
  

  

Interaction Model of the Cabin of Combined Sugarcane Harvesters  
 

Sha Liu*, Yu Tan, Chunyang Wu 

 

 

College of Engineering, China Agricultural University, Beijing 100083, China 

 

Corresponding Author Email: Lius02@cau.edu.cn 

 

https://doi.org/10.18280/ts.390101 

  

ABSTRACT 

   

Received: 3 November 2021 

Accepted: 28 December 2021 

 Owing to visual blind spot areas and occasional negligence, combined sugarcane harvester 

drivers often make mistakes in field operation, some of which evolve into major accidents. 

To improve drivers’ perception of and response to warning information, this paper explores 

the optimal interaction mode of warning information for the cabin of combined sugarcane 

harvesters. A series of experiments were carried out on a stationary driving simulator to 

verify the driver experience and alarm efficiency of three modes of warning information, 

namely, text, audio, and image, as well as their dual-channel modes. The physiological data, 

such as electrodermal activity (EDA), photoplethysmography (PPG), and 

electroencephalogram (EEG), of eight subjects were collected through the experiments. On 

this basis, the cognitive load of drivers was analyzed under different modes of warning 

information. The motion feedback time was recorded to parse the driver’s recognition rate 

and reaction speed to the warning information, and the eye movement was captured to 

analyze the driver’s attention distribution. The results show that the recognition rate under 

the dual-channel mode of visual and audio is higher than that of the single-channel mode of 

text or image. The addition of the visual warning information (text or image) to the audio 

information reduces the attention distribution time, and the best reduction effect is achieved 

in the image plus voice mode. The EDA indices of latency, amp sum, and mean half decay 

time fully reflect the effect of alarm information modes on the subjects’ reaction speed and 

emotional stimulation. The image plus voice mode has the fastest response speed, smallest 

response to stimuli, and the best ability for emotional recovery than the other modes. The 

eye movement, some EDA indices, and EEG are more sensitive to stress reaction, while the 

HRV is not sensitive for analyzing drivers’ stress to the stimuli of warning information in a 

short time. The research results lay the basis for designing a more efficient and accurate 

reminder mode of warning information for combined sugarcane harvesters. 
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1. INTRODUCTION 

 

In recent years, China has witnessed the rapid development 

of the agricultural machinery industry. The comprehensive 

mechanization rate of farming, planting, and harvesting has 

surpassed 71.25%, with the total number of combined 

harvesters exceeding 2 million [1]. The rising rate of 

agricultural mechanization is accompanied by frequent 

occurrence of agricultural machinery accidents, which brings 

huge losses to agricultural production, and threatens the safety 

of human life and property.  

During the operation of combined sugarcane harvesters, 

accidents may arise from the following factors: visual blind 

area, lack of concentration [2], poor driving skills, and 

inability to handle danger information in complex 

environments [3]. About 30% of traffic accidents take place as 

large vehicles turn right, because the driver has visual blind 

spots [4]. This means the variation of traffic environment 

severely affects the driver’s distribution of attention [5].  

To prevent accidents, the design of vehicle cabin has been 

repeatedly improved. Many intelligent driving systems are 

adopted to monitor and predict the danger of environmental 

changes, and issue warnings and instructions. These systems 

enable the driver to realize the impending danger, and react 

properly to avoid accidents. However, the effectiveness of 

danger warning depends on how the driver perceives the 

warning information. Hence, it is crucial to present the 

warning information appropriately. 

To present the warning information for combined sugarcane 

harvesters efficiently and accurately, this paper develops a 

stationary driving simulator, and carries out a series of 

experiments. Based on the experimental data, the drivers’ 

attention distribution, reaction speed, cognitive load, and 

information recognition rate were analyzed under three modes 

of warning information, namely, text, audio, and image, as 

well as their dual-channel modes. Finally, several suggestions 

were drawn for the robust interaction design of cabin interface 

in combined sugarcane harvesters. 

 

 

2. LITERATURE REVIEW 

 

2.1 Driver state detection 

 

Dangerous driving behaviors (e.g., over-following, and land 

departure), and crash rate can be effectively reduced by many 

technologies, such as collision warning system, and lane 

departure system [6]. For example, Zhao et al. [7] designed an 

auxiliary system that monitors the blind area of right turn for 

cars and trains. In the system, wave radar is employed to 
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monitor the position and speed of pedestrians and vehicles in 

the blind area, and the frequency of buzzer sound and flashing 

light is utilized to remind the driver of potential danger. Fan 

[8] designed an anti-collision alarm device for roller operation: 

Ultrasonic detection is adopted to automatically measure the 

distance between obstacles within the visual blind area in the 

rear of the roller, and to issue sound and light alarms during 

the reversing process; The obstacle images and their distances 

are displayed synchronously on the video device set in the 

cabin; Then, the driver receives audio-visual alarms from a 

large alarm lamp and a high decibel vibrating horn, which tell 

him/her to brake the car.  

Lisk et al. [9] applied the intelligent video management 

system (IVMS) on short-range commercial vehicles. The 

system can capture audio-visual events, and feedback the 

driver’s video recording to supervise and guide driver 

behaviors. The implementation of the IVMS lowered the 

number of accidents by 60%, and reduced the cost of accidents 

by 86%. Hickman and Hanowski [10] instructed instructing 

long-distance truck drivers of two transportation companies, 

and found that the dangerous driving behaviors were reduced 

by 37% and 52%, respectively. Kim et al. [11] combined 

internal information like driver’s face image and external road 

information to assess the driver's cognitive state, and reminded 

the driver to stay alert and avoid traffic accidents.  

Some researchers have attempted to detect driver 

drowsiness based on eyelid closure [12]. But all of them 

adopted special embedded platforms with limited groups of 

users. Subsequently, some scholars have studied the 

smartphone-based driver monitoring and alarm system, which 

usually integrates cameras and electroencephalogram (EEG) 

sensors [13-15]. Cameras are adopted more extensively, due 

to the discomfort of wearing EEG sensors. 

 

2.2 Driver access to information  

 

Previous studies have shown that, while driving, 70% of the 

information gained by the driver are visual information, and 

20% are audio information [16]. Intuitively speaking, images 

and languages are the two most direct and high-speed channels 

for people to acquire external information. In fact, languages 

are the most direct, effective, and convenient form of 

communication for human beings [17].  

Many researchers have explored the relationship between 

cabin interface and the driver’s information reception. Iwao et 

al. [18] studied the truck drivers’ looking at the screen while 

driving, and discovered that their recognition rate of screen 

information is affected by driving tasks and warning sounds. 

The assignment of the second driving task shortened the time 

of staring at the screen, and reduced the recognition rate of 

screen information, calling for more attention from the driver. 

The recognition rate (100%) in the presence of the tone 

dropped to 50% in the absence of the tone. Wu and Boyle [19] 

evaluated the effects of 4 different audio warning messages on 

the inter-motion assistance system (IMA) for hazard detection. 

The results show that all warning messages significantly 

enhanced the driver’s ability to evade danger. Different 

warning messages led to significantly different reaction times, 

speeds, and eye movements of the subjects. The message brake 

now achieved the best effect in collision reduction and 

obstacle avoidance. The messages danger and vehicle on the 

left improved the driver’s ability to detect danger. In addition, 

the effectiveness of non-voice warning messages could be 

improved through training.  

Desmet and Diependaele [20] noticed the significant impact 

of hands-free phone on driver behaviors: the drivers’ visual 

range was dispersed upon hearing audio signals, indicating 

that these signals affect the distribution of driver’s attention. 

Bell et al. [21] found that the number of dangerous driving 

behaviors nosedived in the presence of light warning plus 

immediate supervision. Yu and Lin [22] studied the driving 

quality, attention distribution, and interaction, when the 

drivers interacted in the modes of text, audio, and video, 

respectively. The results show that video interfaces had a 

much stronger interference than audio and text interfaces. The 

drivers can better understand the text, if important information 

is highlighted, and have an improved interactive experience.  

Based on genetic algorithm (GA), Yao and Yuan [23] 

optimized warning information on the display interface of a 

road roller, and sorted out the prompt mode of warning 

information. But their research does not benefit the visual 

search of users, for the information is collected in real time 

from the interfaces, and the elements of the warning 

information are too many. Zhang et al. [24] discovered that the 

growing information display rate suppresses the information 

provision rate, and diversifies the effect of information color 

coding on the information provision rate. Zhang et al. [25] 

designed an effective information interface for rear-end 

collision alarm with both audio and visual alarm signals 

(buzzer and icon). Nevertheless, the effect of the interface was 

merely tested in the form of subjective questionnaire, the 

reaction time was not quantified, the interaction mode was 

configured simply, and the semantic factors in the signals were 

not fully explored. 

The above research has effectively examined the 

information forms of early warning in general driving 

behaviors. For large and medium-sized agricultural equipment 

like sugarcane harvesters, the driver needs to complete various 

operations continuously, in addition to the said driving 

behaviors, in a noisy and shaking environment. So far, there is 

little report on how to set up early warning information such 

that the driver can perceive accidents faster, and make correct 

decisions. This paper aims to fill up this research gap. 

 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

This section compares the user feedback efficiency and 

recognition effect of different information modes, namely, 

sound, image, and text, in the accident alarms during the 

driving and operation of agricultural machinery. 

 

3.1 Preparations 

 

 
 

Figure 1. Fixed simulation cabin 
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The experimental instrument is a self-designed fixed 

simulation cabin (Figure 1). In front of the screen lies a driving 

simulator, which includes a steering wheel, and two pedals that 

emulate the swing of the lift from side to side.  

According to field investigation, the 10-inch interactive 

screen of the sugarcane harvester was installed on the right 

side of the cabin. The screen could be rotated by any angle 

required by the driver. The screen was deployed with an angle 

of 45° to ensure the uniformity of experimental conditions. In 

the range of the visual angle, the driver can perceive the road 

conditions, and watch the warning interface. During the 

harvesting operation, the visual field of the driver is blocked 

by sugarcanes, and the focus distance is relatively short. In the 

course of driving, the driver has a relatively wide visual range, 

and a relatively long focus distance. Hence, the distance from 

the driver’s eyes to the screen was fixed at 100cm, providing 

a reference for subsequent analysis. 

To record the reaction speed to prompts, a timer was 

designed with an Arduino development board. At each pedal, 

a pressure sensor was placed to capture the pressure. The 

sensor output was taken as the end signal of the timer, and used 

to measure the duration from screen change to the stepping 

down of the pedal. During the experiments, the attention 

distribution of each driver was tracked in real time by a 

wearable eye tracker. In addition, the real-time physiological 

data were collected in real time with electrodermal activity 

(EDA) sensors, photoplethysmography (PPG) sensors, and 

EEG sensors for subsequent analysis on reaction time and 

cognitive load. 

Eight subjects, 4 males and 4 females, aged 18-25, were 

recruited. All of them have driving experience, hold a driving 

license for ordinary motor vehicles, and possess certain 

knowledge about the driving of agricultural machinery. Every 

subject has normal or corrected visual acuity, without color 

blindness or strabismus. 

 

3.2 Experimental process 

 

Before each experiment, the experimental purpose and tasks 

were introduced to the subjects. Every subject was given 10 

mins to get familiar with the experimental environment and 

interactive interface. The experiment simulates the scenario 

that the subject drives a harvest in a straight line to harvest 

sugarcanes. Once he/she finishes harvesting one row, and 

turns to the next row, a visual blind spot would appear in the 

turning process. It is assumed that a danger (left or right) exists 

in this very spot. The driver would receive an alarm in different 

modes. In the real world, if there is a danger in the blind spot 

on the left side of the harvester, the driver should turn the 

harvester’s lift to the right rear by stepping on the left pedal. If 

there is a danger in the blind spot on the right side of the 

harvester, the driver should turn the harvester’s lift to the left 

rear by stepping on the right pedal. During the experiment, the 

subject needs to step on the left pedal after receiving the left 

danger signal, and the right pedal after receiving the right 

danger signal. 

At the very beginning of each experiment, the subject was 

asked to sit in the designated position, and adjust his/her seat 

such that his/her eyes are 100 cm away from the screen. Five 

numbers 1-5 would appear randomly on the screen to simulate 

various driving actions, and keep the subject focused on the 

road. The subject was required to whisper the number he/she 

saw on the screen. In addition, several instructions, such as 

blowing the horn and steering wheel 90° (180°) left (right), 

would appear randomly on the screen. The subject must follow 

the instructions immediately. 

Field tests show that the noise of the harvesting environment 

is around 69-82dB. Hence, the noise level of our experiments 

was set to 70dB, including the uniform working noise of the 

harvester, and the irregular interference audio signals, e.g., the 

sound of horns, and the chatting of pedestrians. 

Our experiments verify whether the change of audio signal 

(visual signal) affects the attention distribution, reaction speed, 

cognitive load, and information recognition rate of the subjects, 

when the visual signal (audio signal) remains unchanged. 

Among them, the reaction speed and cognitive load were 

measured by EDA, PPG, and EEG. Hence, the experiments 

involve two independent variables, namely, visual signals in 

the form of text or image, and audio signals (meaningful voice 

and the beep sound), as well as three dependent variables, 

including the recognition rate of the warning message, the 

driver’s attention distribution, and the statistical values of 

EDA, PPG, and EEG. The signals of text and image mode are 

shown in Figures 2 and 3, respectively. 

 

   
 

Figure 2. Signals of text mode 

 

   
 

Figure 3. Signals of image mode 

 

During each experiment, danger warning signals were 

issued on the interface from time to time. That is, the interface 

changed from the original state to the warning state 

occasionally. In each experiment, the left danger signal and 

right danger signal appeared twice, respectively, in a random 

order. Each signal was given off with a random audio 

interference. The moment that a signal appeared on the 

interface was regarded as the start time. Each time, a warning 

signal lasted 5s (the voice signal was broadcasted only once), 

i.e., the initial interface resumed after 5s.  

Upon seeing a warning signal, the subject must give 

feedback, and step on one of the pedals, which triggers the 

pressure sensor on the pedal. The feedback duration was 

recorded by the timer. Under the guidance of the experimenter, 

the subject completed the tasks in different interaction modes. 

If the subject did not complete the required operation within 

5s or execute the operation incorrectly, the task would be 

recorded as failed. After each task, the experimental 

instrument was reset by the experimenter. In the experiment, 

the subject was asked to turn his/her eyes to the warning screen 

after receiving an operational task to ensure that the displayed 

information was clearly visible. 

 

3.3 Results analysis 

 

3.3.1 Recognition rate 

The warning signal in any information mode appeared 24 

times in each experiment. Tables 1 and 2 show the recognition 
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rates of warning information in different modes under the 

noisy environment, and a noise-free environment, respectively. 

It can be observed that noise significantly interfered with the 

recognition of alarm information. In both noisy and noise-free 

environments, the recognition rates under the dual-channel 

modes were higher than those under the single-channel modes: 

the recognition rates under text plus voice or text plus beep 

were higher than those under text or voice; the recognition 

rates under image plus voice or image plus beep were higher 

than those under image or voice. 

 

Table 1. Recognition rate in noisy environment 

 
Single-channel Text Image Voice 

Recognition rate 75% 83.3% 79.2% 

Dual-channel Text plus voice Text plus beep Image plus voice Image plus beep Voice plus text Voice plus image 

Recognition rate 95.8% 100% 100% 100% 95.8% 100% 

 

Table 2. Recognition rate in noise-free environment 

 
Single-channel Text Image Voice 

Recognition rate 75% 58.3% 100% 

Dual-channel Text plus voice Text plus beep Image plus voice Image plus beep Voice plus text Voice plus image 

Recognition rate 91.7% 100% 100% 95.8% 100% 100% 

3.3.2 Attention distribution 

In each experiment, the time distribution of attention of each 

subject was recorded by the eye movement method. The 

recorded data were subjected to the student’s t-test. The t-

statistic can be calculated by: 

 

𝑡 =
𝑋 − 𝜇
𝜎𝑋

√𝑛 − 1

 

 

where, 𝑋 and μ are the mean of the sample and the population, 

respectively; 𝜎𝑋 is the standard deviation of the sample; n is 

the sample size. The data analysis was supported by Excel and 

SPSS. 

In the noisy environment, the mean time for the subjects’ 

gaze point to move from the screen to the road was 560.92ms 

under the text mode, and 426.44ms under the text plus voice 

mode. The sig. value of the t-test was 0.009<0.05, suggesting 

a marked difference between the mean time for the attention 

to turn to the road under the text mode, and that under the text 

plus voice mode; the feedback was faster under the latter mode 

than under the former mode. 

The mean time for the subjects’ gaze point to move from the 

screen to the road was 818.08ms under the image mode, and 

417.10ms under the image plus voice mode. The sig. value of 

the t-test was 0.000<0.05, indicating a statistically significant 

difference between the mean time of attention distribution 

under the image mode, and that under the image plus voice 

mode. The mean time under the former mode was slightly 

different from that under the latter mode. 

In summary, the addition of sound to visual (text or image) 

warning information shortens the time for the subjects to 

distribute their attention. This is particularly true under the 

image plus voice mode. 

 

3.3.3 Electrophysiological indices 

The SCR is an effective tool to measure the real-time 

emotional response and physiological changes of drivers [26, 

27]. Thus, the EDA data of the subjects were subjected to an 

event correlation analysis. Figure 4 shows the complete record 

of a subject’s EDA in the noisy environment. Table 3 presents 

the mean values of the EDA indices of all subjects. 

 

 

Table 3. Mean values of the EDA indices of all subjects 

 
Model Latency (s) Amp sum (μS) SCL (μS) Mean half decay time (μS) 

 Text  1.343 0.449 11.514 1.069 

 Image  1.629 0.424 11.038 1.294 

 Voice  1.830 0.814 10.743 1.783 

 Text plus beep  1.340 0.610 10.408 1.109 

 Text plus voice  0.830 0.270 10.287 0.853 

 Image plus beep  1.166 0.612 10.216 0.792 

 Image plus voice  0.756 0.277 10.289 0.781 

 

Table 4. Ranking by mean values of SCR indices and mean test results 

 
 Ranking SCR index One-way ANOVA 

Audio factors 

 

 Image plus voice < image plus beep < image  latency F = 3.533, P = 0.035 

 Image plus beep < image  latency P>0.05 

 Image plus voice < image  latency F=7.642, P=0.008 

Visual factors  Image plus voice < text plus voice < voice  latency F=8.781, P=0.000 

 Image plus voice < text plus voice < voice  mean half decay time. F=5.236, P=0.008 

 Text plus voice < voice  
latency F=11.000, P=0.002 

mean half decay time F=7.353, P=0.010 

 Image plus voice < voice  
latency F=13.832, P=0.001 

mean half decay time F=8.620, P=0.005 
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Figure 4. EDA image of a subject in the noisy environment 

 

On SPSS, a one-way analysis of variance (ANOVA) was 

performed on each SCR index under single-channel modes. 

Comparing the mean values of multiple samples, it was found 

that the EDA indices under different visual modes (text and 

image) were not significantly different, when the audio signals 

were consistent; these indices under different audio modes 

(beep and voice) were not significantly different, when the 

visual signals were consistent. Next, the EDA indices under 

the single-channel modes were compared with those under the 

corresponding dual-channel modes. A one-way ANOVA was 

conducted on each SCR index under the modes of image, 

image plus beep, and image plus voice. The results show no 

significant difference in mean latency. By feedback speed, the 

different modes can be ranked in descending order as image 

plus voice, image plus beep, and image. 

Furthermore, an one-way ANOVA was carried out on the 

SCR indices under the modes of voice, text plus voice, and 

image plus voice. It is clear that the three modes differed 

significantly in the mean values of latency, and mean half 

decay time. Similarly, another one-way ANOVA was 

implemented on the SCR indices under the modes of voice, 

text plus voice, and image plus voice. The results reveal that 

the three modes differed significantly in the mean values of 

latency, and mean half decay time, but the difference did not 

significantly affect SCL (Table 4). 

Overall, latency and mean half decay time could fully 

reflect the variation in the subjects’ reaction speed, and the 

effect of different alarm modes on driver emotions. The 

subjects responded faster under the image plus voice mode 

than under the other modes. Under this mode, the stimulus 

invokes a relatively small response, and the subjects could 

recover better emotionally. Thus, the image plus voice is the 

ideal mode for prompting alarm information. 

 

3.3.4 Heart rate variability (HRV) 

The HRV, which depends on the autonomic nervous system, 

is an important indicator of the change of psychological load. 

Some studies have shown that the HRV decreases with the 

growing stress [28]. The most reliable HRV indices that 

differentiate between stressful and non-stressful situations 

include the square root of the mean squared differences of 

successive R-R intervals (RMSSD), the average of normal-to-

normal R-R intervals (AVNN), and the standard deviation of 

normal-to-normal R-R intervals (SDNN) [29, 30]. The mean 

R-R interval and the time domain parameter (pNN50) are 

significantly lower in the stressful state with mental task than 

in the relaxed state. The stress would increase the low-

frequency (LF) / high-frequency (HF) ratio, an important 

frequency-domain index of sympathetic activity. However, 

some scholars reported that the LF/HF ratio at rest is not 

significantly different from that under mental tasks [31]. 

Garcia et al. [32] proposed a method based on the HRV, 

especially NN50 and pNN50, to evaluate the psychological 

differences between drivers under different driving conditions. 

It was learned that the NN50 and pNN50 values of the driver 

operating under no event were higher than those of the driver 

executing lane change, turning, and stop. Their results 

demonstrate that NN50 and pNN50 can be used to judge the 

driver’s stress state, and clarify whether the driver is ready to 

take over an autopiloting vehicle [32]. 

In our experiments, the HRV signals were recorded by PPG 

sensors. Figure 5 shows the PPG data acquired from a subject 

within 5s upon receiving the right danger signal under the 

image mode in a noisy environment.  

The LF/HF ratio of each subject was analyzed to reveal 

his/her stress state. No significant difference was observed 

between the mean values of the LF/HF ratio. For a few subjects, 

there was a significant difference in that ratio between the 

image mode and image plus beep mode (P=0.001), and 

between the voice mode and text plus voice mode (P=0.034). 

The image plus beep mode had a lower LF/HF ratio than the 

image mode. A possible reason is that the addition of audio 

signal to the image mode reduces the subjects’ cognitive stress. 

Besides, the voice mode had a much smaller LF/HF ratio than 

the image plus voice mode and the text plus voice mode, and 

the cognitive stress of the subjects was lower under the single-

signal mode than under the dual-signal modes.  

The time-domain indices, NN50 and pNN50, are proven 

indices of parasympathetic control [33]. However, no 

significant difference in these indices was observed between 

different modes. This is probably because the recording 

(stimulus) lasts only 5s.  

In summary, the HRV indices were not as sensitive as the 

EDA indices in response to stress and pressure. Since the 

warning information can be recognized very quickly, the HRV 

indices are not suitable for pressure load evaluation. 
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Figure 5. PPG data of a subject within 5s upon receiving the right danger signal under the image mode in a noisy environment 

 

3.3.5 EEG indices 

Excessive stress causes pain, and adversely affects our 

cognitive function, making it easier for us to make errors [34]. 

The resulting rise of error rate is related to the inhibitory 

control of the brain. Inhibition is usually defined as the 

deliberate limitation of planning or dominant response. It is a 

crucial mechanism for the brain to operate normally in 

emergencies. It is meaningful to study how stress affects 

inhibitory control in driving [35, 36]. 

Some scholars have discovered that specific EEG patterns 

can be observed earlier than electromyography (EMG) signals 

of brake pedal response [37]. When an emergency occurs 

during driving, the first brain process of the driver is inhibition, 

which guides the movement planning and the responses (e.g., 

braking) to avoid traffic accidents [38, 39]. The inhibition 

increases the values of δ and θ [40]. The variation pattern and 

expression of the δ wave in EEG reflect how much negative 

psychosocial stimulation affects the brain function [41]. In 

general, θ waves only appear in healthy adults, when they are 

asleep, especially when they are frustrated, moved, or 

depressed.  

The α wave is the main electrical activity of the cerebral 

cortex, when the subject is awake and quiet. Normally, α 

waves are abundant during the acceptance and rejection of 

tasks. Besides, β waves, which represent the awakening of the 

brain, are the main electrical activity in the excited state of the 

cerebral cortex, indicating that the subject is especially alert, 

attentive, and nervous. These waves can be adopted to explore 

the brain state, when emotional changes are induced by visual 

stimuli [42]. Moreover, γ waves, which integrate information 

processing and feedback, play an important role in the 

cognitive activities and the information transmission in the 

human brain. From the angle of inhibition operation, Jung-tai 

King et al. [43] quantified the brain activities in emergency 

driving, by exerting stress on subjects under time pressure. The 

results show that the β and γ indices in frontal and central 

regions were significantly correlated with driver inhibition. 

The β and γ band power under the stress state were much 

higher than those under the normal state. Plus, the β and γ 

indices were more active than δ and θ. 

In our experiments, the EEG data were collected by the 

deployed sensors. Figure 6 displays the EEG data collected 

from a subject within 5s upon receiving the right danger signal 

in under the image mode in the noisy environment. 

The previous studies have concluded that β and γ waves are 

suitable for studying the electrical activity of the human brain 

under tasks. In our experiments, the β and γ band data of each 

subject were collected under different information modes, 

analyzed statistically, and subjected to a one-way ANOVA. 

 

 
 

Figure 6. EEG data collected from a subject within 5s upon receiving the right danger signal in under the image mode in the 

noisy environment 
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The test results show that most subjects had statistically 

significant differences in the β and γ band data under the text 

and voice modes (P < 0.05), and under the image and voice 

modes (P < 0.05). The total and mean energies of β and γ under 

the voice mode were much smaller than those in the text and 

image modes. In other words, the stimuli generate a much 

smaller pressure under the voice mode than under the latter 

two modes. No significant difference was observed between 

other modes. 

Next, a one-way ANOVA was performed on the δ and θ 

band data of each mode. No results similar to those of β and γ 

bands were found. In general, the total and mean energies of δ 

and θ bands under the voice mode were lower than those in the 

text and image modes, but the gap was not statistically 

significant. Hence, the β and γ indices are more obvious than 

δ and θ. 

 

 

4. CONCLUSIONS 

 

(1) The presentation mode of alarm information affects the 

recognition rate, attention distribution, reaction speed, and 

cognitive load of drivers. In the real (noisy) operating 

environment of the sugarcane harvester, the drivers have 

higher recognition rate, faster reaction speed, and shorter 

distraction time under the dual-channel modes (visual plus 

audio) than under single-channel modes. Between single-

channel modes, the cognitive load of the drivers under the 

voice mode is significantly lower than that under the text or 

image mode. The image plus voice mode boasts the fastest 

reaction speed, the smallest response to stimuli, the strongest 

recovery energy, and the swiftest attention shift from the 

screen to the road. In the interaction design of cabin interface, 

the dual-channel mode of visual plus audio is better than the 

single-channel mode of visual or audio, and the best dual-

channel mode is image plus voice. 

(2) Out of the various physiological feedback data, the eye 

movement, some EDA indices, and EEG are more sensitive to 

stress reaction. The HRV and other physiological indices are 

not so sensitive. 

(3) Our experiments only target three single-channel modes 

(text, image, and voice), and several dual-channel modes 

(different combinations between visual modes of text and 

image and audio modes of voice and beep), without analyzing 

the multi-channel modes involving three or more modes. 

Besides, the simulations were all conducted in the lab rather 

than the real operating environment. To acquire driver 

information more efficiently and accurately, the future work 

will further study the modes of dynamic graphics and 

somatosensory. 
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