. 

Therefore, the 2-D data must be flattened into a 1-D vector 

before being fused with the temporal features. For example, 

the flattening process can be expressed as: 
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𝐴𝑖
𝑆 = [

𝑓11 ⋯ 𝑓1𝑤

⋮ ⋱ ⋮
𝑓ℎ1 ⋯ 𝑓ℎ𝑤

] = [
1 2
3 4
5 6

] (12) 

 

𝐹𝑖
𝑆 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐴𝑖

𝑆) = [𝑓11, … , 𝑓1𝑤 , … , 𝑓21, … ,
𝑓2𝑤, … , 𝑓ℎ1, … ., 𝑓ℎ𝑤] = [1 2 34 5 6]  

(13) 

 

where, 𝐴𝑖
𝑆 is a 2D spatial feature map of size ℎ𝑖𝑔ℎ𝑡 × width; 𝑓 

refers to the value of the feature. 𝐹𝑖
𝑆 represents the flattened 

spatial features as a 1-D vector. 

 

4.6.3 Feature fusing strategy 

After the temporal and spatial features are extracted and 

then flattened to vectors, they must be fused before being 

passed to the DNN model for detecting emotions. It is clear 

from Figure 8 and Table 1 that the feature fusion strategy is an 

intermediate level fusion in between the data level and 

decision level. It can prevent a large amount of computation 

and loss of information. Thus, to improve the performance of 

the proposed model for detecting and classifying emotions 

with high accuracy, the flattened features of both streams are 

fused using the concatenation strategy as described below: 

 
𝐶𝐹𝑖

𝑇 ∈ ℝ1×94592 = (𝐹𝑖
𝑇 ∈ ℝ1×79872)⨁(𝐹𝑖

𝑆 ∈ ℝ1×14720)  (14) 

 

where, ⨁ represents the concatenation operator, 𝐶𝐹𝑖
𝑇 refers to 

the total size of the concatenated features of both streams with 

a length of 94592  samples, 𝐹𝑖
𝑇  is the size of the extracted 

temporal features with a length of 79872 samples, while  𝐹𝑖
𝑆 

denotes the size of the extracted spatial features with a length 

of 14720  samples. The model can get more inclusive and 

precise evaluation findings, by flattening and fusing the 

temporal and spatial features to a joint vector.  

 

 
 

Figure 8. The architecture of the PETSFCNN-GSO-DNN model for detecting emotions 
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Table 1. The layer properties of the performed (PETSFCNN-GSO-DNN) model 

 
Layer name Kernel Kernel-Size Stride Padding Drop-Rate Output Shape Param # 

1D-CNN:        

Input layer-1 - - - - - 5000 × 1 0 

Conv1D 1-1 32 1 × 5 1 valid - 4996    × 32 192 

Leaky-ReLu 1-1 - - - - - 4996    × 32 0 

Max-Pooling1D 1-1 - 1 × 2 2 valid - 2498    × 32 0 

Dropout 1-1 - - - - 0.2 2498    × 32 0 

Conv1D 1-2 64 1 × 3 1 valid - 2496    × 64 6208 

Leaky-ReLu 1-2 - - - - - 2496    × 64 0 

Max-Pooling1D 1-2 - 1 × 2 2 valid - 1248 × 64 0 

Dropout 1-2 - - - - 0.2 1248 × 64 0 

Flatten-1 - - - - - 1 × 79872 0 

        

2D-CNN:        

Input layer-2 - - - - - 50 × 100 × 1 0 

Conv2D 2-1 32 5 × 5 1 valid - 46 × 96 × 32 832 

Leaky-ReLu 2-1 - - - - - 46 × 96 × 32 0 

Max-Pooling1D 2-1 - 2 × 2 2 valid - 23 × 48 × 32 0 

Dropout 2-1 - - - - 0.2 23 × 48 × 32 0 

Conv2D 2-2 64 3 × 3 1 valid - 21 × 46 × 64 18496 

Leaky-ReLu 2-2 - - - - - 21 × 46 × 64 0 

Max-Pooling2D 2-2 - 2 × 2 2 valid - 10 × 23 × 64 0 

Dropout 2-2 - - - - 0.2 10 × 23 × 64 0 

Flatten-2 - - - - - 1 × 14720 0 

Fusion-layer:  Concatenation of (1 × 79872) & (1 × 14720) into 1×94592 0 

Classification-layer:  GSO-DNN classifier  

FC-layer 1-1 128 - - - - 1 × 128 12107904 

Leaky-ReLu 1-1 - - - - - 1 × 128 0 

Batch-Norm 1-1 - - - - - 1 × 128 512 

Dropout 1-1 - - - - 0.2 1 × 128 0 

FC-layer 1-2 64 - - - - 1 × 64 8256 

Leaky-ReLu 1-2 - - - - - 1 × 64 0 

Batch-Norm 1-2 - - - - - 1 × 64 256 

Dropout 1-2 - - - - 0.2 1 × 64 0 

Output = FC-SoftMax 2 - - - - 1 × 2 130 

 

 
 

Figure 9. Hyper-parameter optimization of DNN model using GSO algorithm 
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Table 2. The hyper-parameters of DNN classifier are tuned automatically using Grid Search Optimization (GSO) 
 

Parameters Values of hyper-parameters Selected parameters values 

No. of neurons in layer_1 [32, 64, 128] 128 

No. of neurons in layer_2 [32, 64, 128] 64 

Epoch [50, 100, 150] 50 

Activation function [‘ReLu’, ‘LeakyRelu’] ‘LeakyRelu’ 

Dropout Rate [0.2, 0.5] 0.2 

Learning Rate [1e-2, 1e-3] 1e-3 

Batch size [64, 128] 128 
Notes: LeakyRelu means a Leaky Rectified Linear Unit, Adam means an Adaptive Moment Estimation 

 

4.6.4 GSO-DNN classifier 

After extracting and fusing features process, the next stage 

is the classification process. Therefore, the final vector of the 

fused features is passed into the GSO-DNN model, which 

consists of two fully connected (FC) layers with 128 and 64 

neurons each. Therefore, each fully connected layer is 

followed by an activation layer of type LeakyReLU, batch 

normalization layer, and dropout layer with a dropout rate of 

0.2. Besides, to overcome and reduce the over-fitting problem, 

grid search optimization (GSO) algorithm is used for 

optimizing/tuning the hyper-parameters of the DNN model. 

The tuned parameters of the DNN model are presented in 

Table 2 and depicted in Figure 9. Lastly, the output layer of 

the DNN classifier consists of two neurons, where the first one 

represents low valence and the second one represents high 

valence (low arousal and high arousal), as showed in Figure 8 

(classification layer). The activation function utilized with the 

output layer is the softmax function which can forecast the 

probability of the target class, as defined below: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑗) =
𝑒 𝑋𝑗

∑ 𝑒𝑋𝑗𝑛
𝑖=1

, 𝑖 = 1,2, . . . , 𝑛 (15) 

 
where, 𝑋𝑗 represents the input vector of the fused features, n 

indicates the number of emotional classes in the last layer. As 

the classification problem in this study is a binary 

classification task, therefore n=2. Furthermore, the loss 

function utilized in the output layer is based on the cross-

entropy loss (CEL) function as defined in Eq. (16): 

 

𝐶𝐸𝐿 = − ∑ 𝐿𝑖 × 𝐿𝑜𝑔(𝑋𝑗)

𝐶

𝑖=1

 (16) 

 

where, 𝑐 is the number of emotional classes, 𝐿𝑖 indicates the 

(ground-truth label), and 𝑋𝑗 denotes the predicted label. 

 

4.6.5 Implementation and evaluation metrics of the proposed 

method 

For implementing the programming code of our experiment, 

we utilized the GPU of Google Colab via a laptop with the 

following specification: windows 10 Pro 64-bit, Intel(R) Core 

(TM) i7-4600U CPU @ 2.10GHz, 256-GB SSD, 12-GB 

DDR3 RAM. There are different methods utilized for 

reserving any data set as (training and test) data. This study 

suggests using the k-fold cross-validation strategy with k = 10 

for dividing the dataset into training and testing sets. k-fold 

cross validation strategy is a resampling method used to reduce 

variance, bias, and errors in the dataset as well as aids to avoid 

overfitting problems and improves the performance of the 

model in terms of accuracy and stability. Therefore, 90% of 

the dataset was selected randomly for training the model and 

10% for testing its performance (this operation is repeated ten 

times) [27]. The average of the ten test results is calculated to 

obtain the model's final efficiency. Besides, different metrics 

were used such as accuracy, F1-score, sensitivity, specificity, 

receiving operating characteristic (ROC) curve, and confusion 

matrix. All the above-mentioned metrics can be computed by 

four parameters in confusion matrix: TP is the true positive, 

TN is the true negative, FP is the false positive, and FN is the 

false negative. The equations for these metrics are presented 

as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
× 100 (17) 

 

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (18) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) = 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (20) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒(%) = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙) × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙) + (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (21) 

 

𝐶. 𝑀 = [
𝑇𝑁 𝐹𝑝
𝐹𝑁 𝑇𝑃

] (22) 

 

 

5. RESULTS AND DISCUSSION  
 

This section presents the experimental findings of the 

proposed PETSFCNN-GSO-DNN model. The efficiency of 

automatically extracted temporal and spatial features of ECG 

signals was investigated on two datasets, the first is a private 

dataset, and the second is a freely available DREAMER 

dataset. The PETSFCNN-GSO-DNN model achieved the 

highest classification accuracy and F1-score on the private 

dataset of 76.19% and 75.65% for emotional low/high valence, 

respectively, whereas achieved a classification accuracy of 

80.95% and F1- score of 80.01% for emotional low/high 

arousal, respectively. The same model was applied and 

evaluated over the DREAMER dataset for recognition of 

emotional low/high valence and emotional low/high arousal. 

The proposed model obtained an average accuracy and F1-

score over the DREAMER dataset of 97.56% and 97.30% for 

classifying the emotional states of low/high valence, 

respectively, whereas it attained an average accuracy of 

96.34% and F1-score of 94.74% for classifying the emotional 

states of low/high arousal. Besides, the empirical results of the 

proposed model were presented in Table 3 for both datasets. 

Regarding the private dataset, Figure 10 shows the confusion 

matrices (A) and (B) of the test set for the GSO-DNN classifier 

for classifying emotional states as two (low and high) classes 

of both valence and arousal respectively. 
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Concerning the confusion matrix of emotional valence, we 

can see from Figure 10 (A) that among 126 affective states, 44 

were misclassified by the GSO-DNN classifier, with 23 and 

21 affective states for each of low valence and high valence 

respectively. Besides, the classification results show that the 

class of high valence attained better results as compared to the 

class of low valence. In the case of emotional arousal class, 

from Figure 10 (B), we can observe that among 126 emotional 

states, 24 affective states were incorrectly classified by the 

GSO-DNN classifier, with 6 and 18 affective states for each of 

low arousal and high arousal respectively. It should be noted 

that the class of low arousal attained better results than the 

class of high arousal. 

Besides, the ROC curves of the GSO-DNN classifier on the 

test set are located between the recall/sensitivity (Eq. (19)) and 

false positive rate as demonstrated in Figure 10 (C) and (D). 

The average result of the area under the ROC curve was 

computed to be 77.43% and 83.77% for both valence and 

arousal respectively. For the DREAMER dataset, the same 

GSO-DNN classifier was implemented on it separately. Figure 

11 demonstrates the confusion matrices (A) and (B) of the test 

set for the GSO-DNN classifier for classifying emotional 

states as two (low and high) classes of both valence and 

arousal respectively.  

 

 
 

Figure 10. The tested GSO-DNN classifier on the private 

dataset: Confusion matrices (A), (B) and ROC curves (C), 

(D) with AUCs for classifying two categories (low-high) for 

each of valence and arousal respectively for the test set 

 

Regarding the confusion matrix of emotional valence, we 

can see from Figure 11 (A) that among 82 affective states, two 

were misclassified by the GSO-DNN classifier, with 0 and 2 

affective states for each of low valence and high valence 

respectively. Besides, the classification results show that the 

class of low valence attained better results as compared to the 

class of high valence. In the case of emotional arousal class, 

from Figure 11 (B), we can see that among 82 emotional states, 

three affective states were incorrectly classified by the GSO-

DNN classifier, with 3 and 0 affective states for each of low 

arousal and high arousal respectively. It should be noted that 

the class of low arousal attained better results than the class of 

high arousal. As shown in Figure 11 (C) and (D), the average 

finding of the AUCs was computed to be AUC =98.68% for 

valence and AUC =97.12% for arousal. 
 

 
 

Figure 11. The tested GSO-DNN classifier on the 

DREAMER dataset: Confusion matrices (A), (B) and ROC 

curves (C), (D) with AUCs for classifying two categories 

(low-high) for each of valence and arousal respectively for 

the test set 
 

In the last years, ECG-based emotion detection has become 

a hot topic in the area of affective computing, and several 

scholars have presented various classification methods to 

obtain good results. But the need still exists to find more 

efficient methods to recognize and classify affective states 

based on ECG data. 

However, some challenges still exist in the field of affective 

computing, where most machine learning methods need 

handcrafted features before being fed into classifiers. 

Therefore, these methods not only limit the performance of the 

classifiers but also need human expertise to extract useful 

features from ECG signals. Thus, our proposed study aims to 

find a more efficient method to detect emotional states from 

ECG signals. And to overcome such aforementioned 

limitations, we proposed and developed a new method to 

parallelly extract the temporal and spatial features from ECG 

signals using CNN models, then the extracted features were 

fused and fed into the DNN model for detecting human 

emotional states. It should be also noted that our proposed 

method has achieved better results than the state-of-the-art 

studies. The reasons that resulted in obtaining higher results 

than the related studies are feature extraction, feature fusion, 

and optimization DNN model. 
 

Table 3. Classification results (%) of PETSFCNN-GSO-DNN model on two datasets 
 

Datasets Signals Stimulus 
Valence Arousal 

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) 

Private  ECG IAPS 76.19 75.65 80.95 80.01 

DREAMER ECG Audio-Visual 97.56 97.30 96.34 94.74 
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To establish a fair comparison with the related studies, we 

compared the performance of the proposed method with those 

methods [24, 27, 28] based on the DREAMER dataset. Beside 

we can observe from Table 4 that the proposed PETSFCNN-

GSO-DNN model outperforms better than all the state-of-the-

art studies in detecting and classifying emotional states. 

Furthermore, Table 4 explains the comparison of the works 

mentioned previously in this study between used methods and 

their classification results, including F1-score if any. Besides, 

based on the results presented in Table 4, we can conclude the 

advantages of our proposed method are below: 

1) The proposed method is a reliable and accurate computer-

aided system in emotion detection which presents ideal 

average classification accuracy of 97.56% and 96.34% for 

valence and arousal, and the F1-score value of 97.30% and 

94.74% for valence and arousal on the DREAMER dataset, 

where this refers to the effectiveness of binary classification. 

2) The proposed method has the possibility to extracts 

useful and robust features from ECG signals automatically 

without the need for handcrafted features such as time-domain 

features, frequency-domain features, time-frequency features, 

statistical features, and others, which complicates their 

methods more than the proposed method. 

3) The method of feature fusion has also increased the 

accuracy of ECG-based emotion classification. 

4) The method of hyper-parameters tuning of the DNN 

classifier using Grid Search Optimization (GSO) has also 

improved the performance of the proposed model. 

5) As depicted in Figure 11, the proposed model increased 

the classification accuracy by 11.56%, 12.56%, and 35.19% 

for emotional valence compared to the methods [24, 27, 28], 

while it improved the classification accuracy by10.44% and 

33.97% for emotional arousal compared to the methods [24, 

27]. 

For stating the reliability of our proposed method, F1-score 

measure was also applied along with the accuracy measure to 

give another dependable indicator of emotion classification 

success. The results of Table 4 also show that our proposed 

method on the DREAMER dataset presents better 

classification results of F1-score in comparison with the 

related studies presented by references [24, 27, 28]. To further 

verify the performance of the proposed model, we can see 

from Figure 11 (C) and (D) that, the average results of the area 

under curve (AUC) were calculated to be AUC = 98.68% for 

valence and AUC = 97.12% for arousal on the DREAMER 

dataset. 

Overall, this indicates that the proposed method has resulted 

in increasing the emotion classification accuracy better than 

all the state-of-the-art studies presented in Table 4. 

On this basis, we can argue that the suggested method it can 

be implemented as a useable tool in several fields as follows: 

1) In the field of mental healthcare to detect human 

detrimental emotional states such as worry, fear, stress, and 

others. 

2) In the field of education to detect the negative affective 

states of students, hence this can help to enhance student 

learning experiences and improve their performance. 

3) In the area of transportation safety, recognizing various 

emotions such as anger, fatigue and stress can assist to issue 

an alert to the driver of a vehicle before a potential crash. 

Lastly, Figure 12 demonstrates a summary of the 

comparison between the current study and the related state-of-

the-art studies. We can see that the proposed method based on 

deep learning (DL) techniques outperforms in performance 

better than the latest studies based on DREAMER dataset. 

 

 
 

Figure 12. The PETSFCNN-GSO-DNN network's results 

represented graphically 

 

Table 4. Comparison of the performance of our proposed method with related state-of-the-art studies 

 

Author Study Dataset Subjects Stimulus Classes 

Valence Arousal 

Acc % 
F1-

s % 
Acc % 

F1-

s % 

Subramanian et al. [21] NB ASCERTAIN 58 Movie 2 - 60 - 59 

Wiem and Lachiri [22] SVM MAHNOB 24 Video 2 68.75 - 64.23 - 

Hsu et al. [23] LS-SVM Private 61 Music 2 82.78 - 72.91 - 

Katsigiannis and 

Ramzan [24] 
SVM+RBF Kernel DREAMER 23 

Audio-

Visual 
2 62.37 53.05 62.37 57.98 

Baghizadeh et al. [25] 
SVM-Polynomial 

SVM-Linear 
MAHNOB 24 Video 2 78.07 - 82.17 - 

Santamaria-Granados 

et al. [26] 
DCNN AMIGOS 40 Video 2 75.00 - 76.00 - 

Sarkar and Etemad [27] 
Self-Supervised 

(CNN) 
DREAMER 23 

Audio-

Visual 
2 85.00 84.50 85.90 85.90 

Harper and Southern 

[28] 

Bayesian-(CNN-

LSTM) 
DREAMER 23 

Audio-

Visual 
2 86.00 83.00 - - 

Our method 
PETSFCNN-GSO-

DNN 

DREAMER 23 
Audio-

Visual 

 

2 

 

97.56 

 

97.30 

 

96.34 

 

94.74 

Private Data 21 
IAPS-

Images 
2 76.19 75.65 80.95 79.89 
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6. CONCLUSIONS 

 

Despite several different methods are proposed to detect and 

classify emotional states with high accuracy, but the need still 

exists for more efficient systems to improve the performance 

of classification. Moreover, In the field of affective computing, 

most of the experiments are suffering from a lack of datasets 

for training and testing their systems, data collecting (e.g., 

emotion triggering/evoking) is as yet a defy problem in this 

field. And for the aforementioned reasons, we introduced a 

novel PETSFCNN-GSO-DNN model for detecting and 

classifying affective states. The proposed method was 

implemented on two different datasets, where the first dataset 

was collected from 21 participants, while the second was a 

public DREAMER dataset that was collected from 23 subjects. 

The PETSFCNN-GSO-DNN model achieved a classification 

accuracy on the private dataset reach to 76.19% for valence 

and 80.95% for arousal respectively, whereas on the 

DREAMER dataset the PETSFCNN-GSO-DNN model 

achieved a classification accuracy reach to 97.56% for valence 

and 96.34% for arousal respectively. The empirical results 

have demonstrated that our proposed model outperforms and 

attains a better classification accuracy than state-of-the-art 

methods. To improve the accuracy and efficiency more, our 

future work will encompass using other deep learning 

techniques such as LSTM algorithms. Furthermore, we will 

use other physiological signals such as EEG to detect more 

affects. 
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