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 Depression affects over 322 million people, and it is the most common source of disability 

worldwide. Literature in speech processing revealed that speech could be used for detecting 

depression. Depressed individuals exhibit varied acoustic characteristics compared to non-

depressed. A four-staged machine learning classification system is developed to investigate 

the acoustic parameters to detect depression. Stage one uses speech recordings from a 

publicly available and clinically validated dataset DAIC-WOZ. The baseline acoustic 

feature vector, eGeMAPS, is extracted from the dataset in stage two. Adaptive synthetic 

(ADASYN) is performed along with data preprocessing to overcome the class imbalance. 

In stage three, we conducted feature selection (FS) using three techniques; Boruta FS, 

recursive feature elimination using support vector machine (SVM-RFE), and the fisher 

score-based FS. Experimentation with various machine learning base classifiers like 

gaussian naïve bayes (GNB), support vector machine (SVM), k-nearest neighbors (KNN), 

logistic regression (LR), and random forest classifier (RF) is performed in stage four. The 

hyperparameters of the classifiers are tuned using the GridSearchCV technique throughout 

the 10-fold stratified cross-validation (CV). Then we employed multiple dynamic ensemble 

selection of classifier algorithms (DES) with k=3 and k=5 utilizing the pool of 

aforementioned four base classifiers to improve the accuracy. We present a comparative 

study using eGeMAPS features against the base classifiers and the experimented DES 

classifiers. Our results on the DAIC-WOZ benchmark dataset suggested that K-Nearest 

Oracles Union (KNORA-U) DES with k=3 has superior accuracy using a subset of 15 

features selected by fisher score-based FS than the individual base classifiers. 
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1. INTRODUCTION 

 

The prevalence of depressive disorders has increased since 

the last decade [1]. The World Health Organization (WHO) 

claims that depression is a widespread mental illness, and 

approximately 322 million people are suffering from it. WHO 

reports that depression is a primary cause of disability and 

suicides (about Eight lakh cases each year) [2]. Clinical 

depression is a pathology characterized by a decrease in 

positive emotions and feelings and a rise in negative emotions 

and feelings. Consequently, patients suffer from depressed 

mood, reduced motivation, lack of interest, shame or low self-

esteem, poor concentration, and disruptive sleep or appetite [3]. 

It is suggested that around two-thirds of cases are going 

unidentified or undiagnosed. To help psychiatrists identify and 

diagnose depression effectively, there should be a 

methodology that takes advantage of artificial intelligence and 

advancements in machine learning.  

Advances in artificial intelligence (AI) and machine 

learning (ML) have had a major impact in the medical field. 

To assist Psychiatrists and automate and speed up the entire 

diagnosis process, there has been much research into 

automated depression prediction in recent years. For example, 

neuroscientists can predict an 81 percent positive probability 

for autism using magnetic resonance imaging (MRI) and deep 

learning algorithms [4]. Psychologists are also using MRI, 

biomarkers, and audiovisual approaches to detect mental 

diseases such as depression using AI [5]. 

According to research by Sobin and Sackeim [6], 

depression manifests itself in behavioral changes in several 

daily activities and the way people communicate. The speech 

of a depressed person is consistently described by clinicians as 

repetitive, dull, and spiritless [7]. As a result, detecting 

depression based on acoustic aspects of a person’s speech is a 

study topic for further investigation utilizing various machine 

and deep learning techniques. Several methods for 

determining the relationship between depression and acoustic 

variables are proposed to classify depressed voices [8]. 

Various works have explored individual classifiers and 

multiple classifiers selection for identifying depressed and 

non-depressed voices. However, there is still scope for 

improving the classification accuracy using dynamic ensemble 

classification. Previous studies have extracted various acoustic 

features of a person’s speech; nevertheless, it is still inexact 

which acoustic characteristics are best suited for depression 

detection [9]. Moreover, despite ongoing research, accurately 

diagnosing depression with a minimal feature set using 

advanced ML techniques remains an unexplored task. 

Therefore, this research focuses on using the selected 

baseline eGeMAPS acoustic features and advanced dynamic 

ensemble classifiers to improve the prediction performance of 

depressed and non-depressed. To achieve this, a four-staged 
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machine learning classification model is developed using the 

dynamic ensemble selection of classifiers, like Meta-Learning 

for DES (METADES), K-Nearest Oracles Eliminate 

(KNORA-E), KNORA-U, and DES for Multiclass Imbalance 

(DES-MI). The proposed work is validated on the DAIC-WOZ 

dataset. Features with 80 percent correlation among 

themselves and the constant features are deleted from the 

feature set before proceeding with the FS process. Such 

deletion will lead to eliminate the redundancy in the feature 

vector. The performance of the model has been improved after 

eliminating the correlated features. The accuracy and balanced 

accuracy was 61% and 67% using all the features, and 68% 

and 72% after eliminating the correlated features. After 

performing the FS, the performance is significantly improved. 

The accuracy of 82% and balanced accuracy of 77% is 

obtained using Fisher score-based FS.  

The remaining paper is organized as: the immediate section 

focuses on the review of literature emphasizing the severity of 

depression and the possible speech biomarkers that can be 

used to detect it. It also describes the works done in FS and the 

classifiers transition to dynamic ensemble classifiers. Section 

3 introduces our methodology, where the dataset, feature 

extraction, data preprocessing, FS, and classification are 

discussed. Section 4 presents our results and a brief discussion 

about the results. Section 5 discusses the conclusion and future 

research directions.  

 

 

2. LITERATURE SURVEY 

 

One of the emerging disciplines in human-computer 

interaction is Speech Emotion Recognition (SER). The types 

of characteristics used, as well as the classifiers used for 

recognition, have a significant impact on the quality of the 

human-computer interaction that imitates human speech 

emotions [10]. Aloshban et al. [11] revealed that combining 

linguistic and acoustic features of speech might be utilised to 

distinguish between depressed and non-depressed speakers 

with an accuracy of more than 80%. Lee et al. [12] found that 

males' spectral and energy-related acoustic features, and 

females' prosody-related acoustic features, were found to be 

strong discriminators for primary depressive disease and could 

be used as biomarkers for depression in the elderly. Samareh 

et al. [13] examined how depression will leave identifiable 

biomarkers in patients’ acoustic, linguistic, and facial patterns. 

The authors broke the audio signal into 20-40 ms frames and 

extracted 35 audio biomarkers to capture the speaker's 

prosodic qualities and voice quality in the time and frequency 

domain. Low et al. [14] investigated five acoustic feature 

categories like Teager energy operator (TEO), glottal, spectral, 

and prosodic to detect clinical depression in adolescents. They 

collected 139 samples (68 clinically depressed and 71controls) 

in naturalistic interactions between parents and their 

adolescent children. 

Toto et al. [15] proved that machine learning has the 

potential to aid psychotherapy by improving the effectiveness 

of mental health screening. They presented Sliding Window 

Sub-clip Pooling and an audio classification method for 

shorter datasets to tackle the depression screening from voice. 

Their work is also tested on the DAIC-WOZ database. 

Vázquez-Romero and Gallardo-Antolín [16] have proposed an 

automatic approach for determining whether a person is 

depressed by examining his or her voice in this research. It 

works on ensemble averaging, which combines M=50 One-

Dimensional Convolutional Neural Networks in a single 

network (1d-CNN). Their system was tested on the DAIC-

WOZ dataset as part of the Depression Sub-Challenge of The 

Audio/Visual Emotional Challenge workshop (AVEC-2016). 

It was compared to the baseline system based on a classifier 

like SVM and hand-crafted features. It is also based on the 

DepAudionet architecture, which includes 1d-CNN, Long 

Short-Term Memory (LSTM) recurrent neural network, and 

fully connected layers. According to the results, their system 

showed improved performance than the baseline, the 

DepAudionet, as well as the single 1d-CNN architecture by 

58.5 percent, 30.0 percent, and 10.2 percent, respectively, in 

terms of F1-score.  

FS plays a critical role in selecting effective features for 

classification, resulting in accuracy gain in any problem. FS 

also helps in the selection of effective biomarkers to detect 

depression. Usually, FS is carried out for these reasons: 

eliminate ambiguous data, reduce model training time, and 

avoid overfitting [17]. 
Many pieces of research are going on to find out the well-

performing FS methods. Rong et al. [18] proposed Ensemble 

Random Forest to Tress (ERFTrees) to extract compelling 

features from small datasets. They proved by experiment that 

the dataset with a subset of 16 selected features could improve 

the accuracy compared to the base 84 feature set. Haider et al. 

[19] developed and compared their own FS method, Active 

Feature Selection (AFS), against three distinct state-of-the-art 

FS techniques: generalized Fisher score, ReliefF, and Infinite 

Latent Feature Selection (ILFS). They used eGeMAPS and 

emobase standard acoustic paralinguistic feature sets to 

evaluate EmoDB, SAVEE, and EMOVO emotion 

identification datasets. The findings revealed that by 

employing subsets of much smaller features than the complete 

feature set, either the same or improved accuracy could be 

attained.  

Drotár et al. [20] presented multiple ensemble FS 

algorithms based on the schemes of voting aggregation like 

Borda count, new weighted Borda count, single transferable 

vote, and plurality vote. They also introduced a novel notion 

of clustering FS methods, finding that ensembles and clustered 

ensembles using a weighted Borda count perform 

exceptionally well. 

Ensemble classification approaches have been widely 

studied in the fields of machine learning and artificial 

intelligence in recent years, both in industry and in the 

literature. Jiang et al. [9] conducted research involving 170 

China-based volunteers (85 depressed participants and 85 

healthy controls), where automatic depressed speech 

classification was studied. To detect depression, the 

classification performances of glottal, spectral, and prosodic 

speech variables have been examined. They also proposed an 

ensemble logistic regression model for depression detection 

(ELRDD) with LR as the base classifier. It produced 

encouraging results, with an improved accuracy rate of 75.00 

percent for females and 81.82 percent for males, and a 

favorable sensitivity/specificity ratio of 79.25 percent/70.59 

percent for females and 78.13 percent/85.29 percent for males. 

Ostvar et al. [21] have presented a heterogeneous dynamic 

ensemble classifier (HDEC) that employs multiple 

classification algorithms trained with the training dataset. 

Later they separated the classifiers that are accurate in 

identifying the positive samples and the classifiers that are 

accurate in identifying the negative samples. To evaluate the 

HDEC, they have applied it on twelve standard datasets from 
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the repository of the University of California Irvine (UCI) and 

compared it against three state-of-the-art approaches in the 

ensemble technique, like Bagging, Boosting, and Stack 

Generalization, and achieved increased accuracy and 

geometric mean values.  

After the extensive literature survey, it is found that the 

dynamic ensemble selection of classifier algorithms is not 

explored for depression detection exhaustively. Therefore this 

work focuses on using a dynamic ensemble of classifiers for 

depression detection with state-of-the-art techniques such as 

METADES, KNORAE, KNORAU, and DESMI with the pool 

of five base classifiers. The objective of this research is to 

improve the performance of depression detection using 

advanced machine learning techniques and several effective 

FS techniques using eGeMAPS features. 

 

 

3. METHODOLOGY 

 

The flow of the proposed methodology is depicted in Figure 

1. It is divided into four stages. In stage one, the data is 

collected from the clinically validated DAIC-WOZ database. 

In stage two, the required features are extracted from the 

database, and preprocessing is done to make the extracted 

features’ data more meaningful and relevant for the 

classification. Stage three contains the FS with different 

methods that are used to identify the suboptimal feature set. 

Finally, in stage four, the classification of depressed or non-

depressed is achieved using the five base classifiers and the 

dynamic ensemble classifiers META-DES, KNORA-E, 

KNORA-U, and DES-MI. The subsequent sections elaborate 

on these four stages. 

 

3.1 Data collection 

 

This study employs The Distress Analysis Interview 

Corpus Wizard-of-Oz (DAIC-WOZ) for evaluating the 

performance of the proposed approach. The reason behind 

choosing this corpus in our work is the extensive usage of it as 

the benchmarking dataset by the research community in 

depression diagnosis. Several recent researchers have used this 

corpus for their works [15, 22-25]. DAIC-WOZ is a subset of 

the DAIC multimodal depression corpus. DAIC-WOZ is a 

publicly available clinically evaluated dataset recorded from 

the interview of the participants conducted by a virtual human 

agent, Ellie, which is controlled by a human interviewer in a 

different location. The interview lasted for 7 to 33 minutes 

(with an average of 16 minutes) for each participant. The 

questions and answers between the participant and Ellie were 

recorded with a high-performing and close-talk (fixed single-

channel) microphone with negligible environmental 

background noise. It contains the data of 189 participants in 

total, that is partitioned into training (107 participants), 

development (35 participants), and testing (47 participants) 

partitions for AVEC 2016-17 challenges, as shown in Table 1. 

Audio, video, and responses to the questionnaires were 

gathered, as well as transcripts of the interviews are made. The 

decision of whether the participant is depressed or non-

depressed was taken based on the score of the individual 

participant on the Patient Health Questionnaire of eight items 

(PHQ-8) scale of depression [26]. In large-scale clinical 

investigations, PHQ-8 has been proven to be a valid diagnostic 

and severity measure for depressive disorders. The participant 

is considered depressed if the PHQ-8 score is >=10 and non-

depressed if the PHQ-8 score is <10. 

 

Table 1. Summary of the dataset 

 

 Train 

Set 

Development 

Set 

Test 

Set 
Sum 

Non-depressed 77 23 33 133 

Depressed 30 12 14 56 

Total participants 107 35 47 189 

 

3.2 Feature extraction 

 

This work uses the openSMILE (open-source Speech and 

Music Interpretation by Large-space Extraction) toolkit to 

extract the features from the speech recordings of the DAIC-

WOZ database. It is a tool for standardized audio feature 

extraction and classification [27]. To get the finite set of data 

to train the machine learning models, emotion identification 

uses smaller sets of knowledge-driven features like eGeMAPS 

[28]. Despite the lack of a universally accepted standard 

feature set, eGeMAPS has been used as a baseline feature set 

in AVEC since 2016 and is increasingly being used in recent 

research as the research presented at the Interspeech 

conference. 

 

 
 

Figure 1. Overview of the proposed model 
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Table 2. Meaning of eGeMAPS features 

 

Feature Meaning 

Fundamental frequency (F0) Frequency with which vocal folds snap; is considered as pitch 

Jitter F0 variation from one period of speech to the next period 

Shimmer How much amplitude varies from one period of speech to the next 

Loudness 
Approximation of perceived signal intensity calculated as sum of spectrum mimicking human 

auditory perception 

HNR- Harmonics to Noise Ratio 
Degree of Periodicity of speech: 

𝐻𝑁𝑅 = 10 × 𝑙𝑜𝑔10
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑤𝑎𝑣𝑒

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
; where a period is estimated from each 10 ms 

Spectral slope (0-500 Hz and 500-1500 Hz) 
The rate at which the amplitudes of consecutive frequencies in the spectrum decline as they 

become higher in frequency; this is referred to as voice timbre. 

Alpha Ratio 
Ratio between the sum of energy in low frequency region (50 to 1000 Hz) and in high 

frequency region (1 to 5 kHz) 

Hammarberg Index The ratio of the energy maxima in the 0 to 2 kHz and 2 to 5 kHz bands. 

Formants 1–3 (F1 to F3) frequency 
The frequencies where F1 to F3 are found (Formants are resonating frequencies of the vocal 

tract) 

Formant 1 bandwidth Frequency region around the F1 frequency which is amplified 

Formants 1–3 relative energy 
Closest harmonic ratio of F0 to the frequency of the formant. For Formant 1, it will be the 

ratio of the first formant 

Harmonic difference (H1–H2) 
Energy ratio of the first harmonic of F0 to the second one (Harmonics are frequency bands at 

the multiples of F0) 

Harmonic difference (H1–A3) Energy ratio of the first harmonic of F0 to the highest harmonic in F3 range 

 

The (extended) Geneva Minimalistic Acoustic Parameter 

Set ((e)GeMAPS) feature set [28] was created to standardize 

affective computing research by generating the best collection 

of engineered features. The researchers chose the most 

effective features to design it based on three factors: a) 

whether a feature can show changes in voice output, b) how 

valuable a feature was in prior research, and c) its theoretical 

significance. Eyben et al. [28] proposed two versions of the 

eGeMAPS feature set; they are minimalistic and extended. 

The minimalistic feature set contains 18 spectral, voice quality, 

and amplitude low-level descriptors (LLDs) that are more 

effective by previous research. These LLDs are extracted at 

every 10 ms of the speech. eGeMAPS features and their brief 

description is provided in Table 2. 

To obtain the utterance level functionals, the standard 

deviation and mean of the 18 LLDs are calculated, generating 

36 features. Later, from loudness and fundamental frequency, 

the following features are calculated, such as 20th, 50th, and 

80th percentiles, range of 20th to 80th percentiles, standard 

deviation, and mean of the slope of rising and falling portion 

of the signal. As a result, 52 functionals are generated. The 

means of Alpha ratio, Hammarberg Index, and spectral slopes 

are also included. Therefore, in total, it contains 56 parameters. 

The minimalistic feature set consists of the rate of loudness 

peaks, i.e., the count of loudness peaks in a second, standard 

deviation, and mean length of continuous voiced speech. 

Continuous voiced speech is the speech delivered when the 

vocal folds vibrate. It contains the standard deviation and 

mean length of continuous unvoiced speech, i.e., the speech 

delivered when the vocal folds do not vibrate, and the number 

of continuous voiced regions per second. Therefore it has 62 

parameters that constitute the GeMAPS minimalistic set.  

The standard deviation and mean of the spectral flux and 

MFCCs (Mel Frequency Cepstral Coefficients) 1-4 in voiced 

regions only, as well as the standard deviation and mean of the 

spectral flux and MFCCs 1-4 in unvoiced regions only, are 

also presented. As a result, we get an extra 25 functionals. The 

equivalent sound level is also included. It’s a feature that 

calculates the average quantity of background noise recorded. 

As a result, 88 functionals make up the eGeMAPS. 

Machine learning models suffer from the dimensionality 

curse, which means that the accuracy of the predictions 

decreases as the number of features increases [29]. Usually, 

the majority of the features are unrelated to the classification, 

and hence their relevance is unknown in advance. Therefore 

selecting a small set of best features showing the best possible 

classification performance is advisable for practical reasons. 

This is achieved by several FS methods. 
 

3.2.1 Data preprocessing 

Normalization is performed to transform all the numeric 

columns to a common scale. In this work, as all the columns 

are numeric, the values are scaled-down between 0 and 1. The 

formula for normalization is given as Eq. (1): 
 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

 

If any two independent variables are correlated above the 

threshold, then they are considered duplicate variables, and 

one of the two variables should be eliminated. Here the 

features that are strongly correlated among themselves with 

more than 0.8 of correlation are eliminated using the Pearson 

correlation technique. The correlation coefficient threshold is 

considered as 0.8 depending upon the research works carried 

out in medical research [30]. In eGeMAPS, 34 features are 

correlated above 80 percent; hence they are deleted, and the 

total features are 54. 

With standardization, all the features will be transformed so 

that they will have the properties of a standard normal 

distribution with mean μ=0 and standard deviation σ=1. The 

formula for standardization is given as Eq. (2): 
 

𝑧 =
𝑋−𝜇

𝜎
  (2) 

 

An open-source, Java-based, WEKA data mining tool is 

used for performing normalization and standardization [31].  

The dataset is split into train and development set, and 

testing set as 70%:30%. As the considered dataset is class 

imbalanced, the splitting is done concerning the class labels 

(70% of the data from class ‘0’ and class ‘1’ for training and 

validation, 30% of the data from class ‘0’ and class ‘1’ for 

testing). For model training and hyperparameters tuning the 

70% of data is used, and 30% of the data is kept unseen for 

testing the model. 
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The training set of the DAIC-WOZ database contains 77 

participants in the non-depressed class and 30 participants in 

the depressed class, which shows the severe class imbalance. 

Class imbalance in the training set leads to biased learning of 

the data model, which results in poor predictive accuracy over 

the minority classes and also suffers from underfitting. 

Underfitting is a scenario where the data model generates a 

high error rate on the training data and unseen test data. Hence, 

in this work ADASYN approach is used to overcome the class 

imbalance. ADASYN generates synthetic data for the minority 

class to bring up the class balancing. 

 

3.3 Feature selection 

 

The machine learning model makes predictions for the test 

data based on the training it underwent on the training data. 

However, it is obligatory to recognize which input data is 

adequate to training the model by removing the redundant data 

and irrelevant data. It reduces the dimension of the data and 

thus reduces the time complexity and improves the 

performance of the model [32]. This work uses the following 

methods for FS. 

 

3.3.1 Boruta FS 

This is a wrapper method built around the random forest 

classification algorithm. The core algorithm behind Boruta is 

random forests. Random forests are themselves based on 

decision trees. A decision tree is a sequence of steps (or 

decisions or splits) calculated at training time. A simple 

decision tree might classify every element as one of the two 

classes. Each new data point flows down the tree, either down 

the left or right branch, and ultimately arrives at its 

classification result.  

A random forest, meanwhile, is an ensemble of weak 

decision trees. A random forest trains hundreds of 

purposefully over-fitted decision trees, with each decision tree 

only gaining access to a random subset of the columns in the 

dataset. To classify an incoming point, each of these trees cast 

a vote as to which class it assigns, and the majority vote wins. 

The key insight in random forests, and the reason that they 

perform better than decision trees alone, is mass voting. 

Increasing the randomness of the decision trees being built 

naturally increases their bias, but averaging their decisions, 

naturally reduces the variance. Suppose a random forest is able 

to decrease variance more than it increases bias, relative to a 

single well-pruned decision tree, it will perform better as a 

classifier on the dataset [33, 34].  
Boruta technique takes this randomness even further. It 

seeks to capture all of the significant features in the dataset 

related to the target variable [35]. 

• It starts with adding randomness to the data by 

duplicating the dataset and rearranging the values in each 

column. These are known as shadow features. Following that, 

the dataset is used to train a classifier, such as RF Classifier. 

This makes sure that we can get a sense of the value of each 

feature in our data set using the Mean Decrease Accuracy or 

Mean Decrease Impurity. The better or more important the 

feature is, the higher the score. 

• The algorithm then examines if the feature has a 

greater Z-score than its shadow features’ maximum Z-score. If 

it does, it is stored in a vector, referred to as ‘hit’, and it will 

move on to the next iteration. After a predetermined number 

of iterations, it will generate a table of these ‘hits’. A 'Z-score' 

is defined as the number of standard deviations a data point 

deviates from the mean. 

• At each iteration, the algorithm compares the Z-

scores of the shuffled copies of the features to the original 

features to see if the latter performed better. If it does, the 

feature is considered to be important by the algorithm. 

Essentially, the algorithm compares the feature’s importance 

against randomly shuffled copies, increasing the technique’s 

robustness. This is accomplished by utilizing a binomial 

distribution to compare the number of times each feature 

outperformed the shadow features. 

• Constantly, it will reject a feature and remove it from 

the original matrix if it hasn't registered as a ‘hit’ in a 

predetermined number of iterations. After a specific number 

of iterations or after all of the features have been confirmed or 

rejected, it comes to an end. 

• It uses an all-relevant FS strategy, which captures all 

features relevant to the outcome variable in some conditions. 

Most of the traditional FS algorithms, on the other hand, use a 

minimal optimum strategy in which they rely on a small group 

of features to provide a minimal error on a specified classifier. 

In Boruta, all features strongly or weakly related to the 

decision variable are found, making it ideal for biological 

applications, such as determining which human genes 

(features) are linked to a specific medical problem (target 

variable). 

 

3.3.2 Support vector machine-recursive feature elimination 

(SVM-RFE) FS 

SVM-RFE is one of the successful FS approaches proposed 

by Singh et al. [36] in the selection of genes for cancer 

classification. It works by eliminating features recursively and 

constructing a model on the ones that remain. It takes two 

parameters into account: the estimator model to be used and 

the count of features to be selected. The accuracy measure is 

used to rank the features from most important to least 

important. It then ranks all the variables and provides support 

in the form of ‘True’ being significant and ‘False’ being 

irrelevant features. SVM-RFE works based on ranking the 

features using the equations discussed below.  

Assume the training samples (x1, y1), (x2, y2), …, (xl, 

yl); xi∈Rn; yi∈[-1,+1], with a target label yi 

SVM discrimination function is obtained by the Eq. (3). 

 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (3) 

 

where, x represents an input sample, b represents a bias, and 

wT constitutes the weight vector acquired by the Eq. (4): 

 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑙
𝑖=1   (4) 

 

where, αi is the Lagrange multipliers or the support vectors. 

After the SVM model has been developed, the weight vector 

can be determined on the trained model. The weight vector 

contains the weight assigned to every feature (input 

dimension), that indicates how important the features are for 

the classification process. In practice, the weight vector wT, Eq. 

(4), which includes the feature values, is used in the training 

phase of the SVM model to assess features, and it removes a 

feature with a lower weight iteratively in the backward 

elimination process. SVM-RFE is a multivariate FS method 

that varies from other FS methods in that it relies on mutual 

information between features and target labels. It is better 

suited to data with varying noise fractions [37]. It is less prone 

to overfitting since it uses SVM to minimise structural risk in 
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statistical learning theory [38]. 
 

3.3.3 Fisher score-based FS 

The Fisher score's primary principle is to select a subset of 

features that allows distances between data points in different 

classes to be as large as feasible in the data space covered by 

the selected features, while distances between data points in 

the same class to be as small as possible [39]. The process of 

calculating the fisher score of the features is presented as 

Algorithm1. 

There are two labels, label1 is ‘0’, which refers to a non-

depressed participant, and label2 is ‘1’ that refers to a 

depressed participant. 

 

Algorithm 1: Pseudocode for Fisher score-based feature selection. 

Input: training_data, number of features to be selected as ‘n.’ 

Output: Set of ‘n’ features. 

Method: 

1: Read the training data set. 

2: Calculate the mean and variance for label1 and label2, and also calculate the overall mean. 

3:  overall_mean=mean(training_data) 

4:  label1_mean= mean(label1) 

5:  label2_mean= mean(label2) 

6:  label1_variance=variance(label1) 

7:  label2_variance=varance(label2) 

8:  for each feature do  

9:   Calculate the fisher score 

10:     𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = (𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑚𝑒𝑎𝑛 − 𝑙𝑎𝑏𝑒𝑙1_𝑚𝑒𝑎𝑛)2 + (𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑚𝑒𝑎𝑛 − 𝑙𝑎𝑏𝑒𝑙2_𝑚𝑒𝑎𝑛)2 

11:   𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑙𝑎𝑏𝑒𝑙1_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑙𝑎𝑏𝑒𝑙2_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

12:                           𝑓𝑖𝑠ℎ𝑒𝑟𝑠𝑐𝑜𝑟𝑒_𝑣𝑎𝑙𝑢𝑒 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
 

13: Sort the fisherscore_value in descending order to get the features with maximum fisher score on the top. 

14: Store the sorted fisher score in ranked_features. 

15: Select the required ‘n’ number of features from the ranked_features 

16: Extract the subset of training data concerning the selected ‘n’ number of features and train the model. 

17: Return ‘n’ number of features 

 

3.4 Classification 
 

The following machine learning classifiers are used to 

classify people as depressed or non-depressed based on the 

characteristics of the data in terms of the selected suboptimal 

feature set. 
 

3.4.1 Gaussian NB 

Gaussian Naïve Bayes (GNB) is a Bayes theorem-based 

probabilistic classifier that assumes high (naïve) independence 

across the features. It is extremely linearly scalable with the 

number of features and data points, it is unaffected by 

irrelevant features, and can efficiently deal with the missing 

data. To determine conditional probability, the Bayes theorem 

can be used. It is used in machine learning since it is a valuable 

and effective tool in the study of probability. Bayes theorem 

formula is given as Eq. (5) and Eq. (6): 
 

𝑃(𝑥|𝑦) =
𝑃(𝑥∩𝑦)

𝑃(𝑦)
  (5) 

 

𝑃(𝑥|𝑦) =
𝑃(𝑥).𝑃(𝑦|𝑥)

𝑃(𝑦)
  (6) 

 

where, P(x) is the probability of x occurring; P(y) is the 

probability of y occurring; P(x|y) is the probability of x given 

y; P(y|x) is the probability of y given x; P(x∩y) is the 

probability of both x and y occurring. 

One typical assumption when working with continuous data 

is that the continuous values associated with each class follow 

a normal (or Gaussian) distribution. Therefore the conditional 

probability of x,y variables is given by the Eq. (7): 
 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝 (−
(𝑥𝑖−𝜇𝑦)

2𝜎𝑦
2

2

)  (7) 

where, μy represents the mean of y, and σy represents the 

standard deviation of y. 

 

3.4.2 Support vector classifier 

The support vector classifier (SVC) is a popular machine 

learning technique that performs exceptionally well on various 

classification challenges. Using the distance margin or 

distance between two support vectors, the SVC builds a 

hyperplane to split the dataset into numerous classes. As 

obtaining the best hyperplane in most cases necessitates data 

transfer to higher dimensions, various kernel functions are 

employed. The radial basis functions (RBF), polynomial, and 

linear are the three kernel functions used with SVM. The 

procedure for SVC is given below. 

Using the Gaussian radial bias function kernel, as shown in 

Eq. (8), transform the original dataset into a higher-

dimensional space. 

 

𝐾(𝑋𝑖 , 𝑌𝑗) = 𝑒
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2   
(8) 

 

Calculate the decision function as below: 

Initially, construct the separating hyperplane using the Eq. 

(9): 

 

𝑆 = 𝑥 + ∑ 𝑥𝑖𝑦𝑖
𝑙
𝑗=1   (9) 

 

where, y is an attribute value, l is the number of attributes, x is 

a scalar, and S is a separating hyperplane. 

If S>0, the data point lies above the hyperplane S; If S<0, 

the data point lies below the hyperplane S.  

Weights are adjusted to yield the hyperplane defining the 

sides of the margin. 
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𝑀1 = 𝑥0 + ∑ 𝑥𝑖𝑦𝑖 ≥ 1𝑙
𝑗=1  for 𝑆𝑗 = +1 (10) 

 

𝑀2 = 𝑥0 + ∑ 𝑥𝑖𝑦𝑖 ≤ 1𝑙
𝑗=1  for 𝑆𝑗 = −1 (11) 

 

If a data point fulfils the Eq. (12), then the support vectors 

are found. 

 

𝑆𝑗 = (𝑥0 + ∑ 𝑥𝑗𝑦𝑗
𝑙
𝑗=1 )  ≥ 1 ∀𝑗  (12) 

 

The maximum margin is calculated as 
2

‖𝑥‖
. 

where, 

 

Euclidian norm‖𝑥‖ = √∑ 𝑥𝑖
2𝑙

𝑗=1  (13) 

 

In order to obtain the hyperplane with maximum margin, 

the equation for Sj is transformed by using Lagrangian 

formulation and resolved by applying Karush Tucker 

conditions, also called first-order derivative tests. 

The resulting decision boundary acquired is shown as Eq. 

(14): 

 

𝐷𝑒𝑐(𝑌𝑇) = ∑ 𝑆𝑗𝑏𝑗𝑌𝑗𝑌𝑇𝑙
𝑗=1 + 𝑥0  (14) 

 

where, b, x0 are the numeric parameters which are acquired 

from SVM optimization; YT is a testing sample, Sj is a class 

label of jth sample.  

If Dec(YT)>0 it is considered as a positive sample; else, it is 

considered as a negative sample. Finally, predict the class 

labels depending on the decision boundary. 

 

3.4.3 K-Nearest neighbors (KNN) 

The nearest neighbors (NN) classifiers, especially KNN 

classifiers, are simple yet efficient classification methods used 

widely in practice. It is a proven way of distinguishing 

between healthy and diseased people after selection of features, 

and also in bioinformatics [40]. The KNN rule uses a majority 

marking among its nearest neighbors to categorize each 

unknown instance in the given train set. The performance of 

this classifier is also highly influenced by the distance metric 

used to find the closest neighbors. If the previous information 

is not available, most of the KNN classifiers utilize simple 

Euclidean metrics to quantify the difference between samples 

denoted as vector inputs. The Euclidean distance between the 

samples is calculated using the Eq. (15): 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ 𝑤𝑟
𝑛
𝑟=1 (𝑎𝑟(𝑥𝑖) − 𝑎𝑟(𝑥𝑗))2  (15) 

 

where, an example is described as a vector x=(a1, a2, …., an), 

n is the count of samples in input, wr is the weight of rth 

attribute. Smaller the d(xi, xj) more relevant are the samples. 

The test sample's class label is decided by the majority votes 

of its nearest K neighbors. 

 

𝑦(𝑑𝑖) = arg max ∑ 𝑦(𝑥𝑗 , 𝑐𝑘)

𝑥𝑗∈𝑘𝑁𝑁

 
(16) 

 

where, di is an example of a test sample, xj is one of the nearest 

neighbors to the training set, and y(xj, ck) denotes whether xj 

refers to the class ck. Eq. (16) shows that the class with the 

majority of its members in K nearest neighbors will be chosen 

as the final predictor. It is worth noting that the K value plays 

a crucial role in model accuracy and computational expense. 

The smaller K value leads to having a higher noise effect on 

the result, and the larger K value increases the expense of 

computation. The plot between error rate and K, and the plot 

between accuracy and K should be checked before finalizing 

the K value. It is advisable to choose the K value, which gives 

the minimum error rate. Another simple approach to select the 

K value is sqrt(n), where n is the samples count in training data. 

 

3.4.4 Logistic regression 

It is a classification technique that uses a sigmoid function 

to model the dichotomous dependent variable whose value lies 

in between [0, 1]. The sigmoid function used in LR is usually 

an S-shaped curve that emits one if the value is ≥0.5 and emits 

zero otherwise. The linear regression function computes the 

input to a sigmoid function. Using the cost function, the 

gradient descent approach is used to approximate the 

parameters of a linear function, such as weight and bias. The 

main outline of the principle of LR is given below. 

Calculate the logistic regression function: 

 

𝑧 = 𝛽0 + ∑ 𝛽𝑗𝑦𝑗
𝑙
𝑗=1   (17) 

 

where, l is the total number of attributes, β0, βj are scalar, and 

weight vector, and yj represents the data sample. 

We compute the Predictive probabilities using the Eq. (18): 

 

𝑝(𝛽0,𝛽𝑗)(𝑧) = 𝑝𝜃(𝑧) =
1

1+𝑒−𝑧  (18) 

 

Using the cross-entropy, compute the cost function using 

the Eq. (19): 

 

𝐾(𝛽0, 𝛽𝑗) = 𝐾(𝜃) =
1

𝐿
∑ [𝑚𝑗𝑙𝑜𝑔 (𝑝𝜃(𝑦𝑗)) +𝑙

𝑗=1

(1 − 𝑚𝑗)𝑙𝑜𝑔 (1 − 𝑝𝜃(𝑦𝑗))]  
(19) 

 

Using the gradient descent method, update the bias and 

weights. 

 

𝛽𝑗 = 𝛽𝑗 − 𝛼𝑑𝛽𝑗 (20) 

 

𝛽0 = 𝛽0 −  𝛼𝑑𝛽0 (21) 

 

The estimated values β0 and βj are used for predicting the 

test data. 

Then, compute the linear equation for the test data as shown 

in Eq. (22): 

 

𝑧 = 𝛽0 + ∑ 𝛽𝑗𝑦𝑗
𝑙
𝑗=1   (22) 

 

Now, compute the probabilities using the sigmoid function: 

 

𝑝(𝛽0,𝛽𝑗)(𝑧) = 𝑝𝜃(𝑧) =
1

1+𝑒−𝑧  (23) 

 

Finally, convert the probabilities into class labels using the 

decision boundaries as shown in Eq. (24): 

 

𝑙𝑎�̂� = {
1; 𝑝𝜃(𝑦) ≥ 0.5

0; 𝑝𝜃(𝑦) < 0.5
} (24) 

 

where, 𝑙𝑎�̂� is the label or the class predicted. 
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3.4.5 Random Forest 

Random Forest (RF) is a well-known supervised learning 

approach in machine learning. It can be used to solve problems 

involving classification and regression. It consists of 

numerous decision trees constructed on different subsets of the 

dataset. It follows the ensemble learning technique of 

combining different classifiers to solve a complex problem 

and enhance the performance of the model. Instead of relying 

on a single decision tree, it collects the decision from each 

constructed tree (binary tree). Depending on the majority votes 

of predictions, the final output is predicted. For each decision 

tree, the importance of the nodes is calculated using the Gini 

index as using the Eq. (25): 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑃𝑖)2𝑐
𝑖=1   (25) 

 

where, P represents the relative frequency of the class and c 

represents the count of classes. 

Entropy can also be used to branch the nodes in a decision 

tree. The entropy is calculatedusing the Eq. (26): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑃𝑖 ∗ 𝑙𝑜𝑔2(𝑃𝑖)𝑐
𝑖=1   (26) 

 

here, also, P represents the relative frequency of the class, and 

c represents the count of classes. Because of the logarithmic 

function used to calculate entropy, it is mathematically more 

complex than the Gini index. 

Classification problem that depends on the individual 

classifier for the entire dataset has the risk of misclassification 

and also low performance. Different classifiers make different 

errors on different samples; so, by combining classifiers, we 

can create an ensemble that produces more accurate 

predictions [41-43]. 

Therefore the researchers have come up with the Multiple 

Classifier System (MCS) approaches. Rather than a single 

classifier trained on entire data, multiple classifiers are trained 

and tested in MCS. In the end, the classifier with better 

performance is chosen. In recent times, various researches 

have published the demonstration and its pros over the 

individual classifiers [44, 45]. Several techniques for 

constructing an MCS are currently in use, and they have been 

presented in numerous outstanding reviews addressing various 

elements of MCS [46-48]. 

 

3.5 Dynamic ensemble selection of classifiers (DES) 

 

Across a broad spectrum of classification issues, MCSs, that 

are made up of a pool of base classifiers perform better than 

their component classifiers [49]. Dynamic Selection (DS) is 

one of the best MCS techniques, where the base classifiers are 

chosen dynamically, based on each data sample to be 

classified. If more than one classifier is selected from a group 

of trained classifiers, it is referred to as Dynamic Ensemble 

Classification (DES). The design of MCS consists of three 

phases viz., over-production phase, training phase, and 

generalization phase. Figure 2 explains the DES workflow.  

 

 
 

Figure 2. Dynamic ensemble selection of classifiers flow of execution 
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In the over-production phase, base classifiers’ pool C is 

generated based on the training samples. These base classifiers 

can be of category homogenous classifies or heterogeneous 

classifiers. Homogeneous classifiers are trained by the same 

classifier on different datasets. The heterogeneous classifiers 

are obtained by applying different classifiers to the same 

training dataset. Some variation is expected in both scenarios. 

The work of Kuncheva and Whitaker [50] contains a thorough 

examination of several diversity measures. Researchers 

employed two sorts of approaches to create diverse classifiers: 

(1) implicit and (2) explicit [51, 52]. Unlike explicit 

approaches, implicit methods do not directly measure diversity. 

Different metrics for measuring diversity are proposed by 

Kuncheva and Whitaker [43]. 

Diversity is incorporated in homogenous pools by 

modifying the information used by adjusting the initial 

parameters, utilizing different subsets of the training data 

(Bagging [53], Boosting [54]). It is also incorporated by 

different classifier models and their combinations like KNN, 

SVM, and decision tree classifiers or using various feature 

subspaces (Random Subspace Selection [55]). 

The training phase includes the selection of either a single 

classifier Ci or a subset C` of classifiers C`⊂ C with respect to 

the notion of classifier competence on the single test data St. If 

multiple classifiers are selected, it is called as Ensemble of 

Classifiers (EoC). The accuracy of the classifiers in the local 

area is one of the selection criteria. The accuracy of the 

classifiers in the local area is one of the selection criteria [56, 

57], and other criteria involve ranking [58], probabilistic 

model [59], and oracle information [60, 61]. Assume that the 

selected EoC has Cx, Cy, and Cz, ∀ Ci ∈ C`, then these 

classifiers are trained on the K nearest neighbors of the test 

data sample St. The default value of K is 7, which can be 

changed as per the experimentation. In the generalization 

phase, each classifier’s performance is checked with its 

performance evaluation parameter and found out which 

classifier (Cbest) has shown the best performance on the nearest 

neighbors of St. Finally, the Cbest classifier is assigned to the 

test data sample St and the prediction of Cbest (St) is obtained. 

The second and third phases are repeated for all the samples of 

the test data. The KNORA-E, KNORA-U, METADES, and 

DES-MI dynamic ensembles are explored for this work. 
 

3.5.1 KNORA-eliminate (KNORA-E) 

The KNORA-E method is an Oracle-based approach [62] 

based on the performance of the classifier in a local region 

specified by the K-nearest neighbors in the validation set of 

the test sample to be classified. KNORA-E selects the 

classifiers that categorize all K nearest neighbors correctly. If 

there is no such classifier present, the K value is reduced by 

one, and the process is repeated. 

Given K neighbors of a test sample St and assume that the 

ensemble of classifiers C` classifies all of its K-nearest 

neighbors correctly. Each classifier Ci ∈ C` that belongs to the 

C` shall submit a vote on that particular test sample St. If there 

is no classifier that can correctly categorize all K-nearest 

neighbors of St, then the value of K is reduced until at least one 

classifier correctly classifies all of the neighbors [61]. The 

procedure of the KNORA-E model is given in Algorithm 2. 

The selected classifiers are combined by the majority voting 

method. 
 

Algorithm 2: KNORAE 

Input: Classifiers pool, C; validation set Sval; testing sample St; nearest neighborhood size K. 

Output: Ensemble of classifiers C`(St). 

Method: 

1: for every test sample St in Test Data do 

2:   k=K; 

3:  while k>0 do 

4:   Find Φ as the K-nearest neighbors of St in validation set Sval 

5:   for each classifier Ci in C do 

6:    if (Ci recognizes all sample correctly in Φ) then 

7:     C`=C` ⋃ Ci; 

8:    end if 

9:   end for  

10:    if(C`==∅) then 

11:     K=K-1 

12:    else 

13:     break; 

14:    end if 

15:    end while 

16:    if(C`==∅) then 

17:                                               find out the classifier Ci which recognizes most of the samples in Φ correctly; 

18:    Choose the classifiers that can recognize the same number of samples of Ci to construct the 

ensemble C`; 

19:    end if  

20:                              Use the final ensemble C` for classifying St; 

21: end for 
 

3.5.2 KNORA-Union (KNORA-U)  

This method, unlike KNORA-E, selects the classifier if it 

classifies correctly at least one of the K nearest neighbors of 

test sample St [63]. Given K neighbors, St, a test sample of test 

data, assume that the j-nearest neighbor, 1≤j≤K, is correctly 

classified by a set of classifiers C`, then each classifier Ci ∈ C` 

shall offer a vote on the sample St. It's worth noting that, as all 

K-nearest neighbors are taken into account, a classifier can 

receive multiple votes if it properly classifies more than one 

nearest neighbor. If more neighbors are classified correctly, 

the classifier gets more votes for a test set. The final result is 

obtained using the weighted majority voting method. 

Algorithm 3 portrays the KNORA-U model. 
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Algorithm 3: KNORAU 

Input: Classifiers pool, C; validation set Sval; testing sample St; nearest neighborhood size K. 

Output: Ensemble of classifiers C`(St). 

Method: 

1: for every test sample St in test data do 

2:  k=K; 

3:  while k>0 do 

4:   Find Φ as the K-nearest neighbors of St in validation set Sval 

5:   for every sample Φi in Φ do 

6:    for every classifier Ci in C do 

7:     if(Ci classify Φi correctly ) then 

8:      C`= C` ⋃ Ci 

9:     end if 

10:    end for 

11:   end for 

12:   Use the final ensemble C` for classifying St. 

13:  end while 

14: end for 

 

3.5.3 META-DES  

The META-DES framework assumes that the DES problem 

can be considered a meta-problem. The meta-problem is a set 

of problems that make up a single problem. To decide whether 

or not a base classifier Ci is competent enough for classifying 

a given test sample, this meta-problem employs a variety of 

criteria pertaining to its behavior. It follows the meta-learning 

framework that contains meta-problem, meta-features, and 

meta-classifier [64-67].  

The meta-problem is to determine whether a base classifier 

Ci is capable of classifying St. Each meta-feature Fm 

corresponds to a separate criterion for assessing the base 

classifier’s competency. The meta-features are stored into a 

vector of meta-features Vi,j, that has the details of how a base 

classifier Ci behaves in relation to the input instance St. 

Depending on the meta-features vector Vi,j, a meta-classifier μ 

is trained to predict whether Ci will make a proper prediction 

for St. That is, based on Vi,j, a meta-classifier μ is trained to 

predict if a base classifier Ci is capable of classifying given a 

test sample St. This work uses the default meta-classifier that 

is a multinomial naïve Bayes for the experimentation. As a 

result, the proposed method varies from current state-of-the-

art dynamic selection strategies not only in that it employs 

several criteria but also in that the selection rule uses the meta-

classifier μ for learning using the training data. The final 

decisions of base classifiers in C` are combined by the 

weighted majority voting method. The steps involved in 

obtaining ensemble of classifiers in META-DES are explained 

in Algorithm 4. As it has been effectively employed by other 

DES approaches, the majority vote method is used to integrate 

the selected classifiers [62]. 

 

Algorithm 4: META-DES 

Input: Classifiers pool, C; Test sample St; dynamic selection dataset Dsel. 

Output: Ensemble of classifiers C`(St). 

1: C`=∅ 

2: Discover the region of competence ϴt of St using Dsel. 

3: Calculate the output profile �̃�t of St. 

4: Find the Kp similar output profiles Φt of �̃�t using �̃�sel. 

5: for all Ci ∈ C do 

6:  Vi,j=FeatureExtraction(ϴt, Φt, Ci, St) 

7:  input Vi,j to μ 

8:  if the class attribute αi,t=1 “Ci is competent for St” then 

9:   C`=C`⋃{Ci} 

10:  end if 

11:  Use the final ensemble C` for classifying St; 

12: end for 

 

3.5.4 DES for multi-class imbalanced datasets (DES-MI)  

Several real-world problems of classification undergo the 

problem of class imbalance, where some classes are 

significantly underrepresented compared to others. As a 

solution, García et al. [68] devised DESMI, an innovative and 

successful method for evaluating candidate classifiers’ ability 

using weighted instances in the neighborhood. In this method, 

the generating the balanced training datasets and the selection 

of suitable classifiers are two crucial components. The random 

balance framework achieves the diversity of classifiers in the 

candidate pool by combining the approaches of random under-

sampling (RUS), random over-sampling (ROS), and synthetic 

minority oversampling technique (SMOTE) [69]. Then, using 

the weighted instances in the neighborhood and the test sample 

St, the competency of candidate classifiers is assessed. It 

considers higher competence in a classifier that is more 

effective in classifying minority classes in the local area. 

Finally, each chosen classifier casts a vote on the test sample 

St. The votes casted for each class are totaled, and the class 

with the most votes is selected as the final output class. 

Algorithm 5 briefs the procedure of choosing the ensemble of 

classifiers using DES-MI. 
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Algorithm 5: DES-MI 

Input: Base classifier pool C, base learner ƴ, Training dataset Dtr, testing dataset Dtest, validation dataset Dval, number of 

nearest neighbors K, percentage of classifiers to be selected P%, the scaling coefficient α 

Output: Ensemble of classifiers C`(St). 

1: £  ⃪ ∅ 

2: Generate candidate classifier pool £ 

3:  Generate balanced training dataset Dtr by producing synthetic data samples of a minority class like ADASYN 

method 

4:  Create  

5:   ht ⃪  ƴ(Dtr)                     ⁄⁄competent base classifier ht 

6:   £  ⃪ £ ⋃ ht 

7: for every testing sample St in Dtest, do 

8:  C` ⃪ ∅ 

9:  find ϴ  as K nearest neighbors of St  in Dval 

10:  for each sample xi in ϴ do 

11:   num  ⃪ count the number of samples with the same class as xi 

12:   wi  ⃪ 
1

1+exp (α∗𝑛𝑢𝑚)
                              ⁄⁄calculate the voting weights for each xi in ϴ 

13:  end for 

14:  Normalize wi according to �̂� ⃪ 
𝑤𝑖

∑ 𝑤𝑖
𝑘
𝑖=1

 

15:  for each classifier ht in £ do 

16:   Ḉ(ht|St) ⃪ ∑ 𝐼(ℎ𝑡(𝑆𝑡) = 𝑦𝑡) ∗𝑘
𝑖=1 �̂�      ⁄⁄yt is the class label of St 

17:  end for 

18:  select P% most competent classifiers in £ to compose the ensemble C` for test sample St. 

19:  end for 

 

3.5.5 Repeated stratified K-Fold cross-validation 

Cross-validation (CV) is a process of assessing a machine 

learning model using data resampling when there is a small 

dataset. Data resampling is a technique in which the data 

samples are repeatedly drawn from a dataset and used for 

training and testing the model. K-Fold is based on random 

sampling where data is split into K number of disjoint blocks 

(the folds), which are approximately equal, by choosing the 

samples randomly. Repeatedly, from the K number of folds, 

each fold is used for testing once, and the remaining K-1 folds 

are used for training the model. The model is executed K 

number of times; hence, the model's performance is the mean 

of the model’s performance on each fold.  

Random sampling does not perform well in the case of an 

imbalanced dataset as there is a chance of choosing more 

samples of one class than the other class, which may lead to 

biased predictions. To mitigate this problem, this work uses 

the Stratified K-Fold technique for CV [70]. Stratified K-Fold 

is a variation of the K-Fold CV, which uses stratified sampling. 

In stratified sampling, the percentage of samples of each class 

is preserved in each fold while dividing the data into folds. 

Further, this entire process can also be repeated multiple times; 

for this work, we have chosen the number of folds as 10 and 

the number of repetitions as 2. 

 

3.5.6 Performance metrics 

The performance of any classifier is evaluated by using 

performance metrics. The output of any individual machine 

learning classifier or dynamic ensemble of classifiers is 

interpreted from the confusion matrix that it generates. A 

confusion matrix is the summary of predictions of any 

classifier on a set of test data. In this work, the classification is 

of a type binary, which means that every participant from the 

test set is predicted to be either in a depressed class (denoted 

as 1) or a non-depressed class (denoted as 0). A confusion 

matrix contains four basic terms, as given below, which can be 

used to calculate different performance metrics. 

True Positives (TP): A participant is actually 'depressed,' 

and the prediction is also 'depressed'. 

True Negatives (TN): A participant is actually 'non-

depressed,' and the prediction is also 'non-depressed'. 

False Positives (FP): A participant is 'non-depressed', but 

the classifier is predicted as 'depressed'. (It is also called a 

"Type I error"). 

False Negatives (FN): A participant is actually 'depressed,' 

but the classifier predicted as 'non-depressed'. (It is also called 

a "Type II error"). Performance metrics are calculated as 

shown in Table 3. 

 

Table 3. Metrics used in this work 

 
Metric Formula 

Accuracy 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

Recall/Sensitivity 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

Precision 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Balanced Accuracy 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
  

F-measure 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

Note 1: TP: True positives; TN: True Negatives; FP: False 

Positives; FN: False Negatives 

 

Accuracy is the measurement of the correctness of the 

classifier’s predictions. Sensitivity, also called Recall, refers 

to the ability of a classifier to designate the depressed 

participant as 'depressed'. A highly sensitive classifier means 

that there are very few 'False Negative' predictions. Precision 

denotes the confidence of the classifier in predicting the class 

labels. In this work, precision is the measure of 'depressed' that 

the classifier correctly identifies out of all the depressed 

participants. Specificity is the ability of a classifier to classify 

the participant who is non-depressed as 'non-depressed'. A 

highly specific classification means that there are very few 
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'False Positives' in the resulting predictions. Balanced 

accuracy, also called Binary Classification Accuracy (BCA), 

is an essential metric for a binary classifier when the dataset is 

imbalanced, i.e., when one of the target classes appears a lot 

more than the other. The dataset that this work uses has class 

imbalance; hence, the balanced accuracy is also presented. The 

final metric is F-measure which is the harmonic mean of the 

precision and recall giving each the same weightage. It 

provides a better measure of the wrongly predicted cases than 

the accuracy metric. 

 

 

4. RESULTS AND DISCUSSION 

 

To perform the experiments, we used Intel(R) Core™ i5-

9300H CPU @ 2.40GHz acer Aspire 7 machine. The proposed 

model starts with FS to obtain a suboptimal feature set that has 

high importance. We have utilized the GridSearchCV 

technique for hyperparameter tuning. For cross-validation, the 

Stratified 10-fold method is used with the number of 

repetitions as 2. From the recent researches in applied machine 

learning, particularly in the healthcare domain, a 10-fold CV 

fetched good performance [71-74]. The performance metrics 

are calculated for all the10-folds of the evaluation and 

averaged to get the final metrics.  

 

4.1 Results with Boruta FS 

 

Boruta selects only 10 features as the features of high 

importance from the total 54 features. They are 

F0semitoneFrom27.5Hz_sma3nz_pctlrange02,slopeUV0500

_sma3nz_amean, F1amplitudeLogRelF0_sma3nz_amean, 

F1amplitudeLogRelF0_sma3nz_stddevNorm,F2bandwidth_s

ma3nz_stddevNorm,mfcc1_sma3_amean,mfcc3V_sma3nz_s

tddevNorm,F3bandwidth_sma3nz_amean,slopeV0500_sma3

nz_stddevNorm, mfcc4_sma3_amean. Table 4 lists the 

selected features using Boruta FS.  

 

Table 4. Features selected using Boruta FS 

 
S. No. Selected features 

1 F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2 

2 slopeUV0-500_sma3nz_amean 

3 F1amplitudeLogRelF0_sma3nz_amean 

4 F1amplitudeLogRelF0_sma3nz_stddevNorm 

5 F2bandwidth_sma3nz_stddevNorm 

6 mfcc1_sma3_amean 

7 mfcc3V_sma3nz_stddevNorm 

8 F3bandwidth_sma3nz_amean 

9 slopeV0-500_sma3nz_stddevNorm 

10 mfcc4_sma3_amean 

 

The performance of base classifiers is evaluated using the 

metrics on the selected features, and the results are tabled from 

Table 5 to Table 9 for the selected 5 and 10 features. All the 

classifiers are operating on the tuned hyperparameters for 

optimal performance. 

The base classifier SVC shows the accuracy as 74% and 

balanced accuracy as 73% when experimented with 10 

features. Precision and sensitivity are relatively offering poor 

performance. The graph showing all the base classifiers' 

performance on 5 features and 10 features are depicted in 

Figure 3 and Figure 4, respectively. 

The DES classifiers’ performance summary on the features 

selected with boruta FS for 5 and 10 features is presented in 

Table 10. KNORA-U, when k=3, has shown a bit improved 

performance than the individual base classifier. It has given 

the accuracy as 77% and balanced accuracy as 75% for the 

selected subset of 10 features. One more DES method META-

DES has also shown accuracy similar to KNORA-U, but the 

balanced accuracy is low, which is 69%. 

The accuracy and balanced accuracy of all the four DES 

classifiers on a subset of 5 features as well as a subset of 10 

features are shown graphically in Figure 5 and Figure 6. It is 

known from the graph that KNORA-U DES classifier with k=3 

has given accuracy as 77% and balanced accuracy as 75% 

using the subset 10 optimal features. 

 

 
 

Figure 3. Base classifiers performance on 5 Boruta selected 

features 

 

 
 

Figure 4. Base classifiers performance on 10 Boruta selected 

features 

 

 
 

Figure 5. DES classifiers performance on 5 Boruta selected 

features 

98



 

 
 

Figure 6. DES classifiers performance on 10 Boruta selected 

features 

 

4.2 Results with SVM-RFE FS 
 

SVM-RFE has given 25 features as features of high 

importance, as shown in Table 11. It is experimented with by 

dividing these features into different feature subsets of 5, 10, 

15, and 20 features. Initially, the individual base classifiers are 

checked against these feature subsets and tabulated the results 

from Table 12 to Table 16. 

SVC has shown better performance with the feature subsets 

of 20 and 10 features. The SVC using the feature subset of 20 

features has given the accuracy as 76% and the balanced 

accuracy as 69%. SVC, utilizing the feature subset of 10 

features also, has provided relatively good accuracy, 74%, and 

balanced accuracy of 68%. Performance of the entire 

individual base classifiers is shown in Figure 7 with the feature 

subset of 10 features and Figure 8 with the feature subset of 20 

features. 

 

 
 

Figure 7. Base classifiers performance on 10 SVM RFE 

selected features 

 

 
 

Figure 8. Base classifiers performance on 20 SVM RFE 

selected features 

 

Table 5. Gaussian NB performance on Boruta FS features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 59 57 62 37 52 59 

10 64 62 66 42 57 64 

 

Table 6. SVC performance on Boruta FS features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 64 62 67 42 57 64 

10 74 73 77 54 69 75 

 

Table 7. KNN performance on Boruta FS features with RepeatedStratified 10-fold CV 

 
# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 62 59 67 40 52 62 

10 57 59 54 40 63 57 

 

Table 8. RF classifier performance on Boruta FS features with RepeatedStratified 10-fold CV 

 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 59 57 62 37 52 59 

10 62 56 72 35 40 62 

 

Table 9. LR performance on Boruta FS features with RepeatedStratified 10-fold CV 

 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 60 64 54 44 75 60 

10 64 64 64 44 63 63 
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Table 10. Summary of DES classifiers performance on Boruta FS features with RepeatedStratified 10-fold CV 
 

DES Method # of Features Acc. (%) Bal. Acc. (%) Spec. (%) Prec. (%) Sens. (%) F1-score (%) 

META DES K=3 
5 65 59 74 39 45 65 

10 77 69 88 48 48 76 

META DES K=5 
5 62 55 72 35 39 62 

10 67 63 74 43 51 67 

KNORAE K=3 
5 56 51 64 32 39 56 

10 69 64 77 44 50 69 

KNORAE K=5 
5 58 56 61 38 50 58 

10 65 63 69 43 57 65 

KNORAU K=3 
5 60 57 64 38 51 60 

10 77 75 77 55 72 76 

KNORAU K=5 
5 62 58 66 39 50 62 

10 72 70 77 50 62 72 

DESMI K=3 
5 67 61 77 40 45 67 

10 62 62 61 43 62 62 

DESMI K=5 
5 69 64 77 44 50 69 

10 67 64 72 44 56 67 
 

Table 11. Features selected using SVM-RFE FS 
 

S. No. Selected features S. No.  

1 F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope 14 mfcc3_sma3_stddevNorm 

2 F1amplitudeLogRelF0_sma3nz_amean 15 jitterLocal_sma3nz_amean 

3 F3bandwidth_sma3nz_amean 16 mfcc4_sma3_amean 

4 F3bandwidth_sma3nz_stddevNorm 17 shimmerLocaldB_sma3nz_amean 

5 slopeUV0-500_sma3nz_amean 18 HNRdBACF_sma3nz_stddevNorm 

6 mfcc1_sma3_stddevNorm 19 mfcc1V_sma3nz_amean 

7 F1amplitudeLogRelF0_sma3nz_stddevNorm 20 mfcc3V_sma3nz_stddevNorm 

8 F2bandwidth_sma3nz_stddevNorm 21 F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope 

9 slopeV500-1500_sma3nz_amean 22 mfcc2_sma3_stddevNorm 

10 mfcc4V_sma3nz_stddevNorm 23 mfcc3_sma3_amean 

11 F0semitoneFrom27.5Hz_sma3nz_amean 24 logRelF0-H1-H2_sma3nz_amean 

12 loudness_sma3_stddevNorm 25 slopeV500-1500_sma3nz_stddevNorm 

13 loudness_sma3_stddevRisingSlope   
 

Table 12. GNB performance on SVM-RFE features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 64 58 72 39 45 64 

10 56 55 59 36 51 57 

15 53 51 56 33 45 53 

20 62 61 64 41 57 62 

25 58 57 59 39 57 58 
 

Table 13. SVC performance on SVM-RFE features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 64 55 77 34 34 64 

10 74 68 84 51 51 74 

15 65 63 69 43 57 65 

20 76 69 87 54 51 76 

25 73 65 84 48 45 73 
 

Table 14. KNN performance on SVM-RFE features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 64 65 61 45 69 64 

10 57 57 56 38 57 57 

15 55 55 54 37 57 55 

20 49 50 49 33 51 49 

25 48 53 38 36 69 48 
 

Table 15. RF performance on SVM-RFE features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 64 59 72 39 45 64 

10 65 56 79 35 34 65 

15 58 50 72 27 28 58 

20 57 50 66 29 33 57 

25 65 56 79 35 33 65 
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Table 16. LR performance on SVM-RFE features with RepeatedStratified 10-fold CV 

 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 67 69 64 48 75 67 

10 65 65 67 45 63 65 

15 69 66 74 46 57 69 

20 71 70 72 50 69 71 

25 65 66 64 46 69 66 

 

 
 

Figure 9. DES classifiers performance on 5 SVM-RFE 

selected features 

 

 
 

Figure 10. DES classifiers performance on 25 SVM-RFE 

selected features 

Table 17. Summary of DES classifiers performance on SVM-RFE features with RepeatedStratified 10-fold CV 

 
DES Method # of Features Acc. (%) Bal. Acc. (%) Spec. (%) Prec. (%) Sens. (%) F1-score (%) 

METADES K=3 

5 74 66 87 46 45 74 

10 67 61 77 40 45 67 

15 60 57 64 38 50 60 

20 65 61 72 41 50 65 

25 72 69 77 50 62 72 

METADES K=5 

5 72 64 84 44 44 72 

10 70 65 79 45 50 70 

15 67 62 74 42 50 67 

20 69 65 74 46 56 69 

25 63 61 66 42 56 63 

KNORAE K=3 

5 70 70 71 50 68 71 

10 65 61 72 41 50 65 

15 60 57 64 38 50 60 

20 65 61 72 41 50 65 

25 81 75 90 57 60 81 

KNORAE K=5 

5 63 60 69 40 50 63 

10 65 63 69 43 56 65 

15 63 65 61 45 68 63 

20 70 67 77 47 56 71 

25 67 62 74 42 50 67 

KNORAU K=3 

5 69 65 74 45 56 69 

10 65 63 69 43 56 65 

15 67 64 71 44 56 67 

20 67 64 72 44 56 67 

25 67 66 69 46 62 67 

KNORAU K=5 

5 63 61 66 42 56 63 

10 69 65 74 46 56 69 

15 60 59 61 40 56 60 

20 69 67 72 47 62 69 

25 69 65 74 46 56 69 

DESMI K=3 

5 70 66 77 47 56 70 

10 60 57 64 38 50 60 

15 60 59 61 40 56 60 

20 63 63 64 44 62 63 

25 62 63 59 44 68 61 

DESMI K=5 

5 74 68 84 49 50 74 

10 58 56 61 38 50 58 

15 58 57 59 39 56 58 

20 69 67 72 47 62 69 

25 62 63 59 44 68 62 
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The DES classifiers have shown improved results than the 

individual base classifiers. The summary results of DES are 

shown in Table 17. KNORA-E with k=3 on the feature subset 

of 25 features has demonstrated the accuracy of 81% and 

balanced accuracy as 75%. META-DES k=3 and DES-MI k=5 

have shown similar accuracy of 74% on the feature subset of 

5 features. 

The graphs showing the accuracy and balanced accuracy of 

DES classifiers on feature subsets of 5 and 25 features are 

depicted in Figure 9 and Figure 10, respectively. 

 

4.2 Results with fisher score-based FS 

 

Table 18 presents the features of high importance based on 

their fisher score. The features designated as the features of 

high importance have the fisher score ranging from 0.4596 to 

3.4548. By observing the experimentation results of classifiers 

on the features selected based on fisher score, it is evident that 

these features have shown superior performance compared to 

the Boruta FS and SVM-RFE FS. We have experimented with 

different feature subsets with 5, 10, 15, 20, and 25 features. All 

the feature subsets with individual base classifiers are 

tabulated from Table 19 to Table 23. 

In the case of individual base classifiers, performance is 

shown graphically for a feature subset exhibiting a potentially 

improved performance. Performance in graphs is shown in 

Figure 11 with 5 features, Figure 12 with 20 features, and 

Figure 13 with 10 features. Both the base classifiers KNN and 

GNB have demonstrated an accuracy of 69% for the subset of 

5 and 20 features. Concerning balanced accuracy, KNN has 

given a good result with 67% on the subset of 5 features. 

 

 
 

Figure 11. Base classifiers performance on 5 fisher score 

selected features 

 

 
 

Figure 12. Base classifiers performance on 20 fisher score 

selected features 

 
 

Figure 13. Base classifiers performance on 10 fisher score 

selected features 

 

DES classifiers have improved performance using the 

feature subsets selected using Fisher score-based FS. 

KNORA-U with k=5 has shown superior performance of 82% 

accuracy and 77% balanced accuracy for the feature subset of 

15 features that outperforms state-of-the-art models using 

DAIC-WOZ for depression detection.  

The next best performing DES classifier is also KNORA-U 

with k=3 on a feature subset of 20 features with an accuracy of 

81% and balanced accuracy of 75%. KNORA-U shows 

improved performance than other DES classifiers as it chooses 

classifiers from the pool of base classifiers, as Ensemble of 

classifiers, that accurately classify at least one sample from the 

query sample's region of competence. 

The summary performance of DES classifiers is shown in 

Table 24 for feature subsets of different sizes. The graphs of 

DES classifiers with varying subsets of features with 15 and 

20 features with improved performance are shown in Figure 

14 and Figure 15, respectively. 

 

 
 

Figure 14. DES classifiers performance on 15 fisher score 

features 

 

 
 

Figure 15. DES classifiers performance on 20 fisher score 

features 
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Table 18. Selected features based on fisher score 

 

S. 

No. 
Features selected 

Fisher 

score 

S. 

No. 
Features selected 

Fisher 

score 

1 F2bandwidth_sma3nz_amean 3.4548 11 mfcc4_sma3_amean 2.1932 

2 F1amplitudeLogRelF0_sma3nz_amean 3.4212 12 F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope 1.8869 

3 F1bandwidth_sma3nz_stddevNorm 3.3575 13 mfcc3_sma3_amean 1.4009 

4 F2amplitudeLogRelF0_sma3nz_amean 3.3467 14 F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope 1.1046 

5 F1amplitudeLogRelF0_sma3nz_stddevNorm 3.3309 15 mfcc4_sma3_stddevNorm 1.045 

6 F2amplitudeLogRelF0_sma3nz_stddevNorm 3.2543 16 loudness_sma3_stddevRisingSlope 0.8519 

7 mfcc2_sma3_amean 3.1756 17 logRelF0-H1-A3_sma3nz_amean 0.8343 

8 F2bandwidth_sma3nz_stddevNorm 2.9340 18 spectralFlux_sma3_stddevNorm 0.6793 

9 
F0semitoneFrom27.5Hz_sma3nz_stddevFalli

ngSlope 
2.6645 19 loudness_sma3_pctlrange0-2 0.4833 

10 F1bandwidth_sma3nz_amean 2.4462 20 logRelF0-H1-H2_sma3nz_stddevNorm 0.4596 

 

Table 19. Gaussian NB performance on fisher score-based features with RepeatedStratified 10-fold CV 

 
# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 62 57 69 37 45 62 

10 67 64 72 45 57 67 

15 57 53 61 34 45 56 

20 69 66 74 46 57 69 

25 62 63 61 42 63 62 

 

Table 20. SVC performance on fisher score-based features with RepeatedStratified 10-fold CV 

 
# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 67 61 77 42 45 67 

10 64 63 64 43 63 64 

15 65 60 74 40 45 65 

20 67 66 69 46 63 67 

25 65 58 76 38 39 65 

 

Table 21. KNN performance on fisher score-based features with RepeatedStratified 10-fold CV 

 
# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 69 67 71 47 63 69 

10 65 60 74 40 45 65 

15 60 59 41 63 60 60 

20 67 64 72 45 57 67 

25 55 54 56 35 51 55 

 

Table 22. RF performance on fisher score-based features with RepeatedStratified 10-fold CV 

 
# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 67 66 69 46 63 67 

10 62 54 74 33 34 62 

15 64 55 67 34 34 64 

20 58 53 66 33 39 58 

25 56 48 69 26 28 57 

 

Table 23. LR performance on fisher score based features with RepeatedStratified 10-fold CV 
 

# of Features Accu. (%) Bal. Acc. (%) Speci. (%) Prec. (%) Sens. (%) F1-score (%) 

5 60 61 59 41 63 60 

10 65 63 69 43 57 65 

15 60 57 64 38 51 60 

20 62 59 66 40 51 62 

25 65 58 77 38 40 65 

 

Table 24. Summary of DES classifiers performance on fisher score based features with RepeatedStratified 10-fold CV 
 

DES Method # of Features Acc. (%) Bal. Acc. (%) Spec. (%) Prec. (%) Sens. (%) F1-score (%) 

METADES K=3 

5 63 56 74 35 39 63 

10 74 67 85 49 50 74 

15 69 67 73 47 62 69 

20 67 64 72 44 56 67 

25 72 66 82 47 50 72 
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METADES K=5 

5 70 65 79 45 50 70 

10 72 68 79 49 56 72 

15 67 60 76 40 45 67 

20 70 65 79 45 50 70 

25 72 68 79 48 56 72 

KNORAE K=3 

5 70 65 79 45 50 70 

10 74 67 84 48 50 74 

15 70 68 74 48 62 70 

20 69 65 74 45 56 69 

25 76 70 84 52 56 76 

KNORAE K=5 

5 72 68 79 48 56 72 

10 72 69 77 50 62 72 

15 72 69 77 50 62 72 

20 72 66 82 47 50 72 

25 72 66 82 47 50 72 

KNORAU K=3 

5 72 68 79 48 56 72 

10 74 69 82 50 56 74 

15 75 71 79 51 62 75 

20 81 75 90 57 59 80 

25 69 63 77 44 50 69 

KNORAU K=5 

5 72 68 79 48 56 72 

10 72 68 79 48 56 72 

15 82 77 88 59 66 82 

20 76 69 87 50 50 76 

25 72 69 77 50 62 72 

DESMI K=3 

5 72 68 79 48 56 72 

10 70 65 79 45 50 70 

15 69 65 74 45 56 69 

20 69 68 69 48 68 69 

25 70 70 71 50 68 70 

DESMI K=5 

5 76 70 84 52 56 76 

10 70 63 82 43 44 70 

15 70 68 74 48 62 70 

20 69 67 71 47 62 69 

25 70 70 71 50 68 70 

 

 

5. CONCLUSION AND FUTURE WORK 

 

A mental disorder, depression is prevailing rapidly 

worldwide, and most of the cases have been identified in the 

last stage of the disease. Researchers have found 

discrimination in the speech of a depressed and non-depressed 

person. In this paper, we extracted the acoustic characteristics 

of a person's speech recording and used base classifiers as 

GNB, SVC, KNN, RF, and LR to predict whether the person 

is depressed or not. Our main objective is to find the sub-

optimal feature set that can effectively predict the depression 

and a DES classifier to improve the prediction accuracy. 

Therefore we have employed Boruta, SVM-RFE, and Fisher 

score-based FS techniques and META-DES, KNORA-E, 

KNORA-U, and DES-MI DES classifiers. The 

experimentations are performed on the publicly available and 

clinically validated DAIC-WOZ dataset. Our model has 

shown that the KNORA-U DES classifier with the five base 

classifiers pool gives improved performance. It has given the 

accuracy and balanced accuracy as 82% and 77%, respectively, 

when the suboptimal feature set of 15 features of the fisher 

score-based FS is used. Our findings also show that the DES 

classifiers can improve the predictions compared to the 

individual base classifiers. In the future, we would like to work 

on developing an efficient feature selection method to improve 

the accuracy further and also work on creating a primary 

dataset. 
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