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 This paper designs a deep learning-based closed-loop detection algorithm for indoor space. 

You only look once (YOLO) v3 was adopted to detect the objects in the scene, extract the 

semantic and position information of the non-dynamic objects contained in the current 

frame, and solve the similarities between the current frame and key historical frame, thereby 

completing closed-loop detection. In our network structure, the prior static semantic library 

is employed to differentiate and eliminate the dynamic objects in the scene, such that the 

network can apply to most indoor scenes. In addition, the closed-loop detection was made 

immune to the disturbance of dynamic objects. The extracted semantic information can be 

applied to modules like visual odometer and semantic maps. 
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1. INTRODUCTION 
 

Simultaneous localization and mapping (SLAM) refers to 

the process that a robot establishes its own global position in 

an unknown environment by acquiring external information 

with sensors, estimating poses, and incremental modelling of 

the environment [1].  

During the mapping process, the robot resorts to closed-

loop detection to judge whether a newly acquired image has 

appeared in the image series, i.e., whether the robot has arrived 

at the same location, or to obtain a new initial position after 

the loss of feature point registration [2]. 

As a key module of the SLAM, closed-loop detection aims 

to reduce the cumulative error during the environmental 

mapping. It plays an important role in the SLAM system. The 

long-term correctness of the estimated trajectory and map 

hinges on the accuracy of closed-loop detection. Besides, 

closed-loop detection provides the correlations between the 

current data and all historical data. If the tracking algorithm 

fails, the object can be positioned again based on closed-loop 

detection [3]. 

Closed-loop detection is essentially a problem of scene 

identification. In traditional visual SLAM, the closed-loop 

detection is achieved by the visual bag of words (BOW) model. 

The model collects a huge number of images, extracts the 

feature points from them, and divides these points into k 

classes through k-means clustering (KMC), forming a 

dictionary of the feature point set. After an image is inputted 

to the model, the feature points will be extracted, and each 

feature point will be assigned to a class by looking up the 

dictionary. The class of each feature point will be outputted in 

the form of a vector. The images are illustrated with the cluster 

features in the dictionary, in order to judge the similarity 

between two images [4]. 

The BOW model has been widely used for closed-loop 

detection. The reason is that most SLAM research is based on 

feature points. Thus, the BOW, which operates on feature 

points, becomes the preferred model. After all, the system has 

already extracted feature points on the front end. Using the 

feature points again for closed-loop detection would yield 

twice the result with half the effort [5]. However, the core of 

the BOW is to select the corresponding frames against a 

dictionary formed through clustering of traditional features. If 

the environment is very complex (e.g., uneven illumination, 

and occlusion), the BOW is easy to match images incorrectly. 

What is worse, the BOW needs to be trained offline on 

numerous images [6]. Furthermore, the BOW only highlights 

the presence/absence of words, failing to consider their 

relative spatial relationship. During the establishment of the 

dictionary, the feature point clusters have no practical meaning. 

It is impossible for researchers to judge the quality of the 

dictionary, based on the clustering results. 

The closed-loop detection is essentially a problem of image 

description and similarity measurement. Meanwhile, deep 

learning relies on neural networks to learn the deep features of 

mages. In recent years, the rapid advancement of deep learning 

has spurred the research and development of graphic 

processing units (GPUs) with superior performance. As 

computers get faster and faster, embedded GPUs are widely 

implemented in SLAM systems [7]. More and more 

researchers began to apply deep learning to closed-loop 

detection and other links of the SLAM. 

Hou et al. [8] depicted image features by convolutional 

neural network (CNN), and applied the features to the closed-

loop detection of the visual loop. Their experimental results 

show that: the CNN-based image representation achieved a 

comparable performance as the most advanced traditional 

generation methods for artificial features, and greatly 

outshined the feature extraction speed than the traditional 

methods, when there were no significant illumination changes 

in the environment. The superiority of extraction speed was 

two orders of magnitude on the entry-level GPUs. With the aid 

of a deep neural network (DNN), Gao and Zhang [9] 

completed the closed-loop detection of the visual SLAM 

system. Specifically, a stacked autoencoder was trained to 
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learn the feature representation, and a cyclic detection 

algorithm was called to find a closed loop in the similarity / 

difference matrix.  

On the combination between deep learning and closed-loop 

detection, most of the existing studies merely replace 

traditional artificial feature representation with deep learning, 

and compute the similarity based on the extracted feature 

points. For humans, whether a place has been visited is judged 

based on various factors in the image, including object size, 

number of objects, and the relative position of objects. The 

robots should act as humans to realize closed-loop detection 

from a higher level, breaking away from the limitations of 

pixels.  

Deep learning has been increasingly integrated to the 

SLAM in the fields of visual odometer, and semantic maps. 

Recently, marked progress is observed in the application of 

deep learning in target detection, i.e., how to identify the 

different objects in the original image, and to determine their 

classes and positions. The deep learning-based target detection 

methods are highly robust in complex environments with 

changing illumination and occlusions, and win the favor of 

SLAM researchers. For example, Liu [5] designed a semantic 

SLAM system based on visual sensors. In the link of visual 

odometer, target detection was performed to recognize the 

position and type of each object in each frame. On this basis, 

the feature points were skipped, and the positions and types of 

objects were used to compute the pose between adjacent 

frames. Drawing on the visual odometer for target detection, 

Zhang [6] introduced a target detection algorithm to the link 

of visual odometer, which excludes dynamic objects, and 

enhances the robustness of the SLAM frontend. Hence, it is a 

research hotspot to integrate deep learning, especially target 

detection techniques, with the SLAM system. 

 

 
 

Figure 1. Prediction results of YOLO v3 

 

 
 

Figure 2. Structure of YOLO v3 
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Through the above analysis, this paper designs an algorithm 

based on the target detection technique of deep learning. The 

algorithm detects the closed loop based on the objects and their 

relative position in the environment. In this way, the SLAM 

system acquires the ability to perceive objects in the 

environment. In addition, the detection results can be applied 

to the frontend visual odometer and the backend semantic 

mapping module. 

 

 

2. YOLO V3 TARGET DETECTION MODEL [10] 

 

2.1 Overview 

 

Based on Darknet, you only look once (YOLO) v3 is an 

end-to-end target detection algorithm, which models and 

regresses the detection task to easily predict the bounding box 

position and class of each object. The prediction results of 

YOLO v3 is shown in Figure 1. 

The detection flow of YOLO v3 mainly consists of the 

following steps: Firstly, the input image is adjusted to the 

specified scale to meet the needs of the network architecture. 

Next, the image is divided into small grids. The center of each 

grid falls on the target in that grid. Finally, the non-maximum 

suppression (NMS) is implemented to eliminate unwanted 

results, such that the same object will not be responded to by 

multiple grids. The NMS firstly obtains the target box with the 

highest confidence, and then computes the intersection over 

union (IOU) between any other box and the target box. If the 

IOU is greater than a threshold, the target box will be removed. 

In the end, the non-overlapping target box with the highest 

confidence is obtained (Figure 2). 

 

2.2 Prediction of target bounding box 

 

In YOLO v3, convolutional prediction is carried out, using 

(4+1+c)×k kernels (size: 1×1), on the three feature maps, 

where k is the number of bounding box priors (the default 

value of k is 3), and c is the number of classes predicted for 

the targets. Among the various parameters, 4k are responsible 

for predicting the offset of the target bounding box, k are 

responsible for predicting the probability for a target bounding 

box to contain targets, and ck are responsible for predicting the 

probability for the k bounding box priors to correspond to c 

classes. 

The prediction flow of target bounding box is shown in 

Figure 3, where the dashed rectangle box is the preset 

bounding box, the solid-line rectangle box is the predicted 

bounding box obtained by the network offset. Note that cx and 

cy are the center coordinates of bounding box prior in the 

feature map, respectively; pw and ph are the width and height 

of bounding box prior in the feature map, respectively; tx, ty, tw, 

and th are the center offset, and aspect ratio of the bounding 

box predicted by the network, respectively; bx, by, bw, and bh 

are the center offset, and aspect ratio of the final bounding box, 

respectively. The formula in the right of the figure represents 

the conversion process from bounding box prior to the final 

prediction of the bounding box, where σ(x) is the sigmoid 

function to limit the predicted offset between 0 and 1. 

 

2.3 Calculation of loss function  
 

The loss function of YOLO v3 is mainly divided into three 

parts: target positioning loss Lloc(l, g), target confidence loss 

Lconf(o, c), and target classification loss Lcla (O,C), where λ1, λ2, 

and λ3 are coefficients of balance: 

 

( , , , , , )L O o C c l g  

= 1 λ ( , )confL o c + 2 λ ( , )claL O C + 3 λ ( , )locL l g  

 

2.3.1 Target confidence loss 

Target confidence loss can be understood as the probability 

for the target bounding box to contain targets. This loss 

Lconf(o,c) is a binary cross entropy, where oi∈{0,1} indicates 

whether the target bounding box i contains targets (0 means 

the box does not contain targets; 1 means the box contains 

targets); �̂�𝑖 is the sigmoid probability for the target bounding 

box to contain targets, which can be obtained by processing 

the predicted value with the sigmoid function: 

 

ˆ ˆ( , ) ( ln( ) (1 )ln(1 ))conf i i i iL o c o c o c= − + − −  

ˆ ( )i ic Sigmoid c=  

 

2.3.2 Target classification loss 

Target classification loss Lcla(O,C) is also a binary cross 

entropy, where Oij∈{0,1} indicates whether the target 

bounding box i contains type j targets (0 means the box does 

not contain such targets; 1 means the box contains such 

targets); �̂�𝑖𝑗 is the sigmoid probability for the target bounding 

box to contain type j targets, which can be obtained by 

processing the predicted value �̂�𝑖𝑗 with the sigmoid function: 

 

ˆ ˆ( , ) ( ln( ) (1 ) ln(1 ))cla ij ij ij ij

i Pos j cla

L O C O C O C
 

= − + − −   

ˆ ( )ij ijC Sigmoid C=  

 

2.3.3 Target positioning loss 

Target positioning loss Lloc(l,g) is the quadratic sum 

between the actual offset and the predicted offset, where 𝑖̂ is 

the coordinate offset of the predicted bounding box; 𝑔 is the 

coordinate offset between the matching ground truth (GT) box 

and the default box; (bx, by, bw, bh) is the predicted parameters 

of the target bounding box; (cx, cy, pw, ph) is the parameters of 

the default bounding box; (gx, gy, gw, gh) is the parameters of 

the actual matching target bounding box: 
 

2

{ , , , }

ˆ ˆ( , ) ( )m m

loc i i

i pos m x y w h

L l g l g
 

= −   

ˆx x x

i i il b c= − , ˆy y y

i i il b c= −  

ˆ log( / )w w w

i i il b p= , ˆ log( / )h h h

i i il b p=  

ˆ x x x

i i ig g c= − , ˆ y y y

i i ig g c= −  

ˆ log( / )w w w

i i ig g p= , ˆ log( / )h h h

i i ig g p=  

 

 

3. PRINCIPLE OF CLOSED-LOOP DETECTION 

ALGORITHM  
 

As shown in Figure 4, YOLO v3 target detection network is 

adopted to extract the semantic information from the current 

frame, including the coordinates of each object, the confidence 

of each object, and the position of the predicted box. After 

preprocessing the information, whether the state is initial is 
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judged, i.e., whether key historical frame is available. If yes, 

the current frame is compared with key historical frame. If the 

similarity is greater then the preset threshold, then there is a 

loop; otherwise, the current frame is saved as a key historical 

frame. [11-14] 

 

 
 

Figure 3. Prediction flow of target bounding box 

 

 
 

Figure 4. Principle of closed-loop detection algorithm 

 

3.1 Loop judgement 

 

Precision and recall are important indicators of the quality 

of an algorithm. In the SLAM system, precision refers to the 

probability v that the loops extracted by the algorithm are true 

loops; recall refers to the probability that all true loops are 

correctly detected. Precision is more important to the SLAM 

system than recall, for false positive loops will add wrong 

edges to the backend pose graph. In severe cases, the 

optimization algorithms will yield completely wrong results. 

To guarantee the accuracy of closed-loop detection, the 

relevant thresholds were set to a relatively high level. 

The loop judgement is composed of two parts: feature 

preprocessing and similarity calculation. 

 

3.1.1 Preprocessing of semantic information 

The image information collected by the camera are 

processed by the network to obtain the semantic information 

of the current frame, including the class of objects in the frame, 

the confidence of each object, and the position of each object 

in the image. Next, the objects with relatively high confidence 

are selected to represent the current image, in order to exclude 

the disturbance indued by incorrect identification, and enhance 

the tolerance of YOLO v3 target detection network. After that, 

the semantic information screened from the image is 

composed into a character string. By comparing the character 

strings, whether the current image is the same as the key 

historical frame is determined, revealing whether the two 

frames contain the same classes and number of objects. 

The network should not recognize the dynamic objects like 

humans and animals as regions of interest (ROIs) in the indoor 

environment. Otherwise, when the robot returns to the original 

scene, it would observe incorrectly due to the disappearance 

of dynamic objects. Hence, an effective information library 

was established for the most common 20 classes of static 

objects in indoor scenes. Only if the detected object is found 
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in that library, will it be used to represent the information of 

the current frame. Table 1 lists the classes of objects in the 

effective information library. 

 

Table 1. Classes of objects in the effective information 

library 

 
Chair Table Desk Sofa Bed 

lamp trashcan Side table door bookshelf 

keyboard computer Computer monitor fridge printer 

tv clock bench telephone Window 

 

3.1.2 Similarity calculation 

If the current frame and key historical frame are consistent, 

then the IOU and mean IOU (similarity) between the positions 

of the same object in the two images. Figures 5-10 explain the 

similarity calculation model. It is assumed that three objects A, 

B and C exist in the field of view of the camera. Figure 5 is the 

top view of the relative position between the objects and the 

camera. Figures 6, 7, and 9 are shot with the camera at the 

initial position, position 1, and position 2, respectively. 

Figures 8 and 10 illustrate the IOU calculation between the 

objects in Figure 6 and those in Figures 7 and 9, respectively. 

 

 
 

Figure 5. Top view of the relative position between the 

objects and the camera 

 

 
 

Figure 6. Image taken at the initial position 

 

 
 

Figure 7. Image taken at position 1 

 
 

Figure 8. IOU calculation between the objects in Figure 6 

and those in Figure 7 
(The same object is in the same color.) 

 

 
 

Figure 9. Image taken at position 2 

 

 
 

Figure 10. IOU calculation between the objects in Figure 6 

and those in Figure 9 
(The same object is in the same color.) 

 

 

4. EXPERIMENTS 

 

4.1 Environment 

 

In our experiments, YOLO v3 target detection algorithm is 

adopted for closed-loop detection under the framework of 

Darknet. The computer used in the experiments has a central 

processing unit (CPU) of Inter® CoreTM i7-7700K 

CPU@4.20GHz, a memory of 8GB, and an adaptor of 

NVIDIA GeForce GTX 1080GPU. The parallel computing 

framework is CUDA9.0; the graphics processing unit (GPU)-

accelerated library of primitives for deep neural networks is 

cuDNN9.0; the programming language is python 3.6.8. 

 

4.2 Results 

 

Figure 11 shows the images shot at the same position by the 

camera from different places. Image X was taken as the 

historical frame, and image Y as the current frame. YOLO v3 

was adopted to extract the semantic information of each object, 

and its position in the image [15, 16].  

Table 2 records the similarity calculation between the 

historical and current frames. 

The results show that the mean IOU of the above control 

group was 0.48. The value was below the preset threshold of 
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0.7. Thus, the two frames do not form a loop. 

Figure 12 shows the images shot at the same position in the 

dynamic environment by the camera from the same place. 

Image X was taken as the historical frame, and image Y as the 

current frame. YOLO v3 was adopted to extract the semantic 

information of each object, and its position in the image. Table 

3 records the similarity calculation between the historical and 

current frames. 

The results show that the mean IOU of the above control 

group was 0.905. The value was greater the preset threshold of 

0.8. Thus, the two frames form a loop. 

Figure 13 shows the images shot at the same position under 

changing illumination by the camera from the same place. 

Image X was taken as the historical frame, and image Y as the 

current frame. YOLO v3 was adopted to extract the semantic 

information of each object, and its position in the image. Table 

4 records the similarity calculation between the historical and 

current frames. 

The results show that the mean IOU of the above control 

group was 0.95. The value was above preset threshold. Thus, 

the two frames form a loop. 

 

 
1. The original image 

 
2: After network extraction 

 

Figure 11. Images shot at the same position by the camera from different places 

 

Table 2. Similarity calculation between the historical and current frames 

 
Historical frame Current frame 

IOU Semantic 

information 
Coordinates Effective? Yes/No 

Semantic 

information 
Coordinates 

Effective?  

Yes/No 

clock 
(0.04 0.17 0.07 

0.12) 
Yes clock 

(0.10 0.17 0.10 

0.13) 
Yes 0.16 

sofa 
(0.43 0.78 0.58 

0.46) 
Yes sofa 

(0.51 0.79 0.55 

0.45) 
Yes 0.73 

chair 
(0.82 0.76 0.25 

0.45) 
Yes chair 

(0.89 0.77 0.23 

0.44) 
Yes 0.56 

teddy bear 
(0.53 0.53 0.07 

0.10) 

No (not in the semantic 

library) 
teddy bear 

(0.54 0.55 0.08 

0.10) 

No (not in the semantic 

library) 
 

teddy bear 
(0.46 0.55 0.08 

0.10) 

No (not in the semantic 

library) 
teddy bear 

(0.61 0.53 0.07 

0.10) 

No (not in the semantic 

library) 
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Table 3. Similarity calculation between the historical and current frames 

 
Historical frame Current frame 

IOU Semantic 

information  
Coordinates Effective? Yes/No 

Semantic 

information  
Coordinates 

Effective? 

Yes/No 

bed 
(0.53 0.57 1.02 

0.90) 
Yes bed 

(0.54 0.57 1.00 

0.96) 
Yes 0.92 

chair 
(0.22 0.40 0.14 

0.38) 
Yes chair 

(0.22 0.40 0.15 

0.40) 
Yes 0.89 

handbag 
(0.48 0.24 0.11 

0.27) 

No (not in the semantic 

library) 
    

 

Table 4. Similarity calculation between the historical and current frames 

 
Historical frame Current frame 

IOU Semantic 

information  
Coordinates 

Effective? 

Yes/No 

Semantic 

information  
Coordinates 

Effective? 

Yes/No 

tvmonitor 
(0.20 0.34 0.17 

0.15) 
Yes tvmonitor 

(0.20 0.34 0.17 

0.15) 
Yes 1 

sofa 
(0.56 0.63 

0.73 0.56) 
Yes sofa 

(0.56 0.63 

0.74 0.58) 
Yes 0.95 

chair 
(0.52 0.42 

0.16 0.24) 
Yes chair 

(0.52 0.42 

0.17 0.25) 
Yes 0.90 

 

 
1: The original image 

 
2: After network extraction 

 

Figure 12. Images shot at the same position in the dynamic environment by the camera from different places 
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1: The original image 

 
2: After network extraction 

 

Figure 13. Images shot at the same position under changing illumination by the camera from different places 

 

 

5. CONCLUSIONS 

 

This paper designs an object-level closed-loop detection 

algorithm based on deep learning. Experimental results 

demonstrate that our algorithm can effectively detect closed 

loops, and eliminate the disturbance from dynamic objects in 

the scene, by introducing an effective semantic library. In 

addition, the deep learning-based target detection algorithm 

does not require the illumination intensity to be stable. It can 

make good judgements, even if the illumination changes. 

However, YOLO v3 was not retained in our experiments. To 

further enhance the experimental precision, the future research 

will train the network with data collected from the indoor 

environment. 
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