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A new method is proposed for recognition of the sleep apnea-hypopnea syndrome (SAHS) 

using electrocardiograms (ECG) signal in order to find an alternative with the same 

performance of polysomnography (PSG). Heart rate variability (HRV) signals generated 

from an ECG signal are used to examine a wide range of indices. A novel aspect of this work 

is the use of a method to decompose the HRV spectrum into total power spectrum (TP), high 

frequency (HF), low frequency (LF) and very low frequency (VLF) sub-band signals, and 

correlates their energy content with sympathetic and parasympathetic activity. The HRV 

signal was decomposed using the continuous wavelet transform (CWT) followed by the 

inverse continuous wavelet transform (ICWT), and sub-band signals were extracted from 5-

minute episodes. In this regard, the suggested technique provides novel indices based on the 

mean of small (1 to 5), medium (6 to 10) and large (11 to 20) time scales of multiscal 

dispersion entropy (MDE) for each sub-band signals. In order to choose the best classifier, 

the indices of the MDE are submitted to a t-test technique and categorized using three 

classifiers: decision trees (DT), support vector machines (SVM-RBF) and K-nearest 

neighbor (KNN). The proposed method is evaluated using the combination of Physionet 

Apnea–ECG database and the University College Dublin Sleep Apnea Database. Using a 

10-fold cross validation technique, the SVM-RBF classification approach achieves an

average sensitivity, specificity, and accuracy of 93.91%, 96.92% and 93.94%, respectively.

The results demonstrate that the approach presented is as precise as the best contemporary

methods investigated using the same ECG datasets.

Keywords: 

electrocardiogram (ECG), sleep apnea-

hypopnea events (SAHE), continuous 

wavelet transform (CWT), multiscal 

dispersion entropy (MDE), classifiers 

1. INTRODUCTION

Sleep apnea–hypopnea syndrome (SAHS) is a respiratory 

disease that causes partial or total closure of the upper airways 

while sleeping [1, 2]. Obstructive sleep apnea is accompanied 

by a decrease in oxygen levels in the blood, with airway 

obstruction (partial or complete closure) lasting for at least 10 

seconds and up to 3 minutes. Therefore, the body makes an 

important effort to breathe, but the air does not pass through it 

[3]. Hypopnea is a 50% reduction in respiratory flow for at 

least 10 seconds, accompanied by a minimum 3% reduction in 

oxygen saturation [4]. The Sleep apnea-hypopnea index 

measures the number and limitations of apnea per hour during 

sleep. The severity of sleep apnea can be assessed: normal (<5), 

mild (5-15), moderate (15-30) and severe (>30) [5]. 

Polysomnography (PSG) is the most complete and accurate 

medical examination designed to record the various stages of 

sleep by capturing the body's electrical rhythms [6]. The PSG 

typically includes electrocardiogram (ECG), 

electrocardiogram (EOG), electromyography (EMG), 

electroencephalography (EEG), oximeters, nasal airflow, oral 

airflow, tracheal and chest cavity sounds. However, it has 

some disadvantages, such as cost and patient discomfort [7]. 

As a result, devices and technologies that can somehow 

replace PSG are needed to detect SAHS. An electrocardiogram 

(ECG) is one of the primary signals used to screen for SAHS 

[8]. The effects of sleep apnea on the cardiovascular system 

have been observed indirectly. Therefore, it is possible to 

detect the consequences of obstructive sleep apnea in the 

cardiovascular system via the ECG signal. Changes caused by 

automatic and mechanical neurological factors in an 

electrocardiogram (ECG) could be a sign of recurrent apnea. 

In this case, there are periodic changes in the heart rate and the 

amplitude of the electrocardiogram or the morphology [9]. 

More specifically, studies have shown that HRV signal 

contains relevant information about OSA. 

de Chazal et al. proposed an algorithm for automatic 

classification of periods of sleep apnea using ECG signals. The 

methodology of this study was based on the collection of 70 

single-lead ECG results, half of which were used for training 

and the other half for test data. The 128 derived features based 

on estimates of the time and spectral domains of the HRV 

signal proved to be more insightful [10]. de Chazal et al. next 

used HRV and EDR signals to derive 88 simultaneous features 

in the time and spectral domains. The two classifiers used in 

this study are linear discrimination (LD) and quadratic 

discrimination (QD) [11]. Hossen et al. announced an 

automated method for detecting sleep apnea from HRV signals 

based on a sub-band decomposition soft decision algorithm 

[12]. Khandoker et al. extracted features from events of 

Hypopnea and wavelet based features and classified sleep 

apneas by using a two staged feed-forward neural network 

(NN) [13]. How OSA detects using empirical mode 

decomposition of ECG signal is by Mendez et al. proposed. In 
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this study, minute apnea was classified using linear 

discrimination (LD) and quadratic discrimination (QD) as 

classifiers [14]. In another study proposed by a group of 

researchers, Bsoul et al. announce Apnea MedAssist, an app 

for real-time monitoring of apnea events that can detect 

obstructive sleep apnea. To train the SVM classifier, the time 

domain and frequency features are extracted from the RR 

intervals and the respiratory signals derived from the ECG [15]. 

Nguyen et al. use a nonlinear technique to analyze the HRV 

signal to detect OSA. Recurrence quantification analysis 

(RQA) is used to extract the hidden complexity present in the 

HRV signal [16]. Atri and Mohebbi demonstrated the 

effectiveness of combining linear and nonlinear methods in 

analyzing HR and EDR signals. They have developed an 

algorithm for OSA detection using new features based on 

bispectral analysis including spectra and HOS of HRV, EDR 

signals [17]. Janbakhshi and Shamsollahi proposed an 

approach to detect sleep apnea from features that rely on 

respiratory signals derived from an electrocardiogram (EDR) 

using various features in time and frequency domains and the 

ANN classifier [18]. The fluctuation properties of HRV were 

examined using fuzzy approximation entropy on 5-min HRV 

segments of OSA patients [19]. Feng et al. suggested 

unsupervised feature learning using an auto-encoder model. 

They employed the Hidden Markov Model (HMM) as a 

classifier and attained an accuracy of 85% [20].  

Figure 1 depicts the general structure of the technique 

suggested in this research for screening OSA patients using 

HRV signal. In this work, twenty four new HRV signal indices 

are presented for SAHS recognition. These indices are 

calculated by taking the mean of the small (1 to 5), medium (6 

to 10) and large (11 to 20) time scales of the MDE of sub-band 

signals described in this study. The suggested method begins 

by estimating the power spectrum of the HRV signal using the 

CWT methodology, from which the time-frequency spectrum 

picture is generated. Second, based on the physiological 

importance of HRV signal, the CWT image is split into several 

frequency bands, yielding many sub-scalograms. Third, the 

ICWT method is used to convert sub-scalograms into sub 

signals. Finally, twenty four unique indices are derived by 

examining the mean of the small, medium and large time 

scales of the MDE of various sub-band signals. In order to 

evaluate the performance of the proposed method for OSA 

screening, the decision tree (DT), support vector machine 

(SVM-RBF), and K-nearest neighbor (KNN) classifiers are 

applied to the twenty-four new indices. 

 

 

 

Figure 1. Framework of the proposed method for sleep apnea-hypopnea events (SAHE) detection 

 

 

2. MATERIALS AND METHODS  

 

2.1 The ECG data description 

PysioNet is a physiological signal database that may be 

utilized in biomedical research. Both of the databases we 

utilized are accessible via the web site, allowing an easy 

examination and evaluation of our technique. The databases 

used in this research allow us to have more records in order to 

obtain different classes of SAHS [21]. 

 

2.1.1 The apnea-ECG database  

This work uses the Apnea ECG database, which is available 

on the Physio website [8], to diagnose SAHS. The data 

consists of 70 recordings separated into a learning set (a01-a20, 

b01-b05, c01-c10) and a test set (x01-x35) with 35 records 

each. Each of these recordings is related to a single channel 

ECG signal (lead) with a sampling frequency of 100 Hz and a 

resolution of 16 bits, for a period of time (less than 7 h to 

approximately 10 h). Additionally, the ECG signals were 

collected based on the following factors: age, gender, weight, 

height, apnea index (AI), hypopnea index (HI), and apnea 

hypopnea index (AHI). They are classified into three groups 

based on the AHI value (a, b, c). When the AHI value is less 

than 5, it is classified as normal; when the value is greater than 

10, it is classified as apnea; and when the value is less than 10, 

it is classified as boundary. 

 

2.1.2 UCD database 

The St. Vincent’s University Hospital/University College 

Dublin Sleep Apnea Database (UCD database) contains 25 

complete overnight PSG records from people without heart 

disease or autonomic dysfunction and not taking any 

medication known to interfere with heart rate, each of which 

includes an ECG signal as well as other data. ECG signals are 

sampled at a rate of 125 Hz. Sleep technologists create 

annotations, which describe the onset and duration of all 

episodes of apnea and hypopnea. Two labeling standards are 

used to select the reference annotation on a one-minute basis. 

A similar method is used in the Apnea-ECG database. Each 

recording contains ECG signals that span 5.9 to 7.7 hours, as 

well as an annotation file that details the start time and length 

of each apnea or hypopnea event [22]. This database provides 

us with the options of normal and hypopnea groups. 

 

2.2 Pre-processing 

 

Accurate detection of the QRS complex is essential for 

producing optimal HRV signal from ECG recordings. The 
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method we propose for the delineation of QRS complexes is 

based on a multi-resolution analysis by the wavelet transform. 

In wavelet applications, the mother wavelet chosen is 

extremely important. In reality, there is no well-defined 

criterion for selecting the mother wavelet, and this decision is 

highly dependent on the nature of the application and varies 

from one to the next. Several studies of wavelet analysis of the 

ECG signal have discovered that the 'Daubechies' wavelet 

family, specifically the wavelet 'db6,' is best suited for the 

treatment of the ECG signal since its form is comparable to the 

QRS complex [23].  

As a result, the Daubechies mother wavelet ‘db6' will be 

used to breakdown the ECG signal throughout the remainder 

of this article. The level of decomposition chosen is also a 

factor to consider. In this algorithm, we have divided the ECG 

signal into nine levels [24]. This wise choice makes it possible 

to clearly distinguish the QRS complex, P waves, T waves and 

the baseline. The R peak detection is the most crucial stage in 

identifying the QRS complex since the accuracy of subsequent 

waves is dependent on this initial step. The db6 wavelet is used 

to produce nine levels of wavelet decomposition on the 

preprocessed ECG data. All information except D3 to D6 is 

preserved, while the rest are erased. The signal is therefore 

reconstructed from the details D3-D6, allowing the QRS 

complexes in the signal to be preserved while the other 

components at low and high frequencies are eliminated.  

The Pan Tompkins method was used to identify the QRS 

complex from the previously filtered signal [25]. Once R 

peaks have been identified, HRV signal may be generated 

easily and precisely. The variation in successive RR intervals 

yields an HRV signal. 

 

2.3 Feature description 

 

2.3.1 Continuous wavelet transform (CWT) 

The CWT is a robust time-frequency conversion method, 

which uses a set of wavelet functions to deal with 

simultaneous filtering and segmentation in the time-frequency 

domain. Unlike STFT, CWT is one of the most advanced 

methods for STFT, as it can provide by adjusting scale and 

translation parameters high time resolution and low frequency 

resolution in the high frequency, and high frequency resolution 

and low time resolution in the low frequencies [26]. The CWT 

can be computed from the following expression: 

 

XCWT(u, s) =
1

√s
∫ x(t)ψ∗

(
t − u

s
) dt

∞

−∞
 (1) 

 

where, s is a scale parameter, u is a translation parameter, and 

ψ*(t) is the mother wavelet. The scale can be converted to 

frequency by 

 

F =
Fc ∗ fs

s
 (2) 

 

where, Fc is the center frequency of the mother wavelet, fs is 

the sampling frequency of signal x(t) [27]. 

The synthesis of the complete or limited-range part of the 

signals is accomplished from the wavelet parameters by means 

of the inverse continuous wavelet transform (ICWT), defined 

as follows: 

 

x(t) =
1

Cψ

∫ ∫ XCWT(u, s)
∞

−∞

∞

−∞

1

√s
ψ (

t − u

s
) du

ds

s2
 (3) 

where, Cψ is the admissibility condition obtained when ψ(t) 

fulfills all the requirements to be considered a mother wavelet. 

 

2.3.2 Multiscale dispersion entropy 

Dispersion entropy (DisEn) is a time series irregularity 

measurement approach based on nonlinear dynamic analysis. 

DisEn has a better anti-noise capability than sample entropy 

since a slight change in amplitude does not modify the 

associated class label in DisEn. 

The stages of DisEn may be stated as follows [28, 29] for a 

given univariate time series X = {x1, x2, . . . , xN} with length 

N: 

- A normal cumulative distribution function (NCDF) is 

used to mapped the original time series X into Y =
{y1, y2, . . . , yN}. 

 

yj =
1

σ√2π
∫ e

−(t−μ)
2

2σ
2

xj

−∞

dt (4) 

 

where, 𝑦𝑖 ∈ (0, 1) , and µ and σ represent the mean and 

standard deviation of time series X, respectively. 

 

- Using the linear transform, all elements of Y (yi, j =
1, 2, . . . , N) are mapped to c classes with integer indices 

ranging from 1 to 𝑐for each member of the mapped signal. 

 
zj

c =  R(c ·  𝑦𝑗  +  0.5) (5) 

 

where, zj
c denotes the jth member of the classified time series, 

𝑐  means the number of classes, and R(·) represents the 

rounding function. Despite the fact that step (2) is linear, the 

entire mapping method is nonlinear due to the usage of NCDF 

in the first step.  

- Time series zi
m,c

 are made with embedding dimension 𝑚 

and time delay 𝑑  according to zi
m,c =

{zi
c, zi+d

c , … , zi+(m−1)d
c } , 𝑖 = 1, 2, . . . , 𝑁 − (𝑚 −  1)𝑑 

[30]. 

 

Each time series zi
m,c

 can be mapped to a dispersion pattern 

𝜋𝑣0𝑣1...𝑣𝑚−1
, where zj

c = 𝑣0 , zj+d
c = 𝑣1, … , zj+(m−1)d

c = 𝑣𝑚−1 . 

The number of possible dispersion patterns that can be 

assigned to each time series zi
m,c

 is equal to c m as the signal 

has 𝑚 members, and each member can be one of the integers 

from 1 to c. 

 

- For each 𝑐m potential dispersion pattern 𝜋𝑣0𝑣1...𝑣𝑚−1
, the 

relative frequency can be obtained by: 

 

𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1
) =

# {
𝑖
𝑖

≤ 𝑁 − (𝑚 − 1)𝑑, zi
m,c 

has type 𝜋𝑣0𝑣1...𝑣𝑚−1

}

𝑁 − (𝑚 − 1)
 

(6) 

 

where, # means cardinality. In fact, 𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1
) shows the 

number of dispersion patterns of 𝜋𝑣0𝑣1…𝑣𝑚−1
 that is assigned 

to zi
m,c

, divided by the total number of embedded signals with 

embedding dimension m.  

 

- Based on the definition of Shannon entropy, the DispEn 

of X is computed by 
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DisEn(X, m, c, d)

= − ∑ p(πv0v1...vm−1
)ln (p(πv0v1...vm−1

))

cm

π=1

 
(7) 

 

It can be found from the algorithm of DisEn that when all 

distribution patterns 𝑝(𝜋𝑣0𝑣1...𝑣𝑚−1
) have equal probabilities, 

DispEn acquires the largest entropy value 𝑙𝑛(𝑐𝑚) , and a 

typical example is the Gaussian white noise.  

In contrast, when the probability of the distribution pattern 

𝑝(𝜋𝑣0𝑣1...𝑣𝑚−1
)  is unitary, i.e., only one value is not zero, 

DisEn obtains the smallest value, which indicates that the time 

series is completely predictable and a typical example is the 

periodic signal with low frequency. 

According to DispEn, the MDE algorithm is as follows [29, 

31]: 

- The original signal W is first split into ⌊𝐿/𝜏⌋  non-

overlapping segments of length 𝜏  for normalised 

univariate data {W = w1, w2, . . . , wL} with length 𝐿. The 

coarse graining time series is then computed by taking the 

average of each segment. This procedure, known as 

coarse graining, can be demonstrated as follows: 

 

y
j
(τ) =

1
τ

∑ ωa

jτ

a=(j−1)τ+1

, 1 ≤ j ≤ ⌊L/τ⌋ (8) 

 

where, τ is called the scale factor and y(1) (i.e., 𝜏 = 1) is the 

original data. When 𝜏 > 1, the original data is divided into 𝜏 

coarse graining time series y(τ) with length ⌊N/τ ⌋ (where ⌊N/τ ⌋ 
represents the largest integral smaller than N/τ). 

- For each coarse graining data set, DispEn is computed 

using the same parameters as: 

 

MDE(W, τ , m, c, d) = DE(y(τ ), m, c, d) 

 

MDE analysis is the process of drawing DispEn over 

various time scales as a function of the scale factor. MDE 

corrects the flaws in DispEn, which only assesses time series 

irregularity on a single scale. The coarse graining-based 

multiscale method employed in MDE, on the other hand, is 

strongly reliant on the length of the time series, and the entropy 

fluctuation over many scales increases as the scale factor 

increases. 

 

2.3.3 Sub-band signals extraction and nonlinear features 

The CWT and ICWT methods were employed to extract the 

VLF, LF, HF, and TP sub-band-bands signal from the HRV 

signal. This approach is similar to separating the four bands of 

interest by using four independent band-pass filters with high 

cut-off frequencies, as demonstrated below [32]:  

- We remove both the directed and DC components in a 

single step by removing certain coefficients less than 

0.003 Hz before the reverse conversion. 

- The CWT was used to generate wavelet coefficients in a 

time-frequency format.  

- The low and high frequency limitations imposed by this 

conversion are determined by the wavelet function used 

(wavelet morse function), the length of the recording, and 

the sampling rate. 

- Prior to conducting the ICWT, all coefficients lying below 

and above the bandwidths of interest were zeroed, limiting 

the frequency of the resulting wavelet coefficients.  

- To recover the TP, HF, LF, and VLF sub-band signals, the 

unmasked coefficients were converted back to the time 

domain using the ICWT. 

Nonlinear characteristics, such as multiscale dispersion 

entropy (MDE), are calculated from sub-band data. We 

computed the mean of the MDE values for each sub-band 

signal over three time scales: small (1 to 5), medium (6 to 10) 

and large (11 to 20). 

 

2.4 Feature ranking 

 

Feature rankings are used to select a subset of features. This 

reduces the complexity of the classifier without making a 

difference in performance. In our work, the feature raking 

method we have adopted is t-test. The student's t-test method 

is used to determine whether the mean of the two groups are 

different. The result of this test is the p-value of the calculated 

features of the two classes. The value of p is used to rank the 

features. Features with a low p-value are considered more 

discriminating [33]. Student's t-test raking was used to confirm 

differences between the normal and SAHS groups. At a p 

value of <0.01 the significance of the index was assumed. 

After ranking using the t-test technique, 24 characteristics for 

the identification of episodes of sleep apnea-hypopnea 

syndrome (SAHS) were retrieved from the Apnea-ECG and 

UCD databases. 

 

2.5 Classification 

 

2.5.1 Decision tree 

The DT is a supervised classifier used to separate complex 

decision processes into simpler ones. This is a tree-like 

decision model built using the Input Training feature, in which 

each branch of the tree represents the result of the DT 

operation, the leaf nodes represent the class labels, and the 

attributes are specified by the internal nodes. The path from 

the root node of the tree to the leaf node depends on a set of 

rules for classification. Classifications rules help predict the 

class of unknown datasets [34]. 

 

2.5.2 k-nearest neighbor 

The KNN classifier uses the relationship of the unknown 

sample to the nearest known sample to classify an unknown 

sample. Distance or similarity criteria are used to assess the 

proximity of the k-nearest sample [35]. Near samples are 

considered to be more effective than far-flung samples. Finally, 

the unknown sample is assumed to be a part of the same class 

as k-nearest neighbors. 

 

2.5.3 Support vector machine 

The SVM is one of the most widely used classifiers for 

constructing hyper-plane in feature space that divide training 

data into two categories [35]. If the data used is non-linearly 

separable, kernel functions can be used to map the original 

input data to a higher dimensional feature space and linearly 

separate the features. This study used least squares (LS-SVM) 

and radial basis functions (RBFs) to form decision boundary 

[36]. In this work, the highest classification accuracy was 

obtained considering the width σ of the RBF kernel function 

σ=3.1.
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3. RESULTS AND DISCUSSION 

 

The HRV signals in the three classes: normal, OSA and 

hypopnea were examined using the recommended indices 

based on the CWT and MDE methods. To begin, all indices 

were evaluated the difference using the t-test. These 24 

significant features were then assessed by three classifiers. 

These classifiers included the decision tree (DT), the support 

vector machine (SVM-RBF), and the K-nearest neighbor 

(KNN). To give more reliable and stable findings, the items 

were splited into testing and training sets using 10-fold cross 

validation, and the 10-fold cross-validation average was 

determined as the classification outcomes. In addition, three 

indices of precision (Acc), specificity (Spe) and sensitivity 

(Sen) were used to assess categorization outcomes, which are 

described as follows: 

 

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
 

 

Specificity (Spe) =
TN

TN + FP
 

 

Sensitivity (Sen) =
TP

TP + FN
 

 

where, TN is the number of true negatives; TP is the number 

of true positives; FN is the number of false negatives; FP is the 

number of false positives. 

In addition, 1000 minutes were chosen at random from each 

group for each experiment to increase the trustworthiness of 

the results (5430 minutes for OSA, 3000 minutes for 

respiratory impairment, and 9200 minutes for normal). In the 

last, the method was performed 100 times, and the average 

value of the results was the final result in the classification. 

 

3.1 Results 

 

The implementation of the proposed method was carried out 

in the MATLAB software. A total of 14630 episodes which 

includes normal and OSA, each episode of one minute 

duration is taken from 35 subjects of Apnea ECG database (20 

subjects with recordings over 100 minutes of OSA, 5 subjects 

with recordings from 10 to 96 minutes of OSA and 10 subjects 

with less than 5 minutes of OSA), as for hypopnea episode, 

3000 minutes were selected from UCD database. The noise for 

every minute of the ECG signal was deleted using a wavelet-

based noise reduction technique. After noise reduction, QRS 

complex detection was performed using the Pan Tompkins 

algorithm. After detection of the QRS complex, HRV signal 

were obtained by calculating the time between two successive 

R peaks. 

The TP, HF, LF and VLF sub-band signals were obtained 

by applying these three steps: first, converting the HRV signal 

into the time-frequency domain using a CWT technique as 

shown in Figure 2. Second, we have eliminated wave 

coefficients outside the VLF (0 to 0.04 Hz) or LF (0.04 to 0.15 

Hz) or HF (0.15 to 0.4 Hz) or Total (0 to 0.4 Hz) bands by 

setting them to zero. Finally, the non-zero residual coefficients 

were converted to the time domain using ICWT technique to 

recover the spectral components. The HF, LF and VLF sub-

band signals obtained by sequencing CWT and ICWT for a 

normal person and someone who suffers from OSA or 

hypopnea are shown in the Figure 3.  

Using the proposed CWT followed by ICWT method with 

MDE analysis yielded a total of 24 indices. Eight indices are 

taken from mean of the small (1 to 5) time scales, and the rest 

are taken from the mean of the medium (6 to 10) and large (11 

to 20) time scales. Table 1 shows the mean and standard 

deviation (SD) values for all groups. In addition, we calculated 

the p-value for both groups by using the t-test method. 

Figures 4-7 and Figure 8 represent the mean and standard 

deviation of the indices based on the method of calculating the 

MDE in the small (1 to 5), medium (6 to 10) and large (11 to 

20) time scales of the sub-band signals. The 24 indices: 

DispEnVLF, DispEnLF, DispEnHF, DispEnTP, 

DispEnLF/HF, DispEnpVLF, DispEnpLF and DispEnpHF in 

the three time scales: small, medium and large were 

significantly different and varied as follows: 

 

- Between normal and OSA episodes: 14 indices (p < 0.0001), 

5 indices (p < 0.001) and 5 indices (p < 0.01). 

- Between normal and hypopnea episodes: 6 indices 

(p<0.0001), 10 indices (p<0.001), and 8 indices (p<0.01). 

- Between OSA and hypopnea episodes: 2 indices (p<0.0001), 

6 indices (p<0.001), and 16 indices (p<0.01). 
 

 
 

Figure 2. The five minute of HRV segment (up). 3D color power scalogram of HRV (down). The color represents the power 

scalogram. (a, d) Normal segment; (b, e) Hypopnea segment; (c, f) OSA segment 
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Figure 3. The VLF sub-band signal reconstructed by ICWT (left). LF sub-band signal reconstructed by ICWT (center). HF sub-

band signal reconstructed by ICWT (right). (a, d and g) belongs to Normal episodes; (b, e and h) belongs to Hypopnea episodes; 

(c, f and i) belongs to OSA episodes 

 

Table 1. Range distribution (mean ± standard deviation) of small, medium and large time scales of MDE features extracted from 

the TP, HF, LF and VLF sub-band signals using CWT followed by ICWT technique for normal, OSA and hypopnea episodes 

 

Index Mean 

Scales 

Normal 

(Mean±SD) 

OSA 

(Mean±SD) 

Hypopnea 

(Mean±SD) 

p-value 

Normal–OSA 

p-value Normal-

Hypopnea 

p-value OSA–

Hypopnea 

DispEn_VLF 

Scales 

1 to 5 

2.9865 ± 

0.1197 

2.8563 ± 

0.1827 

2.8171 ± 0.1232 0*** 0*** 0* 

DispEn_LF 2.9996 ± 

0.1885 

3.0955 ± 

0.2464 

3.0807 ± 0.1588 0* 0* 0.2050* 

DispEn_HF 2.8755 ± 

0.2198 

2.4879 ± 

0.3608 

2.6272 ± 0.3297 0*** 0*** 0* 

DispEn_TP 3.0280 ± 

0.3043 

2.9509 ± 

0.1414 

2.9634 ± 0.2592 0* 0* 0.3151* 

DispEn_LF/HF 1.0464 ± 

0.0721 

1.2643 ± 

0.1730 

1.1906 ± 0.1602 0*** 0*** 0* 

DispEn_pVLF 0.9985 ± 

0.1321 

0.9707 ± 

0.0839 

0.9603 ± 0.1192 0* 0* 0.1774* 

DispEn_pLF 0.9984 ± 

0.0952 

1.0516 ± 

0.0995 

1.0495 ± 0.1282 0* 0* 0.8063* 

DispEn_pHF 0.9553 ± 

0.0745 

0.8450 ± 

0.1286 

0.8928 ± 0.1344 0*** 0** 0* 

DispEn_VLF 

Scales 

6 to 10 

2.9685 ± 

0.1243 

3.0360 ± 

0.1649 

2.9777 ± 0.1305 0** 0.1958* 0** 

DispEn_LF 1.9218 ± 

0.2185 

2.2381 ± 

0.2492 

2.1263 ± 0.2062 0*** 0** 0** 

DispEn_HF 1.6115 ± 

0.1852 

1.4437 ± 

0.1088 

1.5277 ± 0.1072 0*** 0** 0** 

DispEn_TP 2.5821 ± 

0.4007 

2.8954 ± 

0.1401 

2.8121 ± 0.3077 0*** 0** 0* 

DispEn_LF/HF 1.1990 ± 

0.1251 

1.5547 ± 

0.1747 

1.3948 ± 0.1299 0*** 0*** 0*** 

DispEn_pVLF 1.1859 ± 

0.2500 

1.0508 ± 

0.0739 

1.0761 ± 0.1674 0** 0** 0.4000* 

DispEn_pLF 0.7594 ± 

0.1260 

0.7741 ± 

0.0891 

0.7682 ± 0.1369 0.1770* 0.2603* 0.4301* 

DispEn_pHF 0.6372 ± 

0.1054 

0.4997 ± 

0.0438 

0.5516 ± 0.0869 0*** 0*** 0*** 

DispEn_VLF 

Scales 

11 to 20 

2.3984 ± 

0.1990 

2.6003 ± 

0.1695 

2.5259 ± 0.1415 0*** 0** 0** 

DispEn_LF 1.3330 ± 

0.0667 

1.4093 ± 

0.1024 

1.3753 ± 0.1014 0** 0* 0* 

DispEn_HF 1.3117 ± 

0.0422 

1.2860 ± 

0.0382 

1.3065 ± 0.0484 0** 0.5170* 0* 
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Figure 4. The computed multiscale dispersion entropy curves and Bar graphs for Normal & OSA (A and D), Normal & 

Hypopnea (B and E), and OSA & Hypopnea (C and F), which were obtained from the (VLF) signal 

 

 
 

Figure 5. The computed multiscale dispersion entropy curves and Bar graphs for Normal & OSA (A and D), Normal & 

Hypopnea (B and E), and OSA & Hypopnea (C and F), which were obtained from the (LF) signal 

 

DispEn_TP 2.0588 ± 

0.3697 

2.4288 ± 

0.1642 

2.3457 ± 0.3148 0*** 0*** 0* 

DispEn_LF/HF 1.0166 ± 

0.0481 

1.0959 ± 

0.0736 

1.0526 ± 0.0644 0*** 0** 0** 

DispEn_pVLF 1.1975 ± 

0.2120 

1.0753 ± 

0.1000 

1.1030 ± 0.2105 0** 0** 0.1390* 

DispEn_pLF 0.6703 ± 

0.1346 

0.5828 ± 

0.0574 

0.6014 ± 0.1254 0*** 0** 0.1900* 

DispEn_pHF 0.6601 ± 

0.1323 

0.5320 ± 

0.0416 

0.5703 ± 0.1038 0*** 0** 0** 

*, ** and ***=p < 0.01, p < 0.001 and p < 0.0001, respectively 
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Figure 6. The computed multiscale dispersion entropy curves and Bar graphs for Normal & OSA (A and D), Normal & 

Hypopnea (B and E), and OSA & Hypopnea (C and F), which were obtained from the (HF) signal 
 

 
 

Figure 7. The computed multiscale dispersion entropy curves and Bar graphs for Normal & OSA (A and D), Normal & 

Hypopnea (B and E), and OSA & Hypopnea (C and F), which were obtained from the (TP) signal 
 

Table 2. Performance of proposed system using various classifiers 
 

Object 
Mean 

Scales 

DT SVM-RBF KNN 

Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%) 

Normal & OSA 

1 to 5 

92.4419 91.5447 93.3786 94.2691 92.2345 96.5096 94.1860 92.6282 95.8621 

Normal & Hypo 88.0399 86.8167 89.3471 89.7010 87.1118 92.6786 90.4485 89.0851 91.9105 

OSA & Hypo 73.5050 72.6400 74.4387 73.6711 73.4761 73.8693 76.5781 75.8065 77.3973 

Normal & OSA 

 6 to 10 

90.6146 91.3706 89.8858 93.8538 93.4211 94.2953 94.8505 95.0000 94.7020 

Normal & Hypo 82.3920 81.9672 82.8283 86.7110 85.6452 87.8425 85.6312 85.4545 85.8097 

OSA & Hypo 77.5748 76.6026 78.6207 79.7342 79.8333 79.6358 78.3223 78.5595 78.0890 

Normal & OSA 

11 to 20 

86.0465 84.7756 87.4138 85.3821 82.4695 88.8686 85.2159 83.4385 87.1930 

Normal & Hypo 75.6645 78.3486 73.4446 77.4917 77.4461 77.5374 76.9103 76.6447 77.1812 

OSA & Hypo 69.8505 71.0018 68.8189 72.4252 73.3564 71.5655 71.6777 72.3842 71.0145 

Normal & OSA 

All 

95.6811 95.8333 95.5298 98.5880 98.3471 98.8314 98.3389 97.7049 98.9899 

Normal & Hypo 90.8638 90.7663 90.5693 95.6997 94.7455 95.7298 95.2658 93.5795 96.7983 

OSA & Hypo 78.9867 79.6265 78.3740 87.0432 89.9642 84.0201 86.5449 89.4265 84.5557 
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Figure 8. Feature statistics of MDE for Normal, OSA and Hypopnea grouped by small (1 to 5), medium (6 to 10) and large (11 to 

20) time scales. Groups, (A and E) DispEnLF/HF; (B and F) DispEnpVLF; (C and G) DispEnpLF; (D and H) DispEnpHF. *, **, *** 

represent p<0.01, p<0.001, p<0.0001, respectively 

 

 
 

Figure 9. Performance of proposed system using various classifiers and under (one-vs-one) classification method 

 

The indices DispEnVLF, DispEnLF, DispEnHF, 

DispEnTotal, DispEnLF/HF, DispEnpVLF, DispEnpLF, and 

DispEnpHF in the three time scales small (1 to 5), medium (6 

to 10) and large (11 to 20) are thought to be the most 

statistically significant to discriminate the normal and OSA 

episodes, the normal and hypopnea episodes, according to the 

p-value of the t-test.  

The indices DispEnVLF, DispEnLF, DispEnHF, 

DispEnTotal, DispEnLF/HF, DispEnpVLF, DispEnpLF, and 

DispEnpHF in the medium (6 to 10) time scales are thought to 

be the most statistically significant indices to discriminate the 

OSA and hypopnea episodes, according to the p-value of the 

t-test.  

The normal and OSA episodes, the normal and hypopnea 

episodes, and the OSA and hypopnea episodes were 

categorized using the DT, SVM-RBF, and KNN classification 

techniques, respectively. Table 2 and Figure 9 compare the 

accuracy, specificity, and sensitivity of several categorization 

techniques across different episodes. Table 2 and Figure 9 

demonstrate that SVM-RBF has the best accuracy and 

specificity for normal and OSA episodes, normal and 

hypopnea episodes, and OSA and hypopnea episodes, with 

98.58% and 98.34%, 95.69% and 94.74%, 87.04% and 

89.96%, respectively. 

The normal, OSA and hypopnea episodes were also graded 

using multi-classification method to further assess the ability 

of the proposed method for the SAHS recognition. The three 

sample groups were examined using the DT, SVM-RBF, and 

KNN classifiers, and the accuracy, specificity, and sensitivity 

are shown in Table 3 and Figure 10. From the results, it can be 

seen that by combining the indices of the small (1 to 5) 

medium (6 to 10) and large (11 to 20) time scales in the case 

of SVM-RBF, we achieved the highest mean for accuracy, 

specificity and sensitivity being 93.94%, 96.92% and 93.91% 

over straight. 

Figure 11 also shows the true positive (TP) and false 

positive (FP) rates for all classifiers, including DT, SVM-RBF, 

and KNN, for each class. As shown in Figure 8, the maximum 

likelihood of normal episodes (predict class) being classified 

as normal episodes (true class) is 98.01% (SVM-RBF), and the 

samples are classified into OSA and hypopnea episodes (true 

class) with a minimum likelihood of 0.17% and 1.82% (SVM-

RBF), respectively. The probability of OSA episodes 

(predicted class) being maximum categorized as OSA 

episodes (true class) is 93.33% (KNN). The OSA episodes 

(predicted class) are more likely to be categorized incorrectly 

as hypopnea episodes (true class) (DT: 17.08%, SVM-RBF: 

7.46%, KNN: 6.80%). The probability of hypopnea episodes 

(predicted class) being maximum categorized as hypopnea 

episodes (true class) is 86.10% (SVM-RBF). 
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Table 3. Performance of proposed system using various classifiers and under (one-vs-all) classification method 

 

Object 
Mean 

Scales 

DT SVM-RBF KNN 

Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%) 

Normal  

1 to 5 

92.8571 95.7916 90.5473 95.8478 97.6308 91.8740 94.4257 96.7000 92.7032 

OSA 82.3328 90.8444 79.6020 83.9316 91.7976 81.4262 81.9398 90.5594 81.2604 

Hypopnea 74.6082 86.3636 78.9386 77.0898 87.5943 82.5871 77.0598 88.0772 79.1045 

mean 83.2660 90.9999 83.0293 85.6231 92.3409 85.2957 84.4751 91.7789 84.3560 

Normal  

6 to 10 

88.0342 92.8571 85.4063 88.9621 93.3267 89.5522 85.4430 90.8640 89.5522 

OSA 78.3694 88.0074 78.1095 82.0380 90.5967 78.7728 80.7047 89.4399 79.7678 

Hypopnea 70.4655 84.2735 72.8027 74.1573 86.3095 76.6169 74.6988 87.4144 71.9735 

mean 78.9564 88.3793 78.7728 81.7191 90.0777 81.6473 80.2822 89.2394 80.4312 

Normal  

11 to 20 

86.5646 91.6842 84.4113 90.2896 94.0126 87.8939 86.2069 91.1672 87.0647 

OSA 75.8621 85.3333 80.2653 76.8740 86.6728 79.9337 75.1166 85.0327 80.0995 

Hypopnea 66.3808 83.5156 64.1791 69.4118 84.7571 68.4909 68.9408 85.3514 63.6816 

mean 76.2692 86.8444 76.2852 78.8585 88.4808 78.7728 76.7548 87.1838 76.9486 

Normal  

All 

93.4211 96.1014 94.1957 98.9950 99.4614 98.0100 97.8188 98.8095 96.6833 

OSA 86.4111 93.1338 82.2554 92.0661 95.9664 92.3715 88.0691 93.5429 93.0348 

Hypopnea 78.1499 88.5928 81.2604 90.7743 95.3488 91.3765 89.9306 95.1747 85.9038 

mean 85.9940 92.6093 85.9038 93.9451 96.9255 93.9193 91.9395 95.8424 91.8740 

 

 
 

Figure 10. Performance of proposed system using various classifiers and under (one-vs-all) classification method 

 

 
 

Figure 11. The TPR and FPR at different classifier (a) KNN; (b) SVM; (c) DT 

 

 

4. DISCUSSION 

 

The present paper describes a new method for detecting and 

classifying episodes of obstructive sleep apnea and hypopnea 

using ECG signal. This method is based on extracting the 

calculated the mean of the small (1 to 5), medium (6 to 10) and 

large (11 to 20) time scales of the multiscale dispersion 

entropy (MDE) directly from the VLF, LF, HF and TP sub-

band signals. So that the VLF, LF and HF sub-band signals 

were obtained by analyzing the HRV signal using CWT 

followed by ICWT technique. The CWT enables for signal 

analysis at multiple scales and translations according to the 

problem (It allows extracting each band between specific 

frequency bands). The ICWT approach aided us in noise 
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reduction, to be implemented in the wavelet domain and in the 

signal reconstruction that resulted after processing.  

Figures 4-9 and Figure 10 represent the mean and standard 

deviation of the indices based on the method of calculating the 

MDE in the small (1 to 5), medium (6 to 10) and large (11 to 

20) time scales of the sub-band signals. As can be shown, the 

DispEnLF and DispEnLF/HF indices indicate a rising 

tendency among normal, hypopnea, and OSA episodes. 

Between normal, hypopnea, and OSA episodes, the DispEnHF 

and DispEnpHF indices indicate a declining tendency. In the 

normal, hypopnea, and OSA episodes, the ShEnVLF and 

ShEnpVLF indices exhibit volatility in the three time scales of 

MDE.  

Because LF is associated with sympathetic nervous system 

activity, variations in HRV's LF sub-band signal change 

significantly in the sympathetic nervous system. HF is thought 

on the other hand to be associated with parasympathic activity. 

The physiological meaning of the very low frequency factor 

(VLF) is still unclear, however, and was merely determined 

using long-term rhythms [37]. Because typical people's 

parasympathetic activity increases during nighttime sleep, the 

fluctuation patterns of the HRV increase inside the HF band, 

the texture of the HF sub-image of CWT and sub-signal of 

ICWT is complicated. The sympathetic activity inhibiting HF 

component diminishes by comparison, i.e. in normal episodes, 

the fluctuations of HRV decreases with LF band, thereby 

simplifying the texture of the CWT sub-band image and ICWT 

sub-band signal of LF. Parasympathetic activity is, however, 

inhibited for OSA patients due to predominant sympathetic 

activity. Thus, the oscillation features of the HRV are reduced 

in the HF band, while the range of LF is increased in 

comparison to ordinary episodes. As a consequence, the 

DispEnLF and DispEnLF/HF indices show an increasing trend 

between the normal, hypopnea and OSA episodes, while the 

DispEnHF and DispEnpHF indices show a decreasing trend 

between the normal, hypopnea and OSA episodes in both three 

time scales: small, medium and large. As the variation of HRV 

signals from normal to hypopnea and normal to hypopnea 

episodes was represented largely in the HF band and the LF 

bands, there were therefore substantial disparities in both 

normal and hypopnea or OSA episode, and there was no 

significant difference between OSA and a hypopnea episode. 

As you know from Table 2 and Figure 9, the highest 

classification accuracy between the normal and OSA episodes 

is 98.58% using SVM classifier with Radial Basis Function 

(RBF) kernel and combination indices of the small, medium 

and large time scales. Because OSA causes breathing disorders 

during sleep and increases sympathetic nervous system 

activity, it's simpler to discriminate between the two types of 

normal and OSA episodes. In OSA episodes and hypopneas, 

the HRV signal has more turbulent vibrational properties, 

whereas the HRV signal in a healthy individual has more 

regular and tuned qualities. This difference can be seen by the 

distribution of the wavelet spectral power in the time-

frequency domain of HRV signal. The accuracy for both 

normal and hypopnea episodes is 95.69% using the SVM-RBF 

classifier and the combination of the indices of the small, 

medium and large time scales, which is lower than the normal 

and OSA episodes due to the diminution turbulent vibrational 

properties of the HRV signal in the hypopnea episodes. 

The accuracy between the OSA and the hypopnea is 

87.04%, by means of the SVM-RBF classifier and combining 

small, medium and large time scales, which is less than in the 

previous two examples. The fluctuating features of the HRV 

signal shows some parallels between OSA and hypopnea 

episodes. The activity of the sympathetic nervous system, 

which may produce OSA episodes, is more important than the 

activity of the hypoventilation episodes, resulting a difference 

between the two OSA and hypopnea episodes. 

The average classification accuracy of three episodes 

(normal, OSA, and dyspnea) in Table 3 and Figure 10 is 

93.94% by using the multi-classification technique of SVM-

RBF classifier and combining small, medium and large time 

scale indices. The decrease in accuracy is due to the increasing 

types of categorization, which increases the probability of 

categorizing data into similar groups. 

Several classification tests were performed in the proposed 

study, with the three-category ECG dataset (normal episodes, 

OSA episodes and hypopnea) so that the most difficult to 

accurately classify were OSA episodes and hypopnea. The 

traditional OSA detection and classification approach is based 

on the use of HRV and EDR signals analysis using time and 

frequency domains either alone or in combination. Khandoker 

et al. [13] demonstrated the best results for identifying OSA 

using the classic OSA detection and classification approach, 

which uses time-frequency domain analysis and an ANN 

classifier. They were able to detect apnea episodes with 

94.84% accuracy which is less than that obtained by our 

proposed method. In reality, exploiting temporal 

characteristics of signal in real-time applications might be 

beneficial since they are simple to extract and provide a low-

complexity calculation. However, in order to meet the 

established criteria, they have to split the original signal into 

short (5 sec) segments. Splitting the signal into small pieces 

often leads to loss and spoilage of the general dynamics of the 

signal. Also, there is no mathematical equation that can be 

used to determine the threshold levels in order to separate the 

sudden rises from the noise. Furthermore, ECG signal is a sort 

of weak and unstable signal that is readily impacted by noise, 

and frequency band analysis is not a solution since the signal 

is not stable.  

As a result, we concentrated our efforts in this study on the 

HRV signal, which may be utilized as markers of cardio-

respiratory rhythm coordination during SAHS, and we sought 

to uncover their non-linear features like multiscale dispersion 

entropy. Other research that used the same database (the 

Apnea-ECG database) for training and testing were compared 

to the suggested automated OSA detection methodology. 

Chazal et al. [10] and McNames and Frazer [38] are both 

achieving highly accurate. The authors [10] utilized a high-

dimensional feature matrix (128 features), which results in a 

complicated technique. Furthermore, fundamental flaw is that 

their classification processes are not automated [38]. Also, in 

the classification stage, they deleted borderline recordings (10 

participants), which is not the case in our classification work. 

Varon et al. [39] and Bali et al. [40] achieved the best results 

(100% accuracy) among the approaches for automated OSA 

identification. The methods mentioned in the studies [17-18] 

derived different characteristics from the RR intervals and 

EDR signal with an accuracy of 85.26 percent and 82.07 

percent, respectively. Furthermore, several other researches, 

such as [19, 38], have rejected some of the noisy recordings 

with poor data quality in the process. As a result of the noisy 

nature of physiological signals, these techniques require high-

quality datasets, which are not readily available.  

In summary, the study's novelty stems mostly from the use 

of multiscale entropy characteristics of the HF, LF, VLF and 

TP sub-band signals in SAHS detection. The 24 novel indices 
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in this article allow OSA and hypopnea to be recognized. 

Furthermore, this article benefits from the fact that the OSA 

and hypopnea episode may be recognised just with 5 minutes 

of the ECG signal, and that SAHS can be screened by the OSA 

episode, but also the hypopnea episode. There are few studies 

to differentiate obstructive sleep apnea episodes from episodes 

of hypopnea. As a result of this research, the suggested new 

indices based on CWT and MDE can differentiate between 

OSA episodes and hypopnea episodes, and these indices 

perform well - Accuracy, Sensitivity, and Specificity, 

respectively, are 89.87%, 87.13%, and 92.86%. 

 

 

5. CONCLUSIONS 

 

In this work, twenty-four novel CWT and MDE based 

indices are suggested for SAHS identification, which are 

accomplished by evaluating the HRV signal. The indices are 

extracted by the small, medium and large time scales of the 

MDE method. In the proposed method, firstly, the power 

spectrum of HRV is estimated by the CWT method, then, TP, 

HF, LF, and VLF sub-band signals is obtained by using the 

ICWT technique. Finally, the vibrational characteristics of 

HRV signals are assessed, and SAHS identification is 

accomplished by computing the mean of the MDE values for 

each sub-band signal over three time scales: small (1 to 5), 

medium (6 to 10) and large (11 to 20) and their relationships 

between them. The recordings from the Physionet Apnea–

ECG database and the UCD database were utilized to test the 

performance of the CWT and MDE based indices, and each 

HRV segment was categorized using the DT, SVM-RBF, and 

KNN classification techniques. For SAHS recognition, the 

SVM-RBF classification technique had the highest accuracy, 

with an average of 93.94%, an average sensitivity of 93.91, 

and an average specificity of 96.92%. It cannot be denied that 

the CWT and MDE-based indices proposed in this article offer 

a new step for SAHS detection. In the future, we can support 

the proposed method with other nonlinear properties, such as 

fuzzy and permutaion entropy, can be used to improve the 

suggested technique further. 
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