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 Crop nutrition measurement is of great significance in agricultural practice, especially in 

variable rate fertilization. The chlorophyll content, an important indicator of nitrogen 

nutrition in crops, largely depends on crop growth and development, photosynthesis, and 

crop yield, and plays an important role in the monitoring of crop growth. This paper tries to 

detect the chlorophyll content of wheat quickly, using the digital image processing 

technology. Specifically, a feature selection method was developed based on wrapper and 

light gradient boosting machine (LGBM), and combined with logistic regression (LR) to 

predict the chlorophyll content of wheat. The results show that: the optimal model is the 

combination between the 17 image evaluation indices screened by LGBM and the LR 

prediction model; the optimal results were coefficient of determination (R2) of 0.728, and 

root mean square error (RMSE) of 4.979. The optimal model can predict the chlorophyll 

content of wheat accurately based on digital images in field prototype. 
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1. INTRODUCTION 

 

Chlorophyll, the main pigment for plant photosynthesis, is 

an important indicator of the health state and nutritional 

content of plants [1]. By measuring the chlorophyll content, 

the health state and nitrogen content of a plant can be assessed 

directly [2, 3]. 

In the past few decades, digital imaging provides a fast, non-

destructive, and high-throughput determination tool for 

chlorophyll content [4]. Many color features of leaves, which 

are captured by rigorous experimental devices (e.g., scanners) 

have been shown to be highly correlated with the chlorophyll 

content of plants [5-12]. Although the previous experimental 

results of chlorophyll assessment are quite accurate, the 

samples are mostly collected in the lab environment. 

In field prototype, it is challenging to acquire images by 

digital cameras for chlorophyll estimation. For example, some 

color features from the red-green-blue (RGB) space can be 

influenced by the ambient light. Numerous attempts have been 

made to overcome the problem. Vesali et al. [4] reduced the 

interference of environmental conditions through contact 

imaging. Kawashima and Nakatani [13] Wang et al. [14] took 

pictures with a digital camera on overcast days. Riccardi et al. 

[15] directly captured images directly in natural light from 

field prototype using a digital camera on sunny days. To 

facilitate image acquisition, leaves were pressed on a white 

graduated support plane, without detaching from the plant. 

The chlorophyll content of plants can be estimated effectively, 

based on the features of the RGB color space in sunny weather. 

In terms of feature selection and image modeling, most of 

the previous image-based assessment tools for plant 

chlorophyll content only consider the RGB color space, and 

resort to least squares regression [10, 15]. Thanks to the 

development of digital imaging and data mining, other color 

spaces and machine learning algorithms are being introduced 

to chlorophyll diagnosis. For instance, the leaf images of sugar 

beet and potato are used to extract the color features L, G, and 

B, and artificial neural networks (ANNs) are employed to 

evaluate the chlorophyll content [5, 9]. Vesali et al. [4] 

extracted four features from the RGB and hue-saturation-

intensity (HSI) color spaces, including LF, H, SH, and SCr, 

and established a neural network for estimating chlorophyll 

content. Amin and Awang [16] extracted 36 features from the 

RGB color space, and determined the nutritional status of 

Napier grass with the k-nearest neighbors algorithm (KNN). 

Yang [17] relied on the KNN and extreme gradient boosting 

(XGBoost) to estimate the chlorophyll content of maize leaves 

at different growth stages. 

Nevertheless, more features do not necessarily lead to better 

estimation. Due to the limitations of the imaging technology, 

the information acquired by digital camera is limited. The 

color features of wheat leaves extracted from digital images 

may have a high collinearity [18]. This calls for feature 

selection in multivariate data analysis. The effective selection 

of features will provide a better understanding of the data 

generation process. The best feature set needs to be selected 

based on prediction ability [19-22]. 
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Figure 1. Wheat leaf images 
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The above analysis shows that digital image processing can 

build chlorophyll prediction models quickly and accurately. 

However, there is not yet a good feature selection model for 

the various feature indices of color images. Focusing on the 

color features of digital wheat images, this paper devises a 

feature selection method based on wrapper and light gradient 

boosting machine (LGBM), and combines the method with 

machine learning algorithm to develop a diagnosis model for 

chlorophyll nutrition of wheat. 

 

 

2. DATA ACQUISITION AND IMAGE PROCESSING 

 

2.1 Acquisition of image data and SPAD value 

 

(1) Overview of experimental area 

The experimental area (N: 38°46′24.90; E: 115°32′33.23) 

lies in the demonstration field base of Hebei Agricultural 

University, in Qingyuan District, Baoding, northern China’s 

Hebei Province. According to the experimental design, the 

area was divided into 15 plots numbered 1-15. In each plot, 

nitrogen was applied at five different levels 0 kg/hm2 (N0), 

100 kg/hm2 (N100), 180 kg/hm2 (N180), 225 kg/hm2 (N255), 

and 330 kg/hm2 (N330). Table 1 shows the correspondence 

between plots and nitrogen application levels. 

(2) Instruments 

The images were acquired by a Sony FDR-AXP35 4K high 

definition (HD) camera, which adopts a 1/2.3-inch Exmor R 

CMOS image sensor and a Carl Zeiss Vario-Sonnar T* lens. 

The camera supports optical anti-shake mode and 10x optical 

zoom. Each image being captured has 8.29 million effective 

pixels. The maximum number of pixels can reach 18.9 million. 

The image resolution is 3,840×2,140. For convenience, the 

aperture priority mode was selected, along with its automatic 

white balance, focusing mode, shutter speed, and sensitivity. 

The portable chlorophyll meter is a non-destructive 

measuring instrument of plant chlorophyll content. Owing to 

its real-time performance, efficiency, and portability, the 

instrument has been widely adopted to measure chlorophyll in 

living leaves. The SPAD value measured by the portable 

chlorophyll meter is highly consistent with the chlorophyll 

content of plant leaves. Here, a Minolta SPAD 502 plus 

portable chlorophyll meter is adopted for chlorophyll 

measurement. 

(3) Image acquisition 

Jointing is a key stage in the growth of wheat. The crop is 

fertilized quickly in this stage, due to the fast absorption and 

accumulation of nutrients. Taking jointing wheat as the 

research object, this paper collects wheat images in field 

environment. 

Extreme weather was avoided during image acquisition. To 

prevent unstable light, the shooting time was arranged between 

10:00 and 14:00 on a sunny and cloudless day. In-situ 

sampling was carried out without damaging the leaves.  

During sampling, the camera lens was perpendicular to 

30cm above the wheat leaves. To avoid environmental 

interference and facilitate target extraction, a white 

background plate was placed close to the leaves before image 

shooting. In the experimental area, 30 wheat leaves of uniform 

growth state were randomly selected from each plot, 

producing a total of 450 leaf images. Figure 1 presents the 

acquired leaf images, and Table 2 reports the correspondence 

between images and nitrogen application levels. 

 

Table 1. Correspondence between plots and nitrogen 

application levels 

 

Plot number 
Nitrogen application level (kg/hm2) 

0 100 180 255 330 

1, 8, 10    ※  

2, 9, 13  ※    

3, 5, 12     ※ 

4, 7, 14   ※   

6, 11, 15 ※     

 

Table 2. Correspondence between images and nitrogen 

application levels 

 
Image 

number 

Plot 

number 

Nitrogen 

application level 

Number of 

images 

(a) 6 N0 90 

(b) 9 N100 90 

(c) 4 N180 90 

(d) 1 N255 90 

(e) 5 N330 90 

 

 
 

Figure 2. SPAD distribution in different plots with different 

nitrogen application levels 

 

 
 

Figure 3. Flow of image processing 
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(d) (e)  

 

Figure 4. Results of image segmentation 

 

(4) Acquisition of SPAD value 

The chlorophyll content of wheat leaves was also obtained 

through the experiments. After taking each image, the portable 

chlorophyll meter was immediately clamped onto the leaf tip, 

leaf, and leaf base, and each part was measured three times, 

yielding nine measured values. The mean of the nine values 

was taken as the chlorophyll content of the leaf. Figure 2 

shows the SPAD distribution in different plots with different 

nitrogen application levels. 

 

2.2 Target extraction 

 

Target extraction aims to separate wheat leaves from the 

collected images. As mentioned above, each image was shot 

in the field with a whiteboard close to the leaves. The gray 

features of the image can be used for the separation, due to the 

large difference between the leaves and the background. 

Hence, the simple and efficient iterative thresholding was 

adopted for target extraction. As shown in Figure 3, the target 

extraction is realized in the following steps: 

Step 1. Compute the minimum A0 and maximum A1 of gray 

value in the original image, and set up the initial threshold 

Q1=(A0+A1)/2. 

Step 2. Segment the image with the initial threshold Q1, and 

divide the gray values smaller and greater than Q1 into two 

parts: C1 and C2. 

Step 3. Compute the mean gray values of C1 and C2, and 

assign the results to μ1 and μ2. 

Step 4. Compute the new threshold Q2=(μ1+μ2)/2. 

Step 5. If |Q2-Q1|≤0, then take Q2 as the optimal threshold; 

Otherwise, make Q1=Q2 and repeat Steps (2)-(4) until the end 

of iterations. 

The output binary image is generated by multiplying the 

pixels of the original image. The extracted targets are 

displayed in Figure 4. 

 

2.3 Generation of image features 

 

Each target image may contain various evaluation indices 

related to the prediction of chlorophyll content in wheat. The 

indices selected for mathematical transformation constitute a 

set of evaluation indices. In most literature, the image 

evaluation indices selected for wheat chlorophyll content 

diagnosis concentrate in the RGB color space, and work well 

in the prediction of chlorophyll content in wheat. Recently, the 

HSI color space, L*a*b* color space, normalized RGB color 

space, dark green color index (DGCI), and normalized redness 

intensity (NRI) have also shown very good results in the 

diagnosis of wheat chlorophyll content. Therefore, 39 image 

features were combined according to the color spaces 

mentioned in recent studies into an image feature set. The 

RGB color space can be converted to HSI color space, XYZ 

color space, and L*a*b* color space by formulas (1)-(7). 

 

𝐻 = {
𝜃          (𝐺 ≥ 𝐵)

2𝜋 − 𝜃 (𝐺＜𝐵)
 (1) 

 

where, θ＝arccos {
[(𝑅−𝐺)+(𝑅−𝐵)] 2⁄

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐵−𝐺)]1 2⁄ }. 

 

S = 1 −
3

𝑅 + 𝐺 + 𝐵
· min(𝑅, G, B) (2) 

 

I =
(𝑅 + 𝐵 + 𝐺)

3
 (3) 

 

[
𝑋
𝑌
𝑍

] = [
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] ∗ [
𝑅
𝐺
𝐵

] 

0 ≤ (R, G, B) ≤ 1 

(4) 

 

𝐿 = {
116.0 × 𝑓(𝑌/𝑌𝑛) − 16.0 𝑖𝑓 𝑌/𝑌𝑛 > 0.008856
903.3 × (𝑌/𝑌𝑛)                 𝑖𝑓 𝑌/𝑌𝑛 ≤ 0.008856

 (5) 

 

𝑎∗ = 500[𝑓(𝑋/𝑋𝑛) − 𝑓(𝑌/𝑌𝑛)] (6) 

 

𝑏∗ = 200[𝑓(𝑌/𝑌𝑛) − 𝑓(𝑍/𝑍𝑛)] (7) 

 

where, 
 

𝑓(𝑡) = {

1

3
(

6

29
)3𝑡 +

4

29
 𝑖𝑓 𝑡 ≤ 0.008856

𝑡
1

3                     𝑖𝑓 𝑡 > 0.008856
; 

 

Xn, Yn, and Zn indicate the tristimulus values of the reference 

white point. 

From each of the twelve color channels (R, G, B, H, S, I, X, 

Y, Z, L, a* and b*), an average color feature was extracted by 

formula (8). To reduce the influence of illumination on images, 

the image in the RGB channels was normalized by formulas 

(9)-(11). 

 

Mean(𝜇) =
1

𝑀𝑁
∑ ∑ 𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 (8) 

 

𝑟 =
𝑅

√𝑅2 + 𝐺2 + 𝐵2
 (9) 

 

𝑔 =
𝐺

√𝑅2 + 𝐺2 + 𝐵2
 (10) 

 

𝑏 =
𝐵

√𝑅2 + 𝐺2 + 𝐵2
 (11) 

 

where, M, N, and P(i, j) are the dimension of the image matrix, 

the total number of pixels in the image, and the color value of 

the pixel in the i-th column and j-th row, respectively. 
 

 

3. FEATURE SELECTION AND MODELING 

 

Most of the previous studies on wheat chlorophyll content 

focus on the extraction of different image features. Only a few 

scholars tackled the screening of the best feature subset of 

images. The importance of feature selection is self-evident: the 

selection of good features not only reduces the difficulty of 
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learning, but also eliminates the effect of noise on the model. 

From the constructed set of image features, a subset of image 

features needs to be selected by an appropriate algorithm, 

facilitating the diagnosis of chlorophyll content in wheat 

leaves. 

 

3.1 Wrapper-based feature selection algorithm 

 

Once the evaluation index set of the target image is 

established, the first step is to implement recursive feature 

elimination (RFE), and adopt the random forest model. The 39 

original image features are used for pre-training. Each feature 

is assigned a weight, and the feature importance is outputted. 

In the second step, the cross-validation version of RFE 

(RFECV) performs the RFE by eliminating one feature at a 

time through 5-fold cross-validation. Hence, the best subset of 

image features is screened automatically. The screened results 

are displayed in Table 3. 

 

Table 3. Results of wrapper-based feature selection 

 
Features Importance Rank Features Importance Rank 

R 0.0208 15 G+B 0.0234 22 

G 0.0224 21 G-B 0.0223 3 

B 0.0237 1 R+G-B 0.0234 14 

r 0.0252 1 G/R 0.0248 9 

g 0.0254 1 G/B 0.0234 11 

b 0.0260 1 (R-B)/(R+B) 0.0243 16 

H 0.0356 1 (R-G)/(R+G) 0.0237 18 

S 0.0305 1 (G-B)/(G+B) 0.0231 1 

I 0.0215 20 (R-B)/(R+G+B) 0.0239 1 

L 0.0225 19 (R-G)/(R+G+B) 0.0263 6 

a* 0.0259 1 (G-B)/(R+G+B) 0.0239 12 

b* 0.0256 2 R-G-B 0.0281 1 

X 0.0333 1 R-G 0.0258 5 

Y 0.0367 1 R-B 0.0263 1 

Z 0.0365 1 G/R 0.0249 1 

R-G-B 0.0261 1 NIR 0.0268 1 

R-G 0.0294 1 NIG 0.0244 7 

R-B 0.0246 8 NIB 0.0258 13 

R+G 0.0205 10 DGCI 0.0211 17 

R+B 0.0224 4    

 

 
 

Figure 5. Results of LGBM-based feature selection 
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Table 4. Main parameters of each model 

 
Model Parameter Model Parameter 

XGBoost 

'clf__max_depth':[10] RF 'clf__n_estimators': [10, 20, 50] 

'clf__min_child_weight':[6]  'clf__max_features':[None,1, 2] 

'clf__booster':('gbtree','gblinear')  'clf__max_depth': [1,2,5,7,9] 

'clf__subsample':[0.5] NN 'clf__alpha':[0.001,0.01,0.1,1,10,100] 

'clf__colsample_bytree':(0.4,0.5)  'clf__hidden_layer_sizes':[(5),(10,10)] 

KNN 
'clf__n_neighbors':[5, 10, 15, 25, 30]  'clf__activation': ['relu', 'tanh'] 

'clf__weights':['uniform','distance']  'clf__learning_rate':['constant','invscaling']} 

 

3.2 LGBM-based feature selection algorithm 

 

Another option is to integrates gradient boosted decision 

trees (GBDTs) for index screening. Firstly, the top-K image 

features are identified automatically, and the features that may 

be the best segmentation points are selected by voting. The 

feature importance is computed by setting the mean gain based 

on the parameter “gain”. Then, the parameter “split” is used to 

judge whether the index is the optimal segmentation point. 

After that, only the features filtered by each model are merged, 

and the output image forms different feature subsets with the 

cliff part as the boundary. Finally, the best image feature 

subset is found according to the results. The results of LGBM-

based feature selection are displayed in Figure 5. 

 

3.3 Diagnostic model for leaf chlorophyll content 

 

After identifying the subset of the best image features, the 

diagnosis model of wheat leaf chlorophyll content was 

established by five machine learning algorithms, such as 

logistic regression (LR), XGboost, KNN, random forest (RF), 

and nearest neighbor (NN). The main parameters of each 

algorithm are shown in Table 4. The diagnosis model 

measures the difference between the estimated value and the 

real value with the coefficient of determination (R2). The 

model accuracy was measured by root mean square error 

(RMSE). The results are shown in Table 5. 

(1) RFECV-based feature selection 

The model analysis was carried out based on the 18 image 

features screened by the RFECV. Through dimensionality 

reduction, the size of the training set is reduced, which affects 

the accuracy of NN and KNN to a certain extent. Meanwhile, 

the accuracy of LR, XGBoost and RF was improved, 

compared with the training model of the original data. Hence, 

the selected feature subset has a certain effect in the diagnostic 

modeling and analysis of chlorophyll content in wheat leaves. 

The results of RFECV-based feature selection are shown in 

Table 6. 

Contrary to the current technical development, the 

classification effect of the NN was not as good as that of any 

other classifier. It has been proved that the NN will be 

overfitted in some classification or regression problems with 

too much noise. The attributes with relatively great values 

have an immense impact on the RF. That is why the attribute 

weights computed by the RF is not necessarily credible. In this 

paper, the features are constructed based on the combined 

mode, and are relatively salient. Thus, LR and other models 

can avoid overfitting to a certain extent, and perform relatively 

well in this experiment. 

(2) LGBM-based feature selection 

The importance of each image feature was calculated by the 

LGBM-based feature selection algorithm. Taking the cliff 

phenomenon as the boundary, four feature subsets were 

selected as the training data to fit the model. With the growing 

number of features in Groups 1-3, the fitting effect of most 

models got better. As the number of features rose to 20 (Group 

4), the fitting effect of the model was weakened to a certain 

extent. The results of the LR are presented in Table 7. 

LR achieved the best result, with R2 of 0.727 and RMSE of 

4.979. The optimal prediction model is displayed in Figure 6. 

Compared with those obtained by the wrapper-based feature 

selection algorithm, the 17 image features chosen by the 

LGBM-based feature selection algorithm form the best set of 

image features. 

 

Table 5. Results of original image feature modeling 

 
Model R2 RMSE 

LR 0.718 5.065 

XGBoost 0.621 5.89 

KNN 0.667 5.543 

RF 0.709 5.147 

NN 0.726 5.074 

 

Table 6. Results of RFECV-based feature selection 

 
Model R2 RMSE 

LR 0.727 5.001 

XGBoost 0.681 5.275 

KNN 0.619 5.923 

RF 0.713 5.202 

NN 0.351 5.097 

 

Table 7. Results of LGBM-based feature selection 

 
LR/Score R2 RMSE 

First 0.709 5.182 

Second 0.725 5.022 

Third 0.728 4.979 

Fourth 0.721 5.072 

 

 
 

Figure 6. Optimal prediction model 
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4. CONCLUSIONS 

 

Chlorophyll is an important measure of plant nitrogen 

content and other health indices. This paper studies the 

relationship between leaf color features and chlorophyll 

content at the jointing stage of wheat under different nitrogen 

application levels. A total of 39 image features were extracted 

from different color spaces, and sorted and screened by 

wrapper and LGBM. Then, LR, XGBoost, KNN, RF, and NN 

were combined to form the estimation model for the 

relationship between color features and chlorophyll content. 

Experimental results show that the best model of leaf 

chlorophyll in the field prototype is the prediction model 

coupling LGBM with LR. The optimal results are R2=0.728 

and RMSE=4.979. 

Although the estimation results are not as accurate as the 

existing alternatives (SPAD instrument, spectrometer, 

hyperspectral equipment, etc.), our model can be directly used 

in field prototype to yield effective estimation results. 

However, the research object is limited to Jimai 22. The 

performance of our model on other wheat varieties needs to be 

further verified. In addition, this paper only estimates the 

chlorophyll content of a single leaf of wheat. The future 

research will estimate the chlorophyll content of the wheat 

population, which has better application value. 
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