

Efficient Cached 64 Point FFT Processor Using Floating Point Arithmetic for OFDM

Application

Challa Padma1*, Palapati Jagadamba2, Patil Ramana Reddy1

1 Department of ECE, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu 515002, India
2 Department of ECE, Sri Krishna Institute of Technology (SKIT), Srikalahasti 517644, India

Corresponding Author Email: padmasekhar85@gmail.com

https://doi.org/10.18280/i2m.210104

ABSTRACT

Received: 2 January 2022

Accepted: 9 February 2022

 Presently Fourth generation and other wireless systems are focused area for the research

and development in the communication field. Fast Fourier Transform (FFT) & Inverse

FFT (IFFT) are required for Orthogonal frequency division multiplexing in the integral

part of modulation/demodulation modules that occupies more area and power. This paper

presents low power and area efficient Cached memory for Fast Fourier Transform (FFT)

processor using floating point arithmetic for OFDM application. To store computational

permutations each butterfly unit needs one memory. So if considering higher radix of FFT

processor, memory requirement increases, it yields to more power consumption and more

density occupancy. In this proposed cached 64 point radix 2^6 SDF architecture for

reducing the arithmetic hardware complexity of complex multipliers and complex adders

present in butterfly structure to obtain low power and less memory requirement. The

proposed system is synthesized by using CADENCE RTL COMPLIER and is

implemented in ENCOUNTER RTL TO GDSII SYSTEM” using 90nm CMOS

technology with a supply voltage of 1V. Synthesis results shows that the proposed design

is efficient in terms of gate count, area and power consumption.

Keywords:

Vedic multiplier, single path delay feedback

(SDF), Kogge Stone Adder with mux,

orthogonal frequency division multiplexing,

cache memory

1. INTRODUCTION

In OFDM systems, modulation and demodulation

operations are carried out by using “Inverse Fast Fourier

Transformation (IFFT) and Fast Fourier Transformation

(FFT)”. In digital signal processing system these 2 are main

blocks in an OFDM system. There are various types of FFT

architectures used in OFDM systems to reduce the complexity

computation. A small radix has simple butterfly structure, but

numbers of twiddle factors are high if the size of FFT is large.

Higher radix has less number of twiddle factors but butterfly

structure is complex and speed of the FFT processor is also

reduced. To obtain less number of twiddle factors and simple

butterfly structure is possible through radix 2^K architectures

are most widely used in present FFT processor implementation.

The speed of the FFT processor is purely based on storage of

twiddle factors, which is possible through cache memory. In

conventional FFT architectures data and identical twiddle

factor are stored in processor memory itself. If the number of

points of FFT increased the size of the memory is also

increased and simultaneously the speed of the FFT processor

is reduced. In this research we concentrate on memory

utilization for that here proposed modified cached FFT

architecture using radix 2^6 single path delay feedback (SDF).

The Fast Fourier transform (FFT) is essential component in

OFDM communication systems. During the last3 decades,

several FFT architectures have been introduced, first

completely [1] executed in 1999, the cached-FFT algorithm

are used to construct custom FFT processors: A 512-point [2]

2D FFT chip, and [3] a programmable 64-2048 point FFT chip.

They can be categorizing into 3 types- the parallel, pipeline

and the memory architecture. The parallel and pipeline

architectures consist huge butterfly processing elements to get

good performance but occupies [4, 5] wide area when

compared to memory architecture. The advantage of shared

memory architecture employs only 1 butterfly processing

elements area efficiency [6]. The trade-off between speed and

hardware overhead is the main criterion for architecture

selection. The difficulty of implementing FFT/IFFT is reduced

due to VLSI advanced technologies. A special data calibration

technique is accomplished by including empty records among

data blocks. Due to the calibration, the samples processed in

one FFT butterfly have different [7] memory addresses that

reduces memory conflicts. Implementation of reconfigurable

FFT processor with [8] complex multipliers containing 3

multiplications formatted on Radix 2, Radix 4 & Radix 8,

algorithms consume more power. Existing approaches uses

FFT/ IFFT processor, that offers adequate throughput values,

but the cost is high due to Fu and Ampadu [9] increased

hardware complexity. With cached memory FFT processor

produces wide efficiency of a MIMO system, but reduction in

throughput [10]. 64 and 128 point FFT/IFFT processor is

implemented [11, 12] to meet IEEE 802.11n which contribute

various throughput values for simultaneous data sequences.

Due to increase in more number of points the complexity and

cost of the system increases. FFT processor design based on

pipeline will achieves larger data throughput by adding several

“processing elements (PE)” and data paths was considered [13,

14], that results in large power consumption. In Long-length

[15] FFT processor consists of higher radix-23 FFT algorithm

and Memory-based architecture is implemented without

considering data throughput has a large issue. Single-memory,

Instrumentation Mesure Métrologie
Vol. 21, No. 1, February, 2022, pp. 21-26

Journal homepage: http://iieta.org/journals/i2m

21

https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.210104&domain=pdf

dual-memory, array type and pipelined architecture is

discussed [16] for implementations of FFT processors with

different structures. Typical Existing FFT algorithms are

proposed to reduce the number of adders and multipliers. But,

ignored the memory functions usually. Hidden memory

functions consume half of the power in the total FFT

calculations [17]. The reconfigurable FFT/inverse FFT (IFFT)

processor with single-chip is presented [18-20], gives a result

to dedicated ASICs and software programmable DSPs.

Energy-efficiency can be determined by containing

“Application Specific Instruction Set Processors (ASIPs)” [21,

22] and it contains large area. The design flow depends on the

Architecture Description Language (ADL) LISA is explained

[23] and a framework for automated ASIP implementation is

explained [24]. Allow power and area efficient 16-bit word-

width 64-point radix-2^2 and radix-2^3 pipelined FFT

architectures for an OFDM based IEEE 802.11a Wireless

Local Area Network (WLAN) baseband is presented [25]. The

designs are developed from “radix-2^K algorithm and used

Single-Path Delay Feedback (SDF) [26, 27] architecture for

hardware implementation”. The authors are mainly focused to

overcome the complex multipliers and read-only memory

(ROM) are used for internal storage of twiddle factor

coefficients, proposed 64-point FFT consists a “Canonical

Signed Digit (CSD) complex constant multiplier using adders,

multiplexers and shifters” presented [28]. However, the above

discussed results are still not enough in day to day needs like

transmission speed and area. This paper discusses the

aforementioned problems by decreasing the effective area and

power with increase in throughput.

This paper is arranged as follows. In Section 2, we present

a brief introduction of memory requirements. Section 3

discusses related cache memory overview. In section 4,

discuss about the binary floating point Vedic multiplier using

KSA (Mux) and section 5 deals with implementation of FFT.

Section 6 discusses about the results and finally conclusion

and future work are dealt in section 7.

2. MEMORY REQUIREMENTS

More stringent is speed draw backs; with the memory

access time. For an in-place N-point radix-r FFT contains a

one memory bank, “2NlogrN” read or write RAM operations

are required. In the present case, for a radix-2 existing FFT this

results in a memory access time of approximately five nano

seconds, which is quite complex to achieve. Memory usage

versus speed is one of the major trade-off seen in algorithm

implementation. The FFT is a one of the main core

computational component in portable signal processing

applications. However, a few applications can afford due to a

more memory space for implementing FFTs. While memory

utilization is an important for hardware implementation,

memory accesses is also an account for a significant part in

computation time. “This is attributed to cache misses,

swapping and other paging effects”. These effects are wide

prominent when calculating higher order FFTs (typically over

4K points). These observations are considered us to include

memory utilization is a one of the yardsticks in judging the

performance of the several FFT algorithms.

3. CACHE MEMORY OVERVIEW

The cached-memory architecture has two major advantages

are listed below.

1 High Speed—smaller memories are faster than large

memories

2 High Energy Efficiency— smaller memories require

lower energy

While using cached-memory architecture, achieved the

major gains as speed and energy efficiency. In this data pre-

fetching is possible, due to the proposed design is almost like

that of single memory architecture except the cache between

the FFT processor and processor memory. Figure 1 shows the

overall block diagram of proposed work. It is designed that

data caches increase the effective bandwidth to a memory—

because the memory access pattern exhibits enough locality.

The “FFT algorithm is deterministic, cache tags are

unnecessary, and proper cache operation is achieved through

a fixed, predetermined, cache address mapping”. Since the

flow of knowledge of data is data independent, data can also

be pre-fetched from processor memory before they’re needed.

Figure 1. Block diagram of modified 64 point cached FFT

architecture

In convention FFT architecture data and identical twiddle

factors are stored in processor memory itself. If the number

points of a FFT is increased, the size of the memory is also

increased, and simultaneously the speed of the processor is

reduced. To overcome this problem, data and identical twiddle

factors are stored in cache memory. Other than the data and

identical twiddle factors, address generating circuit and access

control unit are stored in the processor memory. The size of

the cache memory is very less compared with processor

memory and the speed of the cache memory is very fast

compared with main memory. Proposed modified Cached FFT

architecture consists of two main blocks, namely Processor

memory and cached memory. Processor memory consists of

three major parts namely address generator, RAM, and control

unit. Conventionally data is stored in processor memory (Main

memory).

Address generating circuit provides address to the processor

memory and cache memory. The Address Generation Unit

(AGU) controls the generation of addresses for reading and

writing the memory contents to and from the RAM and Cache

Memory. The address generator finds a grouping of the

memory accesses such some of the complete FFT are often

calculated using less than N words of memory. The Address

Generator Unit provides signals that control writes to memory

as well as which memory bank is read. All data busses provide

complex data transfer (double bit widths to accommodate both

real and imaginary values). Each data has 32 bit width since

data is a floating point representation. The read from one RAM

block, and is transfers to the cache memory for speedy

operation with FFT processor unit. The result is written back

to RAM memory through cache memory.

22

The control logic unit performs FFT and IFFT. Three major

functions are performed by the Control Logic Unit (CLU)

which is given below:

1. FFT/IFFT Mode Operation: Single bit input (MSB

Bit) indicates whether FFT/IFFT transforms to be

computed.

2. 2FFT Length Selection: First “3-bit of FFT size

inputs decides to compute desired length of FFT”.

3. 3Data movement: The processor memory and cache

memory are mainly utilized to decrease the power

consumption since they operate at different

frequencies.

4. BINARY FLOATING POINT VEDIC MULTIPLIER

USING KOGGE STONE ADDER

In single precision binary floating point architecture the

mantissa part is computed by using 24X24 Vedic multiplier

based on Urdhva-Tiryakbhyam sutra is efficient in

multiplication algorithm as compared to conventional process

as shown in Figure 2. Urdhva-Tiryakbhyam means vertically

and crosswise sutra.

Figure 2. Block diagram of proposed 24X24 Vedic

multiplier

Figure 3. Multiplication of two decimal numbers by Urdhva-

Tiryakbhyam

To illustrate this multiplication scheme, let us consider the

multiplication of two decimal numbers (325 * 738). Line

diagram for the multiplication is shown in Figure 3. The digits

on the both sides of the line are multiplied and added with the

carry from the previous step. This generates one of the bits of

the result and a carry. This carry is added in the next step and

hence the process goes on. If more than one line is there in one

step, all the results are added to the previous carry. In each step,

least significant bit acts as the result bit and all other bits act

as carry for the next step. Initially the carry is taken to be zero.

Figure 4. Basic block diagram of Kogge Stone Adder

Kogge stone adder is one of the fastest adders as shown in

Figure 4, in this the addition operation is carried out in 3 steps,

such as pre-processing, carry generation and post processing

unit based on Eqns. (1)-(4).

P= Ai X-OR Bi (1)

G=A AND B (2)

Ci=Gi (3)

Si= Pi X-OR Ci+1 (4)

Figure 5. Proposed KSA by using MUX

In Kogge stone adder X-OR can be replaced by Mux as

shown in Figure 5, which gives true and complement value at

a time.

5. IMPLEMENTATION OF FFT PROCESSOR

The single path delay feedback basic radix-2 and radix-2^2

architectures are shown in Figures 6 and 7. These architectures

are mainly used to reduce arithmetic hardware complexity. In

this proposed radix 2^6 SDF architecture requires 6 complex

multipliers, 8 constant multipliers and 2 complex adders, these

architectures reduce the overall twiddle factors required to

compare radix 2^3, radix 2^4 and radix 2^5, butterfly structure

multiplication is carried out by using Vedic multiplier using

Urdhva-Tiryakbhyam. Further optimize the memory the

23

proposed FFT processor is implemented on cached FFT

architecture. The processor memory and cache memory are

mainly utilized to decrease the power consumption since they

operate at different frequencies.

Figure 6. Basic 64 point radix 2 SDF architecture

Figure 7. Radix 2^2 SDF architecture

6. RESULT AND DISCUSSION

Floating-point arithmetic is an efficient technique for the

implementation in a variety of Digital Signal Processing

(DSP) applications; because without worrying about

numerical issues it allows the designer and user to focusmore

on the algorithms and architecture. The FFT is one of the main

popular transform algorithms in digital communication

applications, and is mainly used to calculate the Discrete

Fourier transform (DFT), fastly and accurately. The major

advantage of Floating Point over fixed-point arithmetic is the

large dynamic range it introduces; but at the expense of more

cost. “Applying floating-point (FP) arithmetic to FFT

architectures, specifically butterfly units, has become more

popular recently” presented in. The Floating Point operation

on multiplication and addition algorithms are explained in

detail are presented in.

The simulation for FP addition/ subtraction is shown in

Figure 8.

64 point FFT design is used with radix-2^6 SDF algorithm.

The input data for the 64 point FFT is transferred to Cache

memory and twiddle factor is obtained from the ROM

(memory unit).

Figure 8. Floating point 32 bit addition/subtraction

simulation results

Figure 9. Simulation result of floating point multiplication

The floating point multiplier is coded with HDL and the

simulation is shown in Figure 9.

The following tables give the memory utilization area,

power and throughput for 64 point FFT. Table 1 shows the

power and area consumption of the “proposed 64 point FFT

processor”. The Table 2 provides the performance of the

proposed 64 point FFT using floating point 32 bit. From this

the proposed FFT processor is better than the available

implementation.

Table 1. Area and power consumption of 64-point cached

FFT

Parameter/Type Utilization by the proposed design

Memory size (words)
128 (32 bit floating point 64 for real

and 64 imaginary data

Area gate count (mm2) 79.81

Power consumption

(mw)
3.24

Frequency (MHz) 120

Table 2. Performance comparisons of different pipeline FFT

processors

Author
Technology

(nm)

FFT

Size

Frequency

MHz

Area

(mm2)

Power

(mw)

Sahoo [26] 90 16-128 - - 3.82

Shih [27] 90 4-2048 111.11 14.59 24.2

Tsai [28] 90 64 394 0.102 36

Proposed 90 64 120 79.81 3.24

The proposed system is synthesized by using CADENCE

RTL COMPLIER and is implemented in ENCOUNTER RTL

TO GDSII SYSTEM” using 90nm CMOS technology. Figure

10 shows chip layout for the floating point FFT using 64 point.

Figure 10. Chip layout of 64-point FFT processor

24

7. CONCLUSION AND FUTURE WORK

In this paper, area efficient low power FFT processor using

floating point 32 bit complex input for OFDM systems is

proposed. Here we adopted cached memory FFT architecture

to reduce the overall memory power consumption. Using

floating point multiplier and adder algorithm to design FFT

processor core “which integrates 65,385 transistors in area

79.81mm2 with 90nm technology”. The processor can able to

execute a 64 point floating point 32 bit complex data with

operating frequency of 120 MHz finally; the proposed design

of FFT with cache memory can meet IEEE 802.11a standards.

Our future work is mainly focused on Reconfigurable

FFT/IFFT processor for 5th generation systems.

REFERENCES

[1] Baas, B.M. (1999). An approach to low-power, high-

performance fast fourier transform processor design.

Ph.D. Thesis, Stanford University, Stanford, CA, USA.

[2] Miyamoto, N., Karnan, L., Maruo, K., Kotani, K., Ohmi,

T. (2003). A small-area high-performance 512-point 2-

dimensional FFT single-chip processor. in European

Solid-State Circuits Conference, Estoril, Portugal, pp.

603-606.

https://doi.org/10.1109/ESSCIRC.2003.1257207

[3] Kuo, J.C., Wen, C.H., Wu, A.Y. (2003). Implementation

of a programmable 64–2048-point FFT/IFFT processor

for OFDM-based communication systems. 2003 IEEE

International Symposium on Circuits and Systems

(ISCAS), Bangkok, Thailand.

https://doi.org/10.1109/ISCAS.2003.1205908

[4] He, S., Torkelson, M. (1998). Designing pipeline FFT

processor for OFDM (de)modulation. 1998 URSI

International Symposium on Signals, Systems, and

Electronics. Conference Proceedings (Cat. No.98EX167),

Pisa, Italy. https://doi.org/10.1109/ISSSE.1998.738077

[5] Lin, Y.W., Liu, H.Y., Lee, C.Y. (2005). A 1-GS/s

FFT/IFFT processor for UWB applications. IEEE J.

Solid-State Circuits, 40(8): 1726-1735.

https://doi.org/10.1109/JSSC.2005.852007

[6] Wey, C.L., Tang, W.C., Lin, S.Y. (2007). Efficient

memory-based FFT architectures for digital video

broadcasting (DVB-T/H). 2007 International

Symposium on VLSI Design, Automation and Test

(VLSI-DAT), Hsinchu, Taiwan.

https://doi.org/10.1109/VDAT.2007.373250

[7] Panda, P.R., Nakamura, H., Dutt, N.D., Nicolau, A.

(1997). A data alignment technique for improving cache

performance. Proceedings International Conference on

Computer Design VLSI in Computers and Processors,

Austin, TX, USA.

https://doi.org/10.1109/ICCD.1997.628925

[8] Lin, Y.T., Tsai, P.Y., Chiueh, T.D. (2005). Low-power

variable-length fast Fourier transform processor. I IEE

Proceedings - Computers and Digital Techniques, 152(4):

499-506. https://doi.org/10.1049/ip-cdt:20041224

[9] Fu, B., Ampadu, P. (2009). An area efficient FFT/IFFT

processor for MIMO-OFDM WLAN 802.11n. Journal of

Signal Processing Systems, 56(1): 59-68.

https://doi.org/10.1007/s11265-008-0264-9

[10] Chang, Y., Park, S.C. (2004). An enhanced memory

assignment scheme for memory-based FFT processor.

IEICE Transactions on Fundamentals of Electronics

Communications and Computer Sciences, E87A(11):

3020-3024.

[11] Reisis, D., Vlassopoulos, N. (2008). Address generation

techniques for conflict free parallel memory addressing

in FFT architectures. IEEE Trans. Circuits Syst. I, Reg.

Papers, 55(11): 3438-3447.

https://doi.org/10.1109/ICECS.2006.379653

[12] Radhouane, R., Liu, P., Modlin, C. (2000). Minimizing

the memory requirement for continuous flow FFT

implementation Continuous flow mixed mode FFT

(CFMM-FFT). 2000 IEEE International Symposium on

Circuits and Systems (ISCAS), Geneva, Switzerland.

https://doi.org/10.1109/ISCAS.2000.857040

[13] Lin, Y.W., Liu, H.Y., Lee, C.Y. (2005). A 1-GS/s

FFT/IFFT processor for UWB applications. IEEE J.

Solid-State Circuits, 40(8): 1726-1735.

https://doi.org/10.1109/JSSC.2005.852007

[14] Lin, Y.W., Lee, C.Y. (2007). Design of an FFT/IFFT

processor for MIMO OFDM systems. IEEE Trans.

Circuits Syst. I, Reg. Papers, 54(4): 807-815.

https://doi.org/10.1109/TCSI.2006.888664

[15] Lin, Y.W., Liu, H.Y., Lee, C.Y. (2004). A dynamic

scaling FFT processor for DVB-T applications. IEEE J.

Solid-State Circuits, 39(11): 2005-2013.

https://doi.org/10.1109/JSSC.2004.835815

[16] Bass, B.M. (1999). A low-power high-performance, 64-

point FFT processor. IEEE J of Solid-state Circuit., 34(3):

380-387. https://doi.org/10.1109/4.748190

[17] Li, W., Wanhammar, L. (1999). A pipeline FFT

processor. 1999 IEEE Workshop on Signal Processing

Systems. SiPS 99. Design and Implementation (Cat.

No.99TH8461), Taipei, Taiwan, pp. 654-662.

https://doi.org/10.1109/SIPS.1999.822372

[18] Bidet, E., Castelain, D. (1995). A fast single-chip

implementation of 8192 complex point FFT. IEEE

Journal of Solid-State Circuits, 30(3): 300- 305.

https://doi.org/10.1109/4.364445

[19] Hui, C.C.W., Ding, T. (1996). A new FFT architecture

and chip design for motion compensation based on phase

correlation. Preceding of International Conference,

Application Specific Systems Architectures and

Processors, Chicago, IL, USA, pp. 83-02.

https://doi.org/10.1109/ASAP.1996.542804

[20] Jia, L.H., Gao, Y., Isoaho, J., Tenhunen, H. (1999). A

new VLSI-oriented fft algorithm and implementation.

Proceedings Eleventh Annual IEEE International ASIC

Conference (Cat. No.98TH8372), Rochester, NY, USA,

pp. 337-341. https://doi.org/10.1109/ASIC.1998.723029

[21] Nicola, M., Masera, G., Zamboni, M., Ishebabi, H.,

Kammler, D., Ascheid, G., Meyr, H. (2005). FFT

processor: A case study in ASIP development. IST

MobilecSummit, Dresden, Germany.

[22] Heo, K.L., Cho, S.M., Lee, J.H., Sunwoo, M.H. (2003).

Application specific DSP architecture for fast fourier

transform. Proceedings IEEE International Conference

on Application-Specific Systems, Architectures, and

Processors, The Hague, Netherlands, pp. 369-377.

https://doi.org/10.1109/ASAP.2003.1212860

[23] Hoffmann, A., Schliebusch, O., Nohl, A., Braun, G.,

Meyr, H. (2001). A methodology for the design of

application specific instruction set processors (ASIP)

using the machine description language LISA.

IEEE/ACM International Conference on Computer

25

Aided Design. ICCAD 2001. IEEE/ACM Digest of

Technical Papers (Cat. No.01CH37281), San Jose, CA,

USA. https://doi.org/10.1109/ICCAD.2001.968726

[24] Schliebusch, O., Chattopadhyay, A., Kammler, D.,

Ascheid, G., Leupers, R., Meyr, H., Kogel, T. (n.d.).

(2005). A framework for automated and optimized ASIP

implementation supporting multiple hardware

description languages. Proceedings of the ASP-DAC

2005. Asia and South Pacific Design Automation

Conference, Shanghai, China.

https://doi.org/10.1109/aspdac.2005.1466174

[25] Ganjikunta, G.K., Sahoo, S.K. (2017). An area-efficient

and low-power 64-point pipeline Fast Fourier Transform

for OFDM applications. Integration, 57: 125-131.

https://doi.org/10.1016/j.vlsi.2016.12.002

[26] Kumar, G.G., Sahoo, S.K. (2020). Area and power-

efficient variable-length fast Fourier transform for MR-

OFDM physical layer of IEEE 802.15.4-g. IET

Computers & Digital Techniques, 14(5): 193–200.

https://doi.org/10.1049/iet-cdt.2018.5260

[27] Shih, X.Y., Chou, H.R. (2017). Reconfigurable VLSI

design of changeable hybrid-radix FFT hardware

architecture with 2D-FIFO storing structure for 3GPP

LTE systems. ICT Express, 4(3): 144-148.

https://doi.org/10.1016/j.icte.2017.11.007

[28] Tsai, P.Y., Chen, C.W., Huang, M.Y. (2011). Automatic

IP generation of FFT/IFFT processors with word-length

optimization for MIMO-OFDM systems. EURASIP

Journal on Advances in Signal Processing, 2011: 136319.

https://doi.org/10.1155/2011/136319

26

