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Precise forecasting of solar irradiation helps to minimize photovoltaic power plant energy 

wastage, avoid system damage due to the high variability of solar irradiation, and focus 

the integration of power output among the various power grids. To forecast solar 

irradiation, it is crucial to consider the multiple dimensions of historical weather data as 

temperature, wind speed, and different type of irradiation, in addition to the categorical 

time data. The high dimensionality of these data can perturb the performance and can 

introduce very low calculation in a forecasting model. Hybrid combination between PCA 

and GRU with Grid Search hyperparameters optimization, proposed in this work to predict 

solar irradiation in different time horizons, using multiple variable data. Firstly, PCA 

changes the multiple variables to a few variables named components. Secondly, the 

prediction model GRU trained in optimized by using Grid search method. Finally, the 

optimized model predicts the solar irradiation. The proposed model compared in this study 

with simple GRU, LSTM, MLP and RNN models. The result of experience indicates that 

the PCA-GRU have a good forecasting accuracy in different time horizon, and has the 

better performance, and faster training compared with other models. 
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1. INTRODUCTION

Renewable energy sources (RES) are growing in the areas 

of innovative energy systems and their use is very significant 

considering their low Greenhouse Gas (GHG) emissions, their 

durability and their economic efficiency compared to other 

energy sources [1, 2]. They are used to take the place of the 

conventional form of production, for example, coal-fired 

power generation, etc. Within RES, wind and solar energy 

represent the highest degree of acceptability and the most 

desirable because of their inherent potential and availability. 

As the source of solar energy, the sun serves as a kind of 

natural black body emitter of radiation with a 5800 K surface 

temperature, providing 1367 W/m2 of solar energy from above 

the atmosphere [3, 4]. One study indicates that we obtain about 

1.8 × 1011 MW of energy from the sun in an instant. World 

energy consumption today, nonetheless, represents less than 

the amount of energy coming from the sun [5]. 

One of the most widely used renewable energy systems for 

producing electrical energy is photovoltaic (PV). Used 

principally to convert solar energy directly into electrical 

energy for supply systems. Thanks to the availability of low 

cost maintenance, higher payback of installation costs in a 

given time period, and the important role it plays in the 

provision of clean and durable energy [6], the overall 

contribution of PV will grow rapidly in several countries [7]. 

At the same time, the production of solar energy is unreliable 

due to natural fluctuation. This can lead to the degradation of 

the reliability and stability of the grid systems, in addition to 

the economic benefit [1]. 

One of the major challenges for the industry today is the 

integration of these new kinds of electric power plants into the 

mains grid. In the absence of a proper managing of this volatile 

energy, problems of power reserve and frequency regulation 

will result [8]. To address these issues, advanced prediction 

methods have been developed to enable us prepare enough 

energy supply and respond to demand simultaneously, while 

ensuring the reliability of the system's frequencies. 

Furthermore, the forecasts also apply to power plant managers, 

the energy trading market and grid operators. Based on the 

knowledge of the future development of grid power generation, 

financial and operational uncertainties are minimized for all 

parts of the market. 

Much research into solar energy forecasting has been 

carried out around the world in recent years, aiming to achieve 

higher accuracy and lower complexity in the calculation. 

Usually, most targeted by PV prediction methods is solar 

irradiation or PV power. It can be used as input of model with 

one variable, which is historical data of solar irradiation, or 

multiple variables in addition to solar irradiation as 

temperature, wind and other parameter related to target [9]. 

The forecasting of solar irradiation needs, sometimes Big-Data, 
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which can make a model low in term of computing. In addition, 

the features should be chosen according to its correlation with 

overall solar irradiation for minimizing the degree of freedom 

[10]. For dealing with these issues, it is important to apply 

dimension reduction to Data. In literature, there are so many 

methods could do this function. The seven most commonly 

used techniques for data-dimensionality reduction, including: 

Ratio of missing values [11], Low variance in the column 

values [12], High correlation between two columns [13], 

Principal component analysis (PCA) [14], Candidates and split 

columns in a random forest [15], Backward feature elimination 

[16], Forward feature construction [17]. Among all of these 

techniques PCA has special characteristics to deal with 

numeric columns as solar irradiation, temperatures, etc. 

The forecast of solar irradiation signifies that PV output is 

forecasted one or several times in advance. Forecasting assists 

us in developing diverse energy system applications [18, 19]. 

A number of applications using forecasting in function of time 

horizon to enhance power system scheduling and operation are 

shown in Figure 1. 

 

 
 

Figure 1. Required time resolution of prediction 

 

A great deal of research has been carried out around the 

world in recent years on the prediction of solar irradiation. In 

literature, there are four types of solar irradiation or PV power 

generation forecasting models as indicate in Figure 2. Many 

statistical models for solar irradiance can be found in the 

publications as ARMA [20], ARIMA [21] and persistence 

model [22] and other methods [20]. The physical methods take 

into account meteorological and geological parameters 

through numerical weather prediction (NWP) as a result 

predict future parameters of interest using complex weather 

models [23, 24]. The accuracy of the physical forecast model 

is greater when the meteorological conditions are steady [25]. 

Artificial Intelligent (AI) models for forecasting have the 

ability to identify complex relationships linking the variables 

in the forecast with no need of complicated mathematics, for 

this reason, these models are much preferred to the other 

mentioned above [26]. Machine learning (ML) as one of AI 

methods has a good accuracy and performance in prediction of 

time series. In this case, there are many types of machine 

learning that it can be used for forecasting for example, 

Support Vector Machine (SVM), which is one of the 

supervised ML techniques, founded on the concept of 

Structural Risk Minimization (SRM). SRMs reduce a larger 

limit of anticipated loss. Consequently, the SVM is capable of 

reducing the error of the training models [27]. To speed up 

processing speed, the Extreme Learning Machine (ELM) 

boasts a training feature that is simple and resistant to blocking 

[28]. Artificial neural network (ANN) is a prediction method 

based on a big set of artificial neurons. These neurons are 

approximately identical with the nerve center of a biological 

brain. ANN applied in many fields, including signal and image 

processing, computer science and forecasting time series [29]. 

This method's successful use depends on the limitations of 

statistical methods in the treatment of non-linear data. They 

are composed of three main features: the neurons, the 

activation functions and the bias. The neurons can be either 

input, hidden or output neurons. Different ANN architectures 

are available, including the Multilayer Perceptron NN 

(MLPNN) [30], the Multilayer Feed Forward NN (MLFFNN) 

[31], the Radial Baseline Function NN (RBFNN) [32], the 

Recurrent NN (RNN) [30], and the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) [32]. 

In AI, there are many developed methods, deeper than ML 

called Deep Learning (DL) methods that have the ability to 

model the data dynamics leads to successful results in a 

number of different applications. Gated Recurrent Unit (GRU) 

and Long Short-Term Memory (LSTM) [33] are an extended 

of RNN, these architectures could deal with the problem of 

vanishing gradient in RNN, and they have good performance 

in term of accuracy with sequence data. In addition, there are 

also other kinds of RNN architectures named Echo Stat 

Network (ESN) and deep ESN, which are coming from 

reservoir computing methods [34]. 

 

 
 

Figure 2. Different types of solar irradiation forecasting 

models 

 

The combination of two or more methods called hybrid 

model. This mixing could improve the global forecasting 

accuracy of the hybrid by integrating the benefits of the 

different individual techniques. Some study found that one 

technique or method is not sufficient to meet the request to 

improve the precision and efficiency of solar irradiation 

forecasting for the system. Various methods have been 

combined by recent research to enhance the precision of solar 

irradiation forecasting, and demonstrated better performance 

compared to using a single method [35]. 

In general, in ML or DL, hyperparameters are relevant as 

they control the behaviour of the training algorithm directly, 

finding the best hyperparameters needs optimization method. 

In this field, there are many famous technics, among them, 

Grid Search [36], Random Search [37] and the Bayesian 

Optimization [38]. 

In this work, GRU is combined with PCA based on Grid-

search optimization, as a new model of solar irradiation 

forecasting with multivariable data. GRU-PCA model tested 

in different time horizon and compared with different DL 

methods.  

The rest of the paper is constructed as follows: after the 

introduction, description and analyses of data, including a 

general explanation of PCA for dimensionality reduction in 

section 2. Describing the DL model architectures and his 

mathematical equations in section 3. Description of Grid-

search for hyperparameters optimization, in section 4. While 

in section 5, an illustration about application of models. 
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Section 6, discussion and results. Finally, the conclusion and 

the future research work. 

 

 

2. DATA ENGINEERING 

 

2.1 Time series data 

 

A time series represent a dataset of observations 

measurements during a given period, descripting a 

phenomenon [39]. The observation in this work is the global 

solar irradiation (GHI). Theoretically, there are two major 

assumptions required for a more precise analysis, firstly, the 

observation time interval is fixed, and secondly, the data pre-

processing technique should be identical throughout the 

observation or measurement time. 

Some definitions need to be illustrated before using time 

series equation. The actual value in t of the time series X is 

given as 𝑋𝑛, with t being the time interval from 1 to n, with n 

representing the whole number of observations. Then the 

number of predicted values of the time series is noted k. The 

prediction of the temporal series from (n+1) to (n+k), given 

the historical data from 𝑋1 to 𝑋𝑛 , it is named the prediction 

horizon (horizon 1 ... horizon k). Assuming horizon 1, the 

global forecasting model can be shown in Eq. (1).  

 

 𝑋𝑡+1 = 𝐹𝑛(𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑝+1) + 𝜀(𝑡 + 1)  (1) 

 

where, ε is the difference between the forecasted value and the 

observed value, 𝐹𝑛 is the estimated mathematical model and t 

is the temporal parameter assuming the following (n-p) values: 

n, n-1 ... p+1, p; p is the number of samples studied by the 

model, based on the hypothesis that: n >> p. 

 

2.2 Data scaling  

 

The scaling of data input can greatly assist in reducing the 

training gap problem as well as the calculation cost by 

correctly training the historical pattern. Consequently, the 

predictive model accuracy can be greatly increased by pre-

processing the row of input data. Several methods have been 

applied to scale the inputs of the predictive models [40]. 

Among these methods standardization [41], is very suitable 

method for scaling input data. Standardization is a scaling 

approach in which the values are focused at the mean using a 

unit of standard deviation. This signifies that the mean of the 

feature becomes zero and the distribution has a unit standard 

deviation. The formula of standardization represents as follow 

in Eq. (2): 

 

𝐼𝑠𝑡𝑎𝑛𝑑𝑎𝑟 =
𝐼−μ

σ
  (2) 

 

where, μ is the mean of the variable values and σ is the 

standard deviation of the variable values. Unlike 

normalization method which scale the range values between 

[0, 1] or [-1, 1], standardization is not restricted to a certain 

range, it depends on the data values. 

 

2.3 Principal Component Analyses 

 

Principal Component Analysis or PCA is a dimensionality 

reduction technique frequently applied to decrease the column 

size of large datasets, by converting a large set of features into 

a shorter set containing the majority of the whole information 

of the large set [14]. 

Reducing the number of variables of a data set naturally 

comes at the expense of accuracy, but the trick in 

dimensionality reduction is to trade a little accuracy for 

simplicity. Because smaller data sets are easier to explore and 

visualize and make analyzing data much easier and faster for 

ML or DL algorithms without extraneous variables to process 

[14]. 

The PCA method changes a big size matrix of linearly 

related variables into Np linearly independent uncorrelated sets 

of PCs (dominant eigenvalues) collecting the majority of the 

data variance [42]. 

In order to apply the PCA, it is necessary first to use a 

sample covariance matrix Cov of features 𝐹�̂�(𝑁×𝑁𝑣)
 ∈

𝑅𝑁×𝑁𝑣  that represent the vector of variables Fx divided by the 

mean of observations (where N are the number of observations 

and Nv are the number of variable) is computed as follows:  

 

𝐶𝑜𝑣 =
1

𝑁
𝐹�̂�

𝑇

(𝑁𝑣×𝑁)
𝐹�̂�(𝑁×𝑁𝑣)

  (3) 

 

The goal consists in projecting Fx into 𝐹𝑝 ∈ 𝑅𝑁×𝑃 , where 

𝑁𝑣<𝑁𝑝, there by maximizing the variance contained in Fp. The 

information in Fx could be redundant, if the features Nv are 

correlated, in this case, Decomposition of the eigenvalue of the 

covariance matrix is carried out. To compute the eigenvectors 

and eigenvalues based on the correlation matrix. In this way, 

the eigenvalues are listed in descending order, and the Np 

eigenvectors are chosen based on highest eigenvalues, which 

represent the number of principal components.  

 

2.4 Data presentation 

 

Table 1. Features description 

 
Features Abbreviation Unites 

Days of month (Exogenous) - - 

Hours of Day (Exogenous) - - 

Minute of hour (Exogenous) - - 

Global horizontal irradiation GHI W/m² 

Wind speed (Exogenous) WS m/s 

Air temperature (Exogenous) Ta ℃ 

Irradiance of bean (Exogenous) IBN W/m² 

Height of sun (Exogenous) Hs Deg 

Extraterrestrial radiation horizontal 

(Exogenous) 
XH W/m² 

Global radiation with raised horizon 

(Exogenous) 
GRH W/m² 

Clear sky global radiation 

(Exogenous) 
CSG W/m² 

Diffuse radiation horizontal 

(Exogenous) 
DH W/m² 

 

The data collected in Fez city from Morocco (33,3 °N, -

5,0 °E, Altitude=579 m), These data were collected using 

high-performance satellite data based on the Metronome 7 

software platform, allowing users to access historical 

irradiation and temperature time series. The exogenous feature 

represents any variable that is independent of the predicted 

variable. In reality, the variation of global horizontal 

irradiance is influenced by many exogenous factors, the 

addition of these factors gives more information to the 

prediction model, which leads to more accurate and perform 

prediction model. In this case, the weather software gives us 9 

normal characteristics in addition to the time variable, these 

characteristics are represented in Table 1. 
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Figure 3. Different features and global horizontal irradiation pattern for a particular day 

 

In this work, the data have time steps of 5 min, are used to 

predict solar irradiation in horizon of 5 min, 10 min, 20 min, 

30 min and 1h, aiming to test and verify the efficiency and 

performance of proposed model in very short term and short 

term forecasting. Figure 3 illustrate relation with solar 

irradiation with other features in one day. 

 

2.5 One hot encoder 

 

One hot encoding is a technic used in ML and DL to transfer 

the categorical data into a 1 and 0 data [43]. The number of 

columns of this data represent the number of categories 

expected, regarding the same number of samples or rows in 

this data. Therefore, the one indicates in which class it is and 

everything else equals zero. In this work, the use of one hot 

encoding of time variables (minute of the hour – hour of day- 

day of month) as categorical features gives the model more 

flexibility in training and gives more information to the models 

[43]. However, one hot encoding product height 

dimensionality, in this case, to regard the effect of time 

variables on target, and reduce in the same time the dimension 

of variables, the use of PCA will be very impotent. 

 

2.6 Sliding windows 

 

A noisy input can seriously disrupt the memory of 

prediction models. In order to give the model input greater 

stability, the previous time steps to the model input are 

included, by using sliding windows method [44] as shown in 

Figure 4. with G(t) is a variable from the data and size means 

the size of sliding windows, in this work we choose windows 

size = 4. 

 
 

Figure 4. Sliding windows 
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3. DEEP LEARNING MODELS

In this part, definition, architectures and hyper-parameters 

of deep learning models have been illustrated, RNN models 

with their extension GRU and LSTM. 

3.1 Recurrent neuron network 

RNN, is a generation of deep learning neural network, 

precisely, it is a FFNN with an internal memory. By nature, 

the RNN is cyclic because it performs the identical activation 

function with any data input, whereas the output of the actual 

input is based on the most recent calculation. After generating 

the result, the output is automatically copied, and forwarded 

within the recurrent network. To decide, it considers the actual 

inputs and the output that it trained from the last input. RNNs, 

unlike FFNNs, are able to use their internal state (memory) to 

address input sequences. That makes it useful for functions 

like prediction time series data. All inputs in other neural 

networks are independent, on the other hand, there is a relation 

between inputs in RNN (Figure 5). 

Figure 5. RNN architecture 

Ht = TanH(Uxt + WHt−1) (4) 

ot = SIG (vHt) (5) 

Under 𝑢 is the input weight matrix, 𝑤 is the past hidden state 

weight matrix, 𝑣 is the output weight, 𝐻𝑡  is the hidden stet, and

𝑥𝑡  is the input vector. Many works in this field illustrate that it

is same disadvantage of simple RNN models, among them 

[45]:  

• Vanishing gradient: This makes the network hard to train

because supplementary layers are added to the neural

networks by using certain activation functions.

• Exploding gradients: This problem Means that the

gradients have a long time for training, which can make

the model instable

• It is difficult to process very long sequences by using

Tanh or Relu as an activation function.

3.2 Long short term memory 

Figure 6. LSTM architecture 

LSTM is a developed form of RNN, allowing easier recall 

of past data in memory. The problem of vanishing gradient is 

eliminated immediately here. LSTM is well adapted to predict 

time series with unknown delay times. The model is trained 

using back-propagation. LSTM has three gates as showed in 

Figure 6. 
Input Gate - finds out which input value has to be used in 

order to change the memory. Using the Sigmoid function, it is 

possible to set the values from 0 to 1. Tanh function is used to 

give weight for variables, given a level of importance ranging 

from 1 to 1. 

it = Sig(Ht−1Wi + xtU
i) (6) 

Forget gate - find out what need to be removed from the 

block. Decisions are made by the sigmoid function. It 

examines preceding hidden state  ℎ𝑡−1  and current content

entry 𝑥𝑡 to produce output of a number between 0 (omit this)

and 1 (keep this) for every values in the 𝐶𝑡−1 cell state.

ft = Sig(Ht−1Wf + xtU
f) (7) 

Output gate - inputs and block memory are needed to make 

decisions about the output. After this, a decision is made by 

Sigmoid function to make values between 0 and 1. Like input 

gate, output gate has Tanh function to know the level of 

importance in the range -1 to 1. 

ot = Sig(Ht−1Wo + xtUo) (8) 

The memory storing is according to the cell status or internal 

memory, having two stages to update, first stage, gate sigmoid 

helps to identify the values available to be updated, whereas 

the TanH equation creates a new candidate 𝐶�̃�, ended up being

given to the State. Secondly, it relates the input layer with the 

new value vector to make an update of the state, based on the 

equations below: 

�̃�𝑡 = 𝑇𝑎𝑛ℎ(𝐻𝑡−1𝑊𝑔 + 𝑥𝑡𝑈𝑔) (9) 

𝐶𝑡 = �̃�𝑡 × 𝑖𝑡 + 𝐶𝑡−1 × 𝑓𝑡 (10) 

After to the cell status 𝐶𝑡 update, he used this equation to

achieve this next step's hidden state: 

𝐻𝑡 = 𝑇𝑎𝑛ℎ(𝐶𝑡) × 𝑂𝑡 (11) 

3.3 Gate recurrent unit 

Figure 7. GRU architecture 

GRU is another kind of RNN, which is identical to an 

LSTM with same difference between them. GRU discarded 
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the cells state and used the hidden state to forward information 

(Figure 7). Furthermore, there are only two available gates in 

the GRU, a reset and update gate: 

• Update Gate: this gate functions in the same way as 

LSTM forget and input gates. Basically It makes the 

decision to throw away and add information. 

• Reset Gate: it represents an important gate that is used to 

make decisions about how much information should be 

forgotten. 

These two equations form the remainder and the update gate: 

 

Rt = Sig(Ht−1Wr + xtU
r)  (12) 

 

Zt = Sig(Ht−1Wz + xtUz)  (13) 

 

To update the hidden state of GRU, two steps are necessary, 

first, it is important to calculate the hidden state of the reset 

gate that noted 𝐻�̃�  , and then use it to get 𝐻𝑡by producing with 

z. as they are presented in Eq. (14) and Eq. (15):  

 

Ht̃ = Tan ((Ht−1 × rt)Wh + xtU
h) (14) 

 

Ht = (1 − zt) × Ht−1 + zt × Ht̃ (15) 

 

3.4 Hyperparameters  

 

In general, in DL, the parameters are the variables that are 

used to train the model on own during training, by adjusting 

the data to obtain the expected results. On the other hand, 

hyper-parameters have the characteristic that regulate the 

whole training process. They comprise variables that 

determine the organization structure of the network (as 

number of unites, number of layers, and number of sliding 

windows), and the variables which determine how the network 

is trained (for example, Learning Rate). Here is an illustration 

of some hyperparameters: 

• Learning rate (LR):  

The model will be of long duration to take a good state, 

because of too much small value of learning rate, or it would 

move beyond the best state, because of larger values of 

learning rate compared with optimal values. As a result, it is 

very important to choose your learning rate carefully, because 

the model would have several parameters, having each its own 

error curve, and the learning rate manages them all. LR has a 

small positive value, often between 0 and 1 [46]. 

• Mini-Batch Size: 

The gradient descent is carried out with a loss function, 

which is generated by summing all single losses. The gradient 

of individual losses can be computed in the same time, 

whereas it must be computed step by step sequentially in the 

case of stochastic gradient descent. It is preferable to use a 

constant number of examples (for example 16, 32 or 128) to 

construct the loss function than a single example or the whole 

data set, in order to create what is known as a mini-batch. The 

choose of adequate mini-batch size performs a gradient 

descent to achieve adequate stochasticity avoiding local 

minima [47]. 

• Dropout rate 

Dropout is a regulation method to address the problem of 

overfitting of RNN models, based on choosing certain neurons 

at random and ignoring them during training. The dropout rate 

is therefore the probability of skipping a neuron in each weight 

adjustment run [48]. 
 

 

4. GRID SEARCH OPTIMIZATION 
 

In general, the selection of best hyperparameter influence 

on the performance of DL algorithms [49]. Even though there 

are some rules of the road in the research community regarding 

the adequate values of these hyperparameters [50], It is 

necessary to use an optimization algorithm because the most 

appropriate values would be according to the nature of the data 

employed in the comparisons, the particular data sets used, the 

performance requirements, and several other factors. Grid 

Search is one such algorithm, allowing you to choose the 

optimal hyperparameters for your optimization problem based 

on a list of hyperparameters options that you supply [51]. As 

shown in Table, hyperparameters, which are optimized, are 

learning rate, dropout rate, Bache-size as shown Table 2. 
 

Table 2. Hyperparameters ranges 
 

Hyperparameter Search Range 

Learning rate  

Dropout rate  

Bache size  

0.1, 0.01, 0.005, 0.001 

0.1, 0.2, 0.3, 0.4 

32,64,128,256  

 

I. Application 

DL models are built in the Python environment utilising 

TensorFlow with version 1.8.0 and KERAS 2.6.1 framework, 

PCA and grid search are built using Sklearn framework. All 

the simulation results were made with a personal computer 

with the configuration and environment: Intel Core(TM) i7-

7700HQ CPU @ 2.8 GHZ, NVIDIA, GeForce GTX1050Ti 

graphics card. 

 

 
Figure 8. Flowchart of proposed method 
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Figure 9. Proposed DL architectures  

 

 
 

Figure 10. Explaining variance for each component 

 

Three steps are used in the application of proposed models, 

preprocessing, processing and post processing (Figure 8). 

During preprocessing, features of data devised into two 

types normal data, which have nine features of weather, and 

categorical features, which represent days of the month, hours 

of the day, and minutes of the hour. The normal data are scaled 

by using standardization, meanwhile, the categorical data are 

encoded by using one-hot-encoding, which give 68 variables. 

After that, the normal and the categorical data are 

concatenated for obtaining the new data of 77 variables, then 

the dimension of this data are reduced using the PCA method, 

which transforms the vectors or variables into one eigenvector 

that has the highest eigenvalue of the covariance matrix 

(Figure 10). 

In processing, the Sliding Windows method is applied to the 

data, for obtaining the input and the target of the model, which 

divided into 60 % for training, 20 % for validation, and 20 % 

for testing. At first, the model is trained and compared under 

different drop-out, Bach-size and learning rate values by using 

Grid-Search optimization. Then, the best models obtained in 

function of the comparison between validate data and out-put 

of the model, using MSE metrics equation (15). Concerning 

the models, which are compared with GRU-PCA model, are 

respectively MLP, RNN, LSTM, GRU as DL methods. The 

architectures of the models (Figure 9) contain three hidden 

layers, each one of them has 60 neurons and Tanh as activation 

functions, and output layer, which has one neuron and Relu 

activation function, the models are trained in 50 epochs using 

Bach gradient descent. 

In post-processing step, forecast data are rescaled to the 

origin values and compared with test values. The performance 

of the models can be evaluated by using metric errors that 

measure the accuracy of the forecasting. In literature, there are 

several considerations about choosing a metric of evaluation 

error as indicated in [52]. The mean square error (MSE) and 

mean absolute error (MAE) are, however, extensively used in 

the research literature. Calculation equations for MSE and 

MAE are given in equations (16) and (17) respectively. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝐼𝑡𝑟𝑢𝑒(𝑡))

2
𝑁
𝑖=1   (16) 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝐼𝑡𝑟𝑢𝑒(𝑡)|𝑁

𝑖=1   (17) 

 

With N is the number of samples, 𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) is the forecast 

solar irradiation at time t, and 𝐼𝑡𝑟𝑢𝑒(𝑡)  is the true solar 

irradiation at time t.  
 
 

5. RESULT AND DISCUSSION  
 

5.1 Dimensionality reducing results 

 

Figure 10, illustrate the correlation between different 

components, from this illustration, the best component in term 

of covariance used as multivariate input data. As a result, the 

number of principal components k is determined to be greater 

than or equal to 70%. According to Figure 10, the number of 

principal components is one. 
 

5.2 Hyperparameters optimization results 
 

 
 

Figure 11. Grid search results for PCA-GRU 
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Table 3. Model hyperparameters selected for each DL model 

 

 Time horizon MLP RNN LSTM GRU PCA-GRU 

Time training (s) 5 min  121 243 501 495 405 

 

From Figure 11, it can be seen that the grid search find the 

best hyperparameters values of PCA-GRU, which are 0.3 for 

dropout, 128 for mini Bach size and 0.001 for learning rate, 

related with minimum values of MSE which is equal to 0.0081. 

Grid search is applied also to optimize other DL models, Table 

3 describe the best hyperparameters of MLP, RNN, LSTM, 

GRU, PCA-GRU. Based on these results, the models are tested 

in evaluated. 

 

5.3 Forecasting results  

 

Table 4. Result of MSE and MAE in deferent time horizon for compared DL models Time training in time horizons of 5 min for 

compared DL models 

   
RNN LSTM MLP GRU GRU-PCA 

MSE 5 0.0097 0.0061 0.0065 0.0051 0.0053 

10 min 0.00976 0.00671 0.0068 0.0059 0.0062 

20 min 0.00991 0.00765 0.0076 0.00762 0.0078 

30 min 0.012 0.0098 0.0099 0.0095 0.0097 

MAE 5 min 0.048 0.036 0.041 0.0301 0.0304 

10 min 0.049 0.039 0.044 0.0341 0.0345 

20 min 0.052 0.042 0.0461 0.039 0.0411 

30 min 0.061 0.045 0.0483 0.039 0.0452 

 

Table 5. Time training in time horizons of 5 min for compared DL models 

  
RNN LSTM MLP GRU GRU-PCA 

Hidden units/layer 60 - - - - 

Number of layers 3 - - - - 

Optimization solver Adam - - - - 

Number of epochs 50 - - - - 

Drop-out 0.3 0.3 0.1 0.3 0.3 

Learning-Rate 0.01 0.005 0.001 0.005 0.001 

Bach-size 32 32 64 32 128 

MSE Validation 0.012 0.0082 0.0089 0.0079 0.0081 

 

 

 
 

Figure 12. Training, validation and testing MSE of GRU and 

PCA-GRU according to the epoch for time horizon of 5 min 

 

 
 

Figure 13. Training, validation and testing MSE of GRU and 

PCA-GRU according to the epoch for time horizon of 10 min 
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Figure 14. Training, validation and testing MSE of GRU and 

PCA-GRU according to the epoch for time horizon of 20 

min. 

 

 

 
 

Figure 15. Training, validation and testing MSE of GRU and 

PCA-GRU according to the epoch for time horizon of 30 min 

 

 

 

 
 

Figure 16. True values vs. forecasting values of PCA-GRU, 

GRU, LSTM, RNN, and MLP in different time horizon 
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Figure 17. Scatter plots of the True values and predicted 

solar irradiance for the PCA-GRU in different time horizon 

 

In order to evaluate proposed hybrid forecasting model in 

the different time horizon, experiments have been carried out 

in the following time horizons: 5 min, 10 min, 20 min and 30 

min, accordingly, to forecast solar irradiation. The forecast 

accuracy was mostly greater for 5 minutes through the five 

comparative methods, and the accuracy progressively reduced 

from time horizon of 5 minutes, to 30 minutes. Generally, the 

proposed GRU-PCA model achieves the best forecasting 

compared with RNN, LSTM, MLP, and GRU models as it 

illustrated in Figures 16, 17 and Table 5. Table 5 presents the 

specific evaluation error metrics of MAE and MAE for the five 

models in different time range. The experimental results in 

Figures 12, 13, 14, and 15 are shown that there is a small 

difference value between training, testing and validation MSE 

during the number of epochs, these figures can be explaining 

the advantage of PCA in front of overfitting. In Table 4, it can 

be seen that the dimensionality reducing of PCA allows the 

GRU model very fast in term of training. 

 

 

6. CONCLUSIONS 

 

The effective use of solar energy in smart-grids, gives an 

importance of solar irradiation forecasting in these systems. In 

this work, based on Keras frameworks, which has 

functionality to create the DL model, and Sc learn framework, 

which has data analyses and processing functions. The new 

hybrid DL model proposed to forecast solar irradiation namely, 

PCA-GRU using multivariable data, based on Grid Search for 

hyperparameters optimization. Most of the study focuses on 

the encoding of the categorical data by using the One-Hot-

encoder, dimensionality reduction of the data based on PCA, 

DL models, and hyperparameters optimization by using Grid 

Search method. In particular, a PCA-GRU has a remarkable 

accuracy in dealing with multivariable data, surmounts the 

challenge of the high dimension of the original data, makes the 

training faster, and gives an accurate prediction result for solar 

irradiance in different time horizon, especially very short term 

and short term time horizon as illustrated in the results. The 

combination of DL prediction model with data mining 

technique substantially enhanced the accuracy of the energy 

production forecasting, making the grid more stable and 

reliable. Given that the model proposed is firstly applied to 

solar irradiation prediction, which means that it has achieved 

an unprecedented level of accuracy in solar irradiation 

forecasting with multivariable data. Furthermore, as future 

work, we will try to develop the model by extending the time 

horizon for making medium- and long-term solar irradiation 

predictions. 
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NOMENCLATURE 

 

AI  Artificiel Intelligent  

ANN Artificiel Neuron Network  

ANFIS  Adaptive Neuro-Fuzzy Inference System 

ARMA  Autoregressive moving average 

ARIMA Autoregressive integrated moving average 

PV  Photovoltaic  

DL  Deep Learning  

ML  Machine Learning  

MLPNN Multi layer perceptron neuron network  

MLFFNN  Multi Layer Feed Forward Neuron Network 

GHI Wind speed  

WS Air temperature  

Ta Irradiance of bean  

IBN Height of sun  

Hs  Extraterrestrial radiation horizontal  
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XH Global radiation with raised horizon 

GRH Clear sky global radiation  

CSG  Diffuse radiation horizontal 

DH Recurrent neuron network 

RNN  long-short term memory 

LSTM  Gate recurrent unit 

GRU  Multi-layer perceptron  

MLP  Feed forward neuron network  

FFNN Echo State network  

ESN Principal component analysis 

PCA Deep Echo state network  

DeepESN  Support vector machine  

SVM Extreme learning machine  

ELM Radial Baseline Function neuron network  

RBFNN Recurrent neuron network  

RNN Renewable energy sources   

RES  Numerical Weather Prediction 

NWP Global horizontal irradiation  
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