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 Presently Fourth generation and other wireless systems are focused area for the research 

and development in the communication field. Fast Fourier Transform (FFT) & Inverse 

FFT (IFFT) are required for Orthogonal frequency division multiplexing in the integral 

part of modulation/demodulation modules that occupies more area and power. This paper 

presents low power and area efficient Cached memory for Fast Fourier Transform (FFT) 

processor using floating point arithmetic for OFDM application. To store computational 

permutations each butterfly unit needs one memory. So if considering higher radix of FFT 

processor, memory requirement increases, it yields to more power consumption and more 

density occupancy. In this proposed cached 64 point radix 2^6 SDF architecture for 

reducing the arithmetic hardware complexity of complex multipliers and complex adders 

present in butterfly structure to obtain low power and less memory requirement. The 

proposed system is synthesized by using CADENCE RTL COMPLIER and is 

implemented in ENCOUNTER RTL TO GDSII SYSTEM” using 90nm CMOS 

technology with a supply voltage of 1V. Synthesis results shows that the proposed design 

is efficient in terms of gate count, area and power consumption. 
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1. INTRODUCTION 

 

In OFDM systems, modulation and demodulation 

operations are carried out by using “Inverse Fast Fourier 

Transformation (IFFT) and Fast Fourier Transformation 

(FFT)”. In digital signal processing system these 2 are main 

blocks in an OFDM system. There are various types of FFT 

architectures used in OFDM systems to reduce the complexity 

computation. A small radix has simple butterfly structure, but 

numbers of twiddle factors are high if the size of FFT is large. 

Higher radix has less number of twiddle factors but butterfly 

structure is complex and speed of the FFT processor is also 

reduced. To obtain less number of twiddle factors and simple 

butterfly structure is possible through radix 2^K architectures 

are most widely used in present FFT processor implementation. 

The speed of the FFT processor is purely based on storage of 

twiddle factors, which is possible through cache memory. In 

conventional FFT architectures data and identical twiddle 

factor are stored in processor memory itself. If the number of 

points of FFT increased the size of the memory is also 

increased and simultaneously the speed of the FFT processor 

is reduced. In this research we concentrate on memory 

utilization for that here proposed modified cached FFT 

architecture using radix 2^6 single path delay feedback (SDF).  

The Fast Fourier transform (FFT) is essential component in 

OFDM communication systems. During the last3 decades, 

several FFT architectures have been introduced, first 

completely [1] executed in 1999, the cached-FFT algorithm 

are used to construct custom FFT processors: A 512-point [2] 

2D FFT chip, and [3] a programmable 64-2048 point FFT chip. 

They can be categorizing into 3 types- the parallel, pipeline 

and the memory architecture. The parallel and pipeline 

architectures consist huge butterfly processing elements to get 

good performance but occupies [4, 5] wide area when 

compared to memory architecture. The advantage of shared 

memory architecture employs only 1 butterfly processing 

elements area efficiency [6]. The trade-off between speed and 

hardware overhead is the main criterion for architecture 

selection. The difficulty of implementing FFT/IFFT is reduced 

due to VLSI advanced technologies. A special data calibration 

technique is accomplished by including empty records among 

data blocks. Due to the calibration, the samples processed in 

one FFT butterfly have different [7] memory addresses that 

reduces memory conflicts. Implementation of reconfigurable 

FFT processor with [8] complex multipliers containing 3 

multiplications formatted on Radix 2, Radix 4 & Radix 8, 

algorithms consume more power. Existing approaches uses 

FFT/ IFFT processor, that offers adequate throughput values, 

but the cost is high due to Fu and Ampadu [9] increased 

hardware complexity. With cached memory FFT processor 

produces wide efficiency of a MIMO system, but reduction in 

throughput [10]. 64 and 128 point FFT/IFFT processor is 

implemented [11, 12] to meet IEEE 802.11n which contribute 

various throughput values for simultaneous data sequences. 

Due to increase in more number of points the complexity and 

cost of the system increases. FFT processor design based on 

pipeline will achieves larger data throughput by adding several 

“processing elements (PE)” and data paths was considered [13, 

14], that results in large power consumption. In Long-length 

[15] FFT processor consists of higher radix-23 FFT algorithm 

and Memory-based architecture is implemented without 

considering data throughput has a large issue. Single-memory, 
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dual-memory, array type and pipelined architecture is 

discussed [16] for implementations of FFT processors with 

different structures. Typical Existing FFT algorithms are 

proposed to reduce the number of adders and multipliers. But, 

ignored the memory functions usually. Hidden memory 

functions consume half of the power in the total FFT 

calculations [17]. The reconfigurable FFT/inverse FFT (IFFT) 

processor with single-chip is presented [18-20], gives a result 

to dedicated ASICs and software programmable DSPs. 

Energy-efficiency can be determined by containing 

“Application Specific Instruction Set Processors (ASIPs)” [21, 

22] and it contains large area. The design flow depends on the

Architecture Description Language (ADL) LISA is explained

[23] and a framework for automated ASIP implementation is

explained [24]. Allow power and area efficient 16-bit word-

width 64-point radix-2^2 and radix-2^3 pipelined FFT

architectures for an OFDM based IEEE 802.11a Wireless

Local Area Network (WLAN) baseband is presented [25]. The

designs are developed from “radix-2^K algorithm and used

Single-Path Delay Feedback (SDF) [26, 27] architecture for

hardware implementation”. The authors are mainly focused to

overcome the complex multipliers and read-only memory

(ROM) are used for internal storage of twiddle factor

coefficients, proposed 64-point FFT consists a “Canonical

Signed Digit (CSD) complex constant multiplier using adders,

multiplexers and shifters” presented [28]. However, the above

discussed results are still not enough in day to day needs like

transmission speed and area. This paper discusses the

aforementioned problems by decreasing the effective area and

power with increase in throughput.

This paper is arranged as follows. In Section 2, we present 

a brief introduction of memory requirements. Section 3 

discusses related cache memory overview. In section 4, 

discuss about the binary floating point Vedic multiplier using 

KSA (Mux) and section 5 deals with implementation of FFT. 

Section 6 discusses about the results and finally conclusion 

and future work are dealt in section 7.  

2. MEMORY REQUIREMENTS

More stringent is speed draw backs; with the memory 

access time. For an in-place N-point radix-r FFT contains a 

one memory bank, “2NlogrN” read or write RAM operations 

are required. In the present case, for a radix-2 existing FFT this 

results in a memory access time of approximately five nano 

seconds, which is quite complex to achieve. Memory usage 

versus speed is one of the major trade-off seen in algorithm 

implementation. The FFT is a one of the main core 

computational component in portable signal processing 

applications. However, a few applications can afford due to a 

more memory space for implementing FFTs. While memory 

utilization is an important for hardware implementation, 

memory accesses is also an account for a significant part in 

computation time. “This is attributed to cache misses, 

swapping and other paging effects”. These effects are wide 

prominent when calculating higher order FFTs (typically over 

4K points). These observations are considered us to include 

memory utilization is a one of the yardsticks in judging the 

performance of the several FFT algorithms. 

3. CACHE MEMORY OVERVIEW

The cached-memory architecture has two major advantages 

are listed below. 

1 High Speed—smaller memories are faster than large 

memories 

2 High Energy Efficiency— smaller memories require 

lower energy  

While using cached-memory architecture, achieved the 

major gains as speed and energy efficiency. In this data pre-

fetching is possible, due to the proposed design is almost like 

that of single memory architecture except the cache between 

the FFT processor and processor memory. Figure 1 shows the 

overall block diagram of proposed work. It is designed that 

data caches increase the effective bandwidth to a memory— 

because the memory access pattern exhibits enough locality. 

The “FFT algorithm is deterministic, cache tags are 

unnecessary, and proper cache operation is achieved through 

a fixed, predetermined, cache address mapping”. Since the 

flow of knowledge of data is data independent, data can also 

be pre-fetched from processor memory before they’re needed. 

Figure 1. Block diagram of modified 64 point cached FFT 

architecture 

In convention FFT architecture data and identical twiddle 

factors are stored in processor memory itself. If the number 

points of a FFT is increased, the size of the memory is also 

increased, and simultaneously the speed of the processor is 

reduced. To overcome this problem, data and identical twiddle 

factors are stored in cache memory. Other than the data and 

identical twiddle factors, address generating circuit and access 

control unit are stored in the processor memory. The size of 

the cache memory is very less compared with processor 

memory and the speed of the cache memory is very fast 

compared with main memory. Proposed modified Cached FFT 

architecture consists of two main blocks, namely Processor 

memory and cached memory. Processor memory consists of 

three major parts namely address generator, RAM, and control 

unit. Conventionally data is stored in processor memory (Main 

memory).  

Address generating circuit provides address to the processor 

memory and cache memory. The Address Generation Unit 

(AGU) controls the generation of addresses for reading and 

writing the memory contents to and from the RAM and Cache 

Memory. The address generator finds a grouping of the 

memory accesses such some of the complete FFT are often 

calculated using less than N words of memory. The Address 

Generator Unit provides signals that control writes to memory 

as well as which memory bank is read. All data busses provide 

complex data transfer (double bit widths to accommodate both 

real and imaginary values). Each data has 32 bit width since 

data is a floating point representation. The read from one RAM 

block, and is transfers to the cache memory for speedy 

operation with FFT processor unit. The result is written back 

to RAM memory through cache memory.  
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The control logic unit performs FFT and IFFT. Three major 

functions are performed by the Control Logic Unit (CLU) 

which is given below: 

1. FFT/IFFT Mode Operation: Single bit input (MSB 

Bit) indicates whether FFT/IFFT transforms to be 

computed. 

2. 2FFT Length Selection: First “3-bit of FFT size 

inputs decides to compute desired length of FFT”.  

3. 3Data movement: The processor memory and cache 

memory are mainly utilized to decrease the power 

consumption since they operate at different 

frequencies. 

 

 

4. BINARY FLOATING POINT VEDIC MULTIPLIER 

USING KOGGE STONE ADDER 

 

In single precision binary floating point architecture the 

mantissa part is computed by using 24X24 Vedic multiplier 

based on Urdhva-Tiryakbhyam sutra is efficient in 

multiplication algorithm as compared to conventional process 

as shown in Figure 2. Urdhva-Tiryakbhyam means vertically 

and crosswise sutra. 

 

 
 

Figure 2. Block diagram of proposed 24X24 Vedic 

multiplier 

 

 
 

Figure 3. Multiplication of two decimal numbers by Urdhva-

Tiryakbhyam 

 

To illustrate this multiplication scheme, let us consider the 

multiplication of two decimal numbers (325 * 738). Line 

diagram for the multiplication is shown in Figure 3. The digits 

on the both sides of the line are multiplied and added with the 

carry from the previous step. This generates one of the bits of 

the result and a carry. This carry is added in the next step and 

hence the process goes on. If more than one line is there in one 

step, all the results are added to the previous carry. In each step, 

least significant bit acts as the result bit and all other bits act 

as carry for the next step. Initially the carry is taken to be zero. 

 

 
 

Figure 4. Basic block diagram of Kogge Stone Adder 

 

Kogge stone adder is one of the fastest adders as shown in 

Figure 4, in this the addition operation is carried out in 3 steps, 

such as pre-processing, carry generation and post processing 

unit based on Eqns. (1)-(4). 

 

P= Ai X-OR Bi (1) 

 

G=A AND B (2) 

 

Ci=Gi (3) 

 

Si= Pi X-OR Ci+1 (4) 

 

 
 

Figure 5. Proposed KSA by using MUX 

 

In Kogge stone adder X-OR can be replaced by Mux as 

shown in Figure 5, which gives true and complement value at 

a time. 

 

 

5. IMPLEMENTATION OF FFT PROCESSOR 

 

The single path delay feedback basic radix-2 and radix-2^2 

architectures are shown in Figures 6 and 7. These architectures 

are mainly used to reduce arithmetic hardware complexity. In 

this proposed radix 2^6 SDF architecture requires 6 complex 

multipliers, 8 constant multipliers and 2 complex adders, these 

architectures reduce the overall twiddle factors required to 

compare radix 2^3, radix 2^4 and radix 2^5, butterfly structure 

multiplication is carried out by using Vedic multiplier using 

Urdhva-Tiryakbhyam. Further optimize the memory the 
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proposed FFT processor is implemented on cached FFT 

architecture. The processor memory and cache memory are 

mainly utilized to decrease the power consumption since they 

operate at different frequencies. 

 

 
 

Figure 6. Basic 64 point radix 2 SDF architecture  

 

 
 

Figure 7. Radix 2^2 SDF architecture 

 

 

6. RESULT AND DISCUSSION 

 

Floating-point arithmetic is an efficient technique for the 

implementation in a variety of Digital Signal Processing 

(DSP) applications; because without worrying about 

numerical issues it allows the designer and user to focusmore 

on the algorithms and architecture. The FFT is one of the main 

popular transform algorithms in digital communication 

applications, and is mainly used to calculate the Discrete 

Fourier transform (DFT), fastly and accurately. The major 

advantage of Floating Point over fixed-point arithmetic is the 

large dynamic range it introduces; but at the expense of more 

cost. “Applying floating-point (FP) arithmetic to FFT 

architectures, specifically butterfly units, has become more 

popular recently” presented in. The Floating Point operation 

on multiplication and addition algorithms are explained in 

detail are presented in. 

The simulation for FP addition/ subtraction is shown in 

Figure 8. 

64 point FFT design is used with radix-2^6 SDF algorithm. 

The input data for the 64 point FFT is transferred to Cache 

memory and twiddle factor is obtained from the ROM 

(memory unit). 

 

 
 

Figure 8. Floating point 32 bit addition/subtraction 

simulation results 

 
 

Figure 9. Simulation result of floating point multiplication 

 

The floating point multiplier is coded with HDL and the 

simulation is shown in Figure 9. 

The following tables give the memory utilization area, 

power and throughput for 64 point FFT. Table 1 shows the 

power and area consumption of the “proposed 64 point FFT 

processor”. The Table 2 provides the performance of the 

proposed 64 point FFT using floating point 32 bit. From this 

the proposed FFT processor is better than the available 

implementation. 

 

Table 1. Area and power consumption of 64-point cached 

FFT 

 
Parameter/Type Utilization by the proposed design 

Memory size (words) 
128 (32 bit floating point 64 for real 

and 64 imaginary data 

Area gate count (mm2) 79.81 

Power consumption 

(mw) 
3.24 

Frequency (MHz) 120 

 

Table 2. Performance comparisons of different pipeline FFT 

processors 

 

Author 
Technology 

(nm) 

FFT 

Size 

Frequency 

MHz 

Area 

(mm2) 

Power 

(mw) 

Sahoo [26] 90 16-128 - - 3.82 

Shih [27] 90 4-2048 111.11 14.59 24.2 

Tsai [28] 90 64 394 0.102 36 

Proposed 90 64 120 79.81 3.24 

 

The proposed system is synthesized by using CADENCE 

RTL COMPLIER and is implemented in ENCOUNTER RTL 

TO GDSII SYSTEM” using 90nm CMOS technology. Figure 

10 shows chip layout for the floating point FFT using 64 point. 

 

 
 

Figure 10. Chip layout of 64-point FFT processor 
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7. CONCLUSION AND FUTURE WORK 

 

In this paper, area efficient low power FFT processor using 

floating point 32 bit complex input for OFDM systems is 

proposed. Here we adopted cached memory FFT architecture 

to reduce the overall memory power consumption. Using 

floating point multiplier and adder algorithm to design FFT 

processor core “which integrates 65,385 transistors in area 

79.81mm2 with 90nm technology”. The processor can able to 

execute a 64 point floating point 32 bit complex data with 

operating frequency of 120 MHz finally; the proposed design 

of FFT with cache memory can meet IEEE 802.11a standards. 

Our future work is mainly focused on Reconfigurable 

FFT/IFFT processor for 5th generation systems. 
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