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For a range of medical analysis applications, the localization of brain tumors and brain tumor 

segmentation from magnetic resonance imaging (MRI) are challenging yet critical jobs. 

Many recent studies have included four modalities: i.e., T1, T1c, T2 & FLAIR, it is because 

every tumor causing area can be detailed examined by each of these brain imaging 

modalities. Although the BRATS 2018 datasets give impressive segmentation results, the 

results are still more complex and need more testing and more training. That’s why this 

paper recommends operated pre-processing strategies on a small part of an image except for 

a full image because that’s how an effective and flexible segmented system of brain tumor 

can be created. In the first phase, an ensemble classification model is developed using 

different classifiers such as decision tree, SVM, KNN etc. to classify an image into the tumor 

and non-tumor class by using the strategy of using a small section can completely solve the 

over-fitting problems and reduces the processing time in a model of YOLO object detector 

using inceptionv3 CNN features. The second stage is to recommend an efficient and basic 

Cascade CNN (C-ConvNet/C-CNN), as we deal with a tiny segment of the brain image in 

each and every slice. In two independent ways, the Cascade-Convolutional Neutral Network 

model extracts learnable features. On the dataset of BRATS 2018, BRATS 2019 and 

BRATS 2020, the extensive experimental task has been carried out on the proposed tumor 

localization framework. The IoU score achieved of three datasets are 97%, 98% and 100%. 

Other qualitative evaluations & quantitative evaluations are discussed and presented in the 

manuscript in detail.  

Keywords: 

brain tumor, magnetic resonance imaging, 

YOLO detector, inception-V3, segmentation 

1. INTRODUCTION

The most common brain tumor is glioma, which also has the 

highest rates of mortality and highest rates of morbidity. For 

the diagnosis and curing of glioma, the accuracy of 

segmentation is very critical. The treatment and diagnosis of 

brain tumor can be caused by using the necessary tool known 

as magnetic resonance imaging (MRI) [1]. Various MRI 

sequences can present various tissue structures of brain tumor, 

and multimodal MRI of brain tumors is usually used to 

segment brain tumors. As there is a complex structure of brain 

tumor, individual differences and uncertainty in the 

boundaries of the tumor, the segmentation of the brain is not 

an easy task to do [2]. A lot of time is required by doctors in 

order to complete the manual segmentation, and the accuracy 

of the segmentation is poor. During the last years, deep 

learning-based automatic segmentation methods have 

demonstrated promising results in the segmentation of medical 

imaging [3]. The classification, object detection, and 

segmentation are computer vision tasks; these tasks by the 

deep learning process, if based on CNN, will perform much 

better. A CNN can learn complex data features without 

depending on manual feature extractions during the training 

process, improving brain tumor segmentation accuracy [4, 5]. 

A fully convolutional neural network (FCN) was proposed 

by Long et al. [6], which used the upsampling for restoring the 

map of the output to the same size as the image input and 

achieved semantical end-to-end image segmentation by 

converting the full connection layer into convolutionary layer. 

A U-net technique is proposed by Ronneberger et al. [7] to 

segment biological cells, consisting of two paths, i.e. 

contraction and expansion.  

A contraction path includes max pooling used for down-

sampling and convolution block used for the extraction of 

features. An expanding path includes the up-sampling instead 

of the down-sampling and a convolution block. If the 

connection is skipped between these two paths (i.e. contracting 

path & expanding path), then the features of exact resolution 

will be fused. U-net consists of simple structures and can 

achieve better segmentation results in medical images with a 

small sample size. Contrary to this, image segmentation of 

brain tumors based on U-net applications should be improved 

[8]. The U-contracting net's path, on the other hand, employs 

the shrinking of feature map by pooling layer and thus, cause 

the expansion of the receptive field. 

Continuous pooling can result in providing no details of the 

image and have an impact on segmentation results. On the 

other hand, the essential problems are the differences in the 

size, shape, and location of brain tumors, as well as in 

obtaining more detailed segmentation target features and 

multiscale features [9]. The residual network [10] was 

proposed for solving the problems of gradient disappearance 
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and network degradation as network depth increases. The 

addition of identity mapping b/w the input & the output of 

numerous convolutional layers makes the network converge 

easier and prevents network degradation [11]. 

A DeepLab model is proposed by Chen et al. [12], which is 

used to obtain multiscale features. The final pooling layer was 

removed in this model, and atrous convolutions expanded the 

receptive field. The input is sampled in parallel position by 

atrous spatial pyramid pooling (ASPP) with atrous 

convolutions of many different dilation rates; then, the results 

are spliced together. The extraction of multiscale features is 

better with ASPP. An inception network was proposed by 

Szegedy et al. [13]. The network's width can be increased by 

using the inception module. In the ILSVRC 2014 competition, 

GoogLeNet, which included the inception module, had 

outstanding classification results and detection results. To 

reduce image data loss, this paper proposes extending the 

receptive field by utilizing atrocious convolution and 

decreasing pooling layers. An atrous convolution is a process 

that involves the insertion of holes in a standard convolution 

kernel for expanding the feature extraction’s receptive field 

with no additional parameters [14]. 

We discovered some issues in the automatic segmentation 

of brain tumors by looking through the literature: (a) Highly 

Imbalanced Tumor over Background, (b) Inconsistency in 

Appearance, and (c) Similarity between tumor and healthy 

tissue. The difficulty in segmenting brain tumors is primarily 

due to the wide range of sizes, shapes, regularity, location, and 

appearance of brain tumors. Segmenting tumors from 

background is a highly imbalanced dense prediction task 

because the tumor area only accounts for a small portion of the 

whole slice image in some benchmark datasets, usually less 

than 1%. When using a machine learning model to perform 

automatic segmentation, it's important to keep such issues in 

mind. Even if they belong to the same connected component, 

different parts of a tumor can have different appearances. The 

appearance of different slices of brain tumors is usually quite 

different. The difficulty of methods based on appearance 

models is exacerbated by the fact that some tumors have 

inconsistent appearances. Also, when using machine learning 

techniques, the features extracted should account for this type 

of variation in appearance. Surrounding healthy tissues can 

sometimes resemble tumors. The tumor and the background 

have a similar appearance in this case. Even if strong contrast 

boundaries exist between the tumor and healthy tissue, the 

intensity contrast information can still be used to segment the 

tumor. Otherwise, it is difficult for an untrained human to 

locate a tumor. A tumor can look a lot like other parts of the 

brain in many cases. This type of tissue can make the 

segmentation process even more difficult. It will be difficult to 

distinguish tumor from background and correctly predict 

labels using a machine learning model. 

This paper represents the combination of inception and 

atrous convolution to form the A-Inception module, and new 

U-net-based network architecture is proposed. To increase the 

network’s depth & width and then obtain different sizes of the 

receptive field, the encoder of the network uses a module of 

A-inception. At the same time, the network is enhanced with 

atrous spatial pyramid pooling for extracting the image's 

multiscale features. 

The proposed brain tumor segmentation model is trained on 

three benchmark datasets. The performance achieved by the 

best model is (a) mean Dice score: Enh = 0.923, Whole 0.931, 

Core = 0.886, (b) mean sensitivity score: Enh = 0.937, Whole 

0.943, Core = 0.982, and (c) HAUSDORFF99: Enh = 1.76, 

Whole 1.57, Core = 2.48. 

Section 2 consists of a detailed literature review and its 

summary; section 3 is the research methodology section in 

which the framework of the proposed model is discussed along 

with the mechanism of extracting learnable features and Yolo 

version 3 architecture for tumor segmentation, the section 4 

contains information about the experimentation performed, 

performance evaluation and comparison of segmentation 

results with state-of-the-art. The article finishes with Section 

5, which serves as a summary of the article and future 

directions of the research. 

 

 

2. RELATED WORK 

 

In the computer vision field, approaches that rely on 

convolutional neural networks have done well in recent years. 

In contrast to traditional methods, convolutional neural 

network algorithms may learn the complicated features of 

actual data and do not depend on the extraction of annual 

features that improve image segmentation accuracy [15]. In 

the segmentation of an image, the encoder-decoder structure is 

prevalent. The image pixels are mapped in a higher-

dimensional distribution during the encoding approach, and 

the process of decoding gradually recovers the image's 

detailed information and spatial dimensions. As a result, the 

encoder-decoder structure can achieve comprehensive image 

semantic segmentation [16]. SegNet [17] in image 

segmentation is typically a framework of encoder-decoder. 

SegNet's encoder community contains the same type of 

topology as VGG16's convolution layer, without the 

completely connected layers. The max-pooling is a technique 

used for reducing the dimensions of feature mappings—the 

decoder used nonlinear upsampling in its input map by using 

max-pooling indices received by the equivalent encoder. The 

U-net is a type of encoder-decoder that was used extensively 

in the segmentation of the medical image. It introduces skip 

connections b/w the encoder and the decoder that can combine 

the feature map with the encoder and decoder's exact 

resolution. Attention gates were introduced by Oktay et al. [18] 

to the conventional U-internet architecture, which regularly 

focuses on the targeted structures of all shapes & sizes. By 

introducing a dense connection and replacing the basic 

convolution module with a dense connection module in U-

internet, Shaikh et al. [19] improved the network's 

segmentation performance. At some point during the training 

process, the attention weight of the target region progressively 

shifted to the target region. In contrast, the attention weight of 

the targeted region progressively declined, improving the 

accuracy of segmentation. 

CNN employs pooling for achieving down-sampling that 

reduces image length while increasing the receptive field. 

Then for restoring the original image length, up-sampling is 

done within the semantic segmentation of images. Some image 

details may be lost as a result of this procedure [20]. You may 

raise the receptive field, and it does not sacrifice image 

resolution with atrous convolution, which improves picture 

semantic segmentation accuracy. Zhao et al. [21] developed a 

pyramid scene parsing network (PSPNET) that improves the 

network's ability to gather global records by combining the 

context of different locations using a pyramid pooling module. 

DeepLabv3 [22] proposes connecting multiple atrous 

convolutions, including different rates of dilation in series & 
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parallel to segment’s multiscale objects, resulting in large 

receptive fields of cascade mode & diff. Receptive fields for 

the same input in the parallel mode, allowing for more 

multiscale feature extraction. 

DenseASPP [23] uses dense connections to integrate atrous 

convolution with diff. Rates of dilation. The field of receptive 

of output neurons is expanded without a pooling operation, 

leading to output features that cover a wide range of semantic 

information and acquire multiscale features. ASPP is a fully 

spatial pyramid pooling-based development. DeepLabv3+ 

[24] is a DeepLabv3 version with a simple decoder module for 

better details of object boundary. For the segmentation of 

multiscale objects, parallel pooling modules are used to extract 

multiscale features. 

Automated brain tumor segmentation has sparked a lot of 

interest in the scientific community, and it's still being 

researched. Maximum medical image researchers utilized 

traditional standard image processing techniques before 2010, 

threshold value based grouping of pixel [25] and seed point 

selection based region growing segmentation [26]. Suzuki and 

Toriwaki performed ROI (lesion) segmentation using an 

adaptive threshold segmentation [25], but optimal threshold 

value selection for image with reduced contrast is a serious 

issue for the proposed technique. Region growth was proven 

to be an effective brain tumor segmentation method in 2005. 

The amount of computation is less when compared to other 

non-region-based methods, especially for homogeneous 

tissues and regions [26]. Achieving higher accuracy on 

segmenting medical images never touch the radiologist 

expectation, even though they are simple to implement and 

require little computation. As a result, it is primarily used for 

two-dimensional segmentation [27]. Artificial Intelligence 

particularly machine learning technology [28] has gradually 

been implemented to analyse biomedical images since the 

2005. Segmentation of brain lesions have also been performed 

using various supervised learning (classification) and 

unsupervised learning (clustering) approaches [29-31]. 

Fletcher-Heath et al. applied Fuzzy C Means cluster to group 

the MRI pixel, the pixel belonging to the tumor region are all 

grouped to the same cluster and using image processing 

techniques the segmentation image is further process to detect 

the entire tumor with greater accuracy [29]. Zhou et al. 

developed a novel framework for MRI images based tumor 

segmentation using support vector classifier [30]. Based on 

multi-window Gabor high pass filters and an adapted 

technique develop through Markov Random Field, Subbanna 

et al. developed a probabilistic brain and tumor automatic 

segmentation model [31]. These methods can improve 

accuracy when compared to traditional segmentation methods. 

In clinical practice, however, more accurate methods are still 

required. Deep learning methods have progressed over the last 

ten years as computing power has increased dramatically. 

Instead of using pre-defined manual features, deep neural 

networks can learn hierarchical features from input images. 

Convolutional Neural Networks and Recurrent Neural 

Networks are two of the most popular deep learnings 

approached that has been extensively used for the 

segmentation and classification of medical images that ranges 

from X-ray mammogram images [32] to chest CT DICOM 

image for COVID-19 analysis [33]. The same CNN deep 

learning approached are also used by several medical image 

analyst for tumor segmentation. which has piqued researchers' 

interest. 

In 2014, Zikic et al. found that CNNs were more accurate 

than traditional machine learning methods for brain tumor 

segmentation [34]. Brosch et al. used a deep 3D convolutional 

encoder network with two interconnected routes: convolution 

and deconvolution, to perform segmentation in 2016. Each 

image has a different pattern and for training the network very 

less data was required [35]. Multiple routes based neural 

network for brain tumor segmentation was proposed in 2017 

[36], which was an augmented version the conventional feed 

forward neural network. In 2019 and 2020, Sharif and Amin 

et al. proposed several brain tumor segmentation algorithms 

[37, 38] to improve segmentation accuracy and speed up 

processing. Our proposed brain tumor segmentation model is 

based on the U-Net [7, 39] deep learnings model, the only 

difference is the augmentation process where all 2D based 

filtering and processing is replaced by 3D operations. The 

proposed brain tumor segmentation framework incorporates a 

multi-path network which is capable of performing 

segmentation with higher accuracy. 

Despite significant progress in brain tumor segmentation, 

there are still a number of issues and challenges to be 

addressed. Gliomas are first and foremost glial cell mutations. 

Gliomas can appear anywhere in the brain due to the wide 

spatial distribution of glial cells. Furthermore, because the 

shape and size of brain tumors vary greatly between patients, 

there is little a priori information about tumor shape and size 

available prior to segmentation. The combination of positional 

and morphologic uncertainty makes accurate brain tumor 

localization difficult. Second, an MRI that can image in 

multiple directions can provide tissue detail. Because 3D 

imaging methods are better for detecting brain tumors, we 

primarily use MRI to segment them. However, MRI 

calculations during automation are complex, and image 

analysis usually takes longer. Platforms for segmentation 

processing must meet stringent performance requirements. 

Deep learning methods can achieve high accuracy rates in 

brain tumor segmentation tasks, it can be concluded. However, 

the process of segmenting brain tumors can take a long time 

and require a lot of computing power. As a result, for high-

precision brain tumor detection and efficient acquisition of 

detection results, speeding up CNN-based 3D brain tumor 

segmentation is critical. GPUs are currently used to speed up 

the segmentation process for brain tumors, but the speed and 

power consumption could be improved. CNN uses two 

methods for brain tumor segmentation: training and inference. 

The process of training is an iterative process of adjusting 

training parameters. During the training process, the model's 

output is compared to the expected result, and the parameters 

are updated to minimise the difference. This process is 

repeated until the output converges to a value that closes the 

gap to a safe level. Training is typically an offline process that 

can be planned ahead of time. Our work focuses on 

accelerating the inference process because it is a real-time 

process. 

 

 

3. METHODOLOGY 

 

As shown in Figure 1, the proposed technique comprises 

four basic steps: (1) enhancement, (2) classification, (3) 

localization, and (4) segmentation. Homomorphic wavelet 

filers are used for enhancing the input images and inceptionv3 

derived deep features are used for input image classification. 

The identified images are segmented using Kapur entropy and 

localised using the proposed YOLOv2-inceptionv3. 
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3.1 Noise elimination using homomorphic wavelet filter 

 

The images obtained from an MRI procedure with adverse 

conditions may be affected by noise, lowering the disease 

detection rate. For noise reduction, there are several filters 

available. These filters are dependent on the sort of noise 

present in the photos. The images are represented in frequency 

domain using the wavelet transform. Image is divided into 

three bands via decomposition: high to high (i.e., HH), low to 

high (i.e., LH) & high to low (i.e., HL). This study looks into 

the homomorphic wavelet filter decomposition for removing 

speckle noise, which is described mathematically as follows: 

 

𝑙𝑜𝑔𝑓(𝑥,𝑦) = 𝑙𝑜𝑔𝑔(𝑥,𝑦) + 𝑙𝑜𝑔𝜂𝑚(𝑥,𝑦)
 (1) 

 

Figure 1 depicts the use of homomorphic filter for noise 

removing process and wavelet decomposition, with the image 

split into four bands: i.e., High-Low, Low-High, High-High, 

and Low to High-High to High. When compared to other 

bands like HL, LH & LH-HH, the HH bands improve the 

quality of image. As a result, the High-High band is used to 

accomplish accurate segmentation for further processing. 

 

3.2 Extracted deep features using pre-trained inceptionv3 

architecture 

 

The applications like deep learning, speech recognition and 

computer vision are commonly used in artificial intelligence 

applications. However, as the field of deep learning becomes 

more popular, categorization into corresponding categories 

has become a big issue. Because correct models & architecture 

are developed in the time-saving manners, this challenge 

might be handled through transfer learning. Instead, then 

learning new features from start, this method involves 

leveraging previously acquired patterns to address various 

challenges. For problem solving, transfer learning employs 

pre-trained models; these models have been learned over a 

large data. 

As a result, for feature learning, this study employs a pre-

trained inceptionv3 transfer-learning model that includes 01 

image, 094 batch-normalization (bn), 094 Convolutional, 14 

max-pooling, 094 ReLU, softmax with the function of cross-

entropy, 015 depth concatenation and fully connected layers. 

As shown in Figure 2, features are retrieved from completely 

connected layers termed prediction and then transferred to 

NSGA for improved feature selection. 

In the first phase of our framework that is depicted in Figure 

1, an ensemble supervised learning classification model is 

developed; using the bagging strategy, multiple classifiers are 

trained, and in the validation phase, a voting scheme is applied 

to the output achieved through several classifiers and predict 

whether the image is from the normal class or abnormal class 

containing single or multiple tumors. In the second phase, a 

Yolo-V3 based on inception-V3 CNN features is trained on 

tumor containing MRI image along with its annotated ground 

truth that has been provided by the radiologist, the ensemble 

classification method helps to only process the images that 

contain tumor without wasting time for detecting of tumor in 

normal images. In most Yolo architecture, Darknet CNN, 

which is 153 layers model, is used for features learning; in this 

framework, the Darknet model has been replaced with 

inception-V3 315 layers model to extract more robust features 

from images and improve the detection accuracy of the YOLO 

detector. In Table 1, the details of our proposed segmentation 

models are discussed as: in step 1, the homomorphic filter is 

applied to enhance the quality of medical images. Step 2 is the 

features extraction phase, where inception-V3 CNN 

architecture is used for feature learning from normal and 

tumors containing MRI images. In step 3, an ensemble 

classification model is used to detect tumor and non-tumor 

images. Finally, in step 4, the Inception-V3 features based 

YOLO object detector is used to localize and segment the 

brain tumor regions. 

 

 
 

Figure 1. Our proposed brain tumor segmentation and classification models architectures 

 

 
 

Figure 2. Learning based features extraction using inceptionv3 CNN model 
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Figure 3. Localizing the tumor in MRI images using proposed model 

 

Table 1. Proposed tumor segmentation framework details 

 
Step 

No. 
Purpose Technique Output 

Step 1 
Image 

Enhancement 

Homomorphic filtering 

 
Enhance image 

Step 2 
Features 

Extraction 
Inception-V3 CNN Feature Map 

Step 3 
Ensemble 

Classification 

SVM, decision tree and 

KNN 

Classify into ‘Tumor’ 

or ‘Normal’ 

Step 4 
Tumor 

Detection 

Inception-V3 Features 

+ Yolo Object Detector 

Localization and 

Segmentation of 

Tumor 

 

3.3 Features selection 

 

Using the inceptionv3 network, a deep feature vector (1 x 

1000) is obtained. The engineering features are used to choose 

the best feature vector using NSGA II. As seen in Table 2, the 

NSGA parameters are as follows. 

 

Table 2. The parameters about NSGA II 

 
Maximum Number of Iterations 200 

Population size 25 

Crossover Percentage 0.7 

Number of offspring 2 x round (crossover x 25/2) 

Proportion of mutation 0.1 

Mutation percentage 0.4 

Total Mutants No Mutation percentage x 25 

 

3.4 Localization using YOLO-inceptionv3 model 

 

To locate the tumor location, a YOLO-inceptionv3 model is 

proposed which have 174 layers, with inceptionv3 having 165 

layers with 01 input, 50 Conv, 50 bn, 50 activations ReLU, 06 

mixed (depth concatenation), 03 max-pooling, 05 average 

pooling, and 09 layers of tinyYOLOv2 [40] model. Table 3 

consists of several hyperparameters used to train our proposed 

tumor localization and segmentation framework. The model is 

also trained on some other hyperparameters as well, but the 

hyperparameters in the table listed are the most optimal 

through which the tumor is segmented with higher accuracy. 

As seen in Figure 3, the proposed model more precisely 

localises the tumor location. The MSE loss between predicted 

bounds and boxes of ground truth was optimised using the 

YOLOv2 model. Three main sorts of losses are used to train 

the model: localization, confidence, and classification. 

Localization loss computes error utilising location, estimating 

box size & ground truth among the expected and ground truth 

boxes. The objectiveness having error with detected objects in 

the jth limited box of grid I cell is computed using the 

confidence loss. The classification loss was used to compute 

probability for each grid cell class. 

 

Table 3. Adjusts the hyper-parameters ofinceptionv3 CNN 

based YOLOv2 model 

 
Epochs 100 

Mini Batch Size 16 

Initial Learning Rate 0.1 

Momentum 0.7 

Optimizer Adam 

 

Table 4. Details of the BRATS MRI images dataset 

 
Dataset 

Year 

No. of Training 

Images 

No. of Testing 

Images 

2018 20515 20515 

2019 21978 21978 

2020 25692 25692 

 

3.5 Lesion segmentation 

 

Variability in medical data is a major difficulty in medical 

imaging. Different modalities, such as X-ray, MRI, CT, and 

PET, show variances in human anatomy. The illness severity 

levels are analysed using the segmentation region. 

McCulloch's Kapur entropy approach [41] is used to segment 

tumors in the proposed method. In this method, the foreground 

and background regions' likelihood of intensity values 

distributions are measured, and entropy is calculated 

independently for each region. To enhance the total of their 

entropies, the best threshold value is used. In Figure 4, four 

different images are visualized; Figure 4-a is the input of 

volumetric MRI series to the segmentation deep learning 

model, the Figure 4-b is the output of Kapur based entropy 

method for tumor localization. Figure 4-c is the segmented 

brain tumor (lesion) in multiple MRI slices, and Figure 4-d is 

the overlay images of the segmented tumor and original MRI 

images where the segmented and localized tumor can be seen 

in the red color. 

 

3.6 Data and implementation details 

 

The dataset of BRATS 2018 that comprises of brain tumor 

Multiview and multiseries MRI images along with ground-

truth (segmented mask) by the domain experts, the brain tumor 

subjects have various histological subregions of heterogeneity, 

with a wide difference of aggressiveness & medical history. 

The MRI images of BRAT dataset is used for model training 
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and model validation for performance analysis. These datasets 

Multi-Modal MR images details can be seen in the Figure 5, 

which are different from Computed Tomography (CT) images 

containing the dimensions of 240 240 150 and also were 

obtained clinically, utilising diverse strength of magnetic field, 

scanners, & varied protocols from several institutes. The MRI 

FLAIR series highlights the tumor region, whereas the 

cerebral spinal fluid, fat layer are not visible in this contrast 

level. The T2 weight series is consider to be the most 

appropriate and feasible for tumor analysis, the voxel contrast 

intensity of the tumor, cerebral spinal fluid and fat in the head 

region are almost the same, which makes it more challenging 

to detect and segment using an automatic diagnosis system. 

Other than FLAIR and T2 W MRI images, the T1 W and T1 

Contrast series is also studied for tumor confirmation and 

treatment plans.  

 

 
 

Figure 4. (a) Load Input Image (b) Kapur entropy-based 

image (c) segmentation of lesion (d) overlaying segmented 

tumor region over the original images 

 

 
 

Figure 5. Overview of the benchmark BRATS dataset used 

for models validation 

 

This dataset contains 75 LGG cases & 210 HGG cases that 

were divided randomly into the training data (i.e. 80%), 

validation data (ten percent), and test data (ten percent). In 

addition, neuroradiologists labelled images with tumor labels 

(necrosis is represented by 1, edema is represented by 2, non-

enhancing tumor is represented by 3, and enhancing tumor is 

represented by 4). Also, a tissue with a value of zero is 

considered normal). The third label isn't used. 

The proposed structure's experimental results were obtained 

using MATLAB 2020b on an Intel Core I7 9th generation CPU, 

with a 48 GB of RAM and a total of 15 L3 cache. To speed up 

the training processing by incorporating parallel computing 

CUDA framework was used with RTX 2070 super 8 GB 

NVIDIA GPU, the MATLAB was running on windows 10 64-

bit operating system. For the training stage, we used Adaptive 

Moment Estimation (Adam) with 2 batch sizes, 10-5 weight 

decay and an initial rate of learning of 10-4. We spent a total of 

13 hours training and 7 seconds testing each volume. 

3.7 Evaluation measure 

 

Metrics for the enhancing core, tumor core (TC, which 

includes necrotic core & non-enhancing core), and total tumor 

are used to evaluate the approach's success (WT, which 

includes all the classes/types of tumor structures). In case of 

image segmentation, the Dice Similarity Co-efficient (DSC) is 

used as an evaluation metric that help to compute the number 

of overlapped pixel between the actual pixel (ground-truth) 

and the pixel predicted by the model. Three criteria were used 

to generate the experimental results: HAUSDORFF99, the 

Dice similarity, and models achieved Sensitivity. Hausdorff 

score is a measure to calculate the distance b/w a predicted 

region and ground-truth region. The overlap between the 

ground truths and the predictions is computed using a dice 

score as the evaluation metric. The measure of correctly 

determined non-tumor pixels is called specificity (real 

negative rate). Sensitivity refers to the number of tumor pixels 

that were estimated accurately. These 3 criteria are as follows: 

 

𝐷𝐼𝐶𝐸(𝑅𝑝, 𝑅𝑎) = 2 ∗
𝑅𝑝 ∩ 𝑅𝑎

𝑅𝑝 +  𝑅𝑎

 (2) 

 

Sensitivity = 
(𝑅𝑝∩𝑅𝑎)

𝑅𝑎
 (3) 

 

where, Rp demonstrated the predicted tumor regions, Ra 

demonstrated the actual labels and Rn demonstrated the actual 

non-tumor labels. 

 

 

4. EXPERIMENTAL RESULT 

 

To gain a better understanding of the tumor segmentation 

performance and to make quantitative and qualitative 

comparisons, we used five different models (Multiple models 

Cascaded [42], Cascading of random forests classifier [43], 

Cross MRI imaging modality [44], Task Structure [45], and 

One-Pass Multi-Task [46]). Table 5 shows quantitative results 

for several types of segmentation algorithms proposed.  

Table 5 shows that without applying a pre-processing 

technique, the two-route CNN model is unable to partition the 

tumor area effectively. When a mechanism of attention is 

added neural network model with multiple paths without 

employing some pre-processing or enhancement method, the 

segmentation results improve in all three criteria. Dice scores 

in three tumor locations increased from 0.2532, 0.2797 for Enh, 

0.2143 to 0.8756 for core, and from 0.8551 to 0.8716 for 

Whole, after adopting the pre-processing strategy. Despite just 

having a single-route Convolutional Neutral Network model 

(global features or local features), the Convolutional Neutral 

Network model consistently improves the performance of 

segmentation in all tumor regions because to the pre-

processing strategy. Furthermore, it has been discovered that 

applying the pre-processing method has a greater impact than 

simply by the use of attention mechanism. It can also be stated 

as that when we deal with only a small portion of an input 

image that has been recovered by pre-processing method, the 

attention mechanism which was proposed would be more 

useful. When the effects of local and global features are 

compared, it is clear that local features outperform global 

features. 

Table 6 lists the HAUSDORFF99 values, Dice values and 

sensitivity values for all of the input images by using all 
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structures. The greatest Dice values, Sensitivity values, and the 

smallest values of HAUSDORFF99 are indicated in bold for 

each index in Table 6. Table 6 shows that our technique 

achieves the maximum Sensitivity values in the Enh & Whole 

tumor areas, with the Core area of highest value being 10. 

There is also a minimal variation between the 

HAUSDORFF99 values when the researches [46, 47] are used. 

For all three criteria, there are significant improvements in 

Enh area [44]. Also, on the HAUSDORFF99 measure, had the 

worst outcomes in the Whole and Core areas [45]. Not only 

were all criteria improved when utilising the proposed method 

compared to the previous approaches discussed, but the value 

of sensitivity in Core area using [47] is still greater. There are 

three explanations, as far as we know. First, before applying 

the four modalities to the CNN model, the proposed technique 

pays special attention to deleting inconsequential regions 

within them. Second, our method investigates the richer 

context tumor segmentation by combining local information 

and global information with varying numbers of convolutional 

layers. Third, the network can be biassed to an appropriate 

output class by taking into account the influence of the 

dissimilarity between the tumor's centre and the projected area. 

Furthermore, by simply using a simple CNN structure, our 

approach achieves very promising performances and reduces 

running time when compared to state-of-the-art algorithms 

using heavier networks, such as [45, 46]. Furthermore, as 

shown in Table 8, the proposed approach is faster than other 

evaluated models at segmenting the tumor. 

In Table 7, the tumor segmentation time of various detection 

models is listed. The time for 50 images segmentation has been 

calculated in seconds, and then by taking the mean of the 50 

images times, the average segmentation time of each model is 

calculated. The above table shows that using the YOLO model 

on MRI images for tumor segmentation enhances detection 

and localization efficiency by outperforming other state-of-

the-art methods. 

In Figure 6, three brain tumor cases are visualized where 

each of the tumor cases consists of T1W, T1C, T2W, FLAIR 

and ground truth images which are annotated by the domain 

expert manually. The final images in Figure 6 are the 

segmented results of three cases; the red region in the lesion 

indicates the edema region, the green region represents the 

tumor core area, and the blue region is the enhanced tumor 

segmentation results. Every region has a common border with 

every other region, as illustrated. The border between tumor 

core & enhancing area inside the T1C pictures (3rd column) 

may be easily differentiated with high accuracy rate with no 

use of other modalities because of the difference in value of 

enhancing areas & tumor core. When dealing with the border 

of a tumor core, edoema areas, or exacerbated edoema areas, 

however, this is not the case. Because of the aforementioned 

properties of each modality, we see that reducing the searching 

area eliminates the requirement for a highly deep CNN model. 

Our model's DWA module can collect more related tumor 

and brain information, resulting in better segmentation results. 

As illustrated in Figure 7, the addition of the DWA module to 

the proposed techniques enhances segmentation, especially at 

the edge of tumor containing areas. 

In Figure 8, the comparison of the baseline and our model 

demonstrates the efficiency of the proposed method in 

distinguishing between all four zones. Figure 8 shows the 

ground reality for all four modalities (GT). Although the 

Edema region are detected by the well performance of multi-

cascade (Figure 8-A) and cascading random forests techniques 

(Figure 8-B), but minor Edema patches cannot be detected by 

them, outside of the main Edema body. The Cross-modality 

(Figure 8-C) and One-Pass Multi-Task (Figure 8-D) 

techniques show promise in detecting tumor Core and 

Enhancing areas, particularly tumor Core at the Enhancing 

area's outside border. The Crossmodality approach is used to 

show how some separated Edema zones get stuck together 

between the final segmentation. Applying the Cross-modality 

structure, as illustrated in Figure 8(C), achieves the lowest 

segmentation accuracy for recognising Edema zones when 

compared to others. The tumor Core areas are under-

segmented in this model, whereas the Edema areas are over-

segmented. In comparison to Figure 8(A–C), the One-Pass 

Multi-Task technique has a better core matching with the 

ground-truth, but it still has insufficient accuracy, notably in 

the Edema areas. According to our findings, utilising an 

attention-based mechanism to estimate the three separate 

regions of a brain tumor is an excellent technique to assist 

specialists and doctors in evaluating tumor stages, which is a 

hot topic in computer-aided diagnosis systems. 

 

Table 5. Evaluation of results with pipelines, of different configurations on the BRATS 2018 dataset 

 

Method 
Dice score (mean) Sensitivity (mean) 

Enh Whole Core Enh Whole Core 

Multi-Path CNN 0.2532 0.2797 0.2144 0.2457 0.2569 0.2008 

Convolutional Neutral Network + Attention mechanism 0.3128 0.3410 0.3026 0.3344 0.2948 0.2897 

Local route Convolutional Neutral Network + Attention mechanism 0.3412 0.3672 0.3626 0.3357 0.3819 0.3809 

Bi-Path Convolutional Neutral Network + Attention mechanism 0.4137 0.3755 0.3989 0.3910 0.3952 0.3823 

Convolutional Neutral Network + Pre-processing Data 0.7869 0.7916 0.7868 0.7427 0.7966 0.7449 

Local route Convolutional Neutral Network + Pre-processing 0.8603 0.8344 0.8517 0.8752 0.8569 0.8486 

Two-route Convolutional Neutral Network + Pre-processing 0.8757 0.8550 0.8716 0.8942 0.9037 0.8513 

Proposed method 0.9114 0.9204 0.8727 0.9218 0.9387 0.9713 

 

Table 6. The comparison b/w proposed method & other baseline approach on the dataset of BRATS 2018 

 

Technique 
Dice Score (mean) Sensitivity (mean) HAUSDORFF99 

Enh Whole Core Enh Whole Core Enh Whole Core 

Multi-Casecade [47] 0.709 0.894 0.748 0.868 0.762 0.9947 2.80 4.48 7.07 

Ensemble Cascade [43] 0.760 0.871 0.79 0.83 0.91 0.86 - - - 

Multi-modality [45] 0.893 0.801 0.836 0.919 0.846 0.835 4.998 3.992 6.639 

Task Structure [44] 0.872 0.845 0.824 - - - 3.567 5.733 9.270 

One and Multiple Task [46] 0.799 0.863 0.857 - - - 2.881 4.884 6.932 

Proposed model 0.923 0.931 0.886 0.937 0.943 0.982 1.76 1.57 2.48 
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Table 7. The comparison of diff. technique’s execution time 

applied on the dataset of BRATS 2018 for one subject patient 

 
Method Segmentation Time 

Multi-Cascaded [46] 262 Seconds  

Ensemble Cascaded [42] 315 Seconds 

Multi-modality [44] 207 Seconds 

Task Structure [43] 194 Seconds 

One & MultiTask [45] 276 Seconds 

Proposed method 85 Seconds 

 

 
 

Figure 6. Proposed model Tumor and edema segmentation 

results with enhance and core region 

 

 
 

Figure 7. The performance comparison of proposed model 

for Tumor enhances and core region with DWA 

 

 
 

Figure 8. Comparison of the proposed tumor segmentation 

model (E) with four state-of-the-art methods (A, B, C, D) 

 

Table 8. Localization results of proposed method 

 
Dataset Name Mean Average Precision Intersection Over Union 

BRATS 2018 98% 97% 

BRATS 2019 99% 98% 

BRATS 2020 100% 100% 

5. DISCUSSION AND CONCLUSION 

 

A new brain tumor segmentation architecture is proposed in 

this manuscript, that takes advantage of the 4 MRI modalities' 

characterisation. It indicates that each and every modality 

contain its own set of properties that helps the network discern 

between the classes more effectively. We have shown that a 

CNN model may achieve performance comparable to the 

human observer by focusing just on brain image portion near 

the tumor tissue. Furthermore, an effective but simple cascade 

CNN models have been proposed for extracting features using 

state-of-the-art inceptionv3 315 layers models. After applying 

a robust preprocessing technique to enhance the quality of the 

MRI images, the MRI images along with its tumor ground 

truth are feeded in the inception+YOLO model for training 

purpose. As a result of YOLO model, the tumor detection is 

detected and localized with higher accuracy and improved 

efficiency, the computing time and capacity to make fast 

segmentation of tumor region in a clinical MRI image is 

reduced. When comparing the state-of-the-art alternatives, 

extensive experiments have demonstrated the usefulness of 

our proposed Attention mechanisms in our algorithm, in 

addition to the extraordinary capacity of the overall model. 

Despite the proposed approach's superior outcomes when 

compared with the other recently published models, there are 

limits in our algorithms when dealing with tumor volumes 

more than 1/3rd of the total brain volume. This is due to an 

increase in the tumor's predicted region size, which causes the 

feature extraction performance to suffer. 

 

 

6. DATA AVAILABILITY 

 

The data used in this study for brain tumor segmentation 

model development and evaluation is openly available for 

researcher on the link: 

https://www.med.upenn.edu/sbia/brats2018/data.html. This a 

benchmark dataset and the details can be seen in the article 

[47] which is cited in our manuscript. The MATLAB code is 

available on local GPU workstation and it will be uploaded 

shortly on MATLAB file exchange where various researcher 

will have free access to the code. 
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