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 In recent past conventional monolithic materials are replaced with fiber reinforced 

polymer composite materials due to their high specific strength. The current study 

focused on dry-sliding wear behaviour of carbon fiber reinforced polyester (CFRP) 

composites using a pin-on-disc tribometer. The two output responses selected were rate 

of wear and frictional force with respect to controlled variables using the Taguchi L16 

OA (Orthogonal Array). In order to assess the best optimal conditions GRA technique 

has been used in the study. The effectiveness of entropy weights on the optimal result 

has been carried out in support with ANOVA studies. In GRA analysis, the combined 

effect of wear and frictional force is considered and the optimal conditional identified in 

two ways namely equal weightage method (EWM) and entropy based weightage method 

(EBWM). While considering EWM method the optimal condition obtained is S1 L4 D3 

R4 whereas in EBWM the optimal solution obtained is S1 L4 D1 R4. This shows because 

of the uneven weights generated by EBWM method there is a change in optimal solution 

in comparison with EWM method. 
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1. INTRODUCTION 

 

Over the last few decades world has changed a lot so as the 

demands for composite materials in a variety of domains. 

Polymers have dominated as new materials alongside 

composite materials and ceramics. Because of their unique 

properties like high stiffness and strength-to-weight ratio, the 

number of applications for composites has steadily increased. 

Demand for polymeric composite materials, which are used in 

a variety of automotive applications such as chassis frames and 

wheels, has increased. Polyester development has progressed 

significantly to specific composites for aerospace and other 

applications. Improved mechanical properties extend the life 

of commercial polymers [1]. A side from their desirable 

mechanical properties, resistance towards corrosion is an 

appealing consideration for the use of such composites in a 

variety of applications. Because polyester is sensitive to UV 

rays, humidity, and moist conditions, good environmental 

maintenance primes to an upsurge in their durability [2, 3]. 

Polyesters are widely used for matrix purposes, primarily 

reinforced with glass fibers and many more reinforced 

materials [4-6]. 

To achieve aesthetic balance of good weight, mechanical 

properties along with strength to weight ratio carbon fiber is 

one of the preeminent option available for engineers now days. 

It has been proved as one of the reinforcement material in 

aluminium and titanium alloys allowing them to dislodge the 

traditional materials in several structural applications [7, 8]. 

Niedermann et al. [9] reported the effect of jute fiber and 

Carbon fibre reinforcement in epoxy resin for aircraft 

applications. Davim et al. [10] reported that the usage of PEEK 

(Poly-Ether-Ether-Ketone) reinforced with carbon fibres for 

orthopedic applications thereby they investigated the effect of 

reinforcement on diverse parameters like frictional behaviour, 

sliding velocity and so on. Kumar and Sai Ram [11] made an 

attempt by reinforcing the carbon fibres in polyester resin. 

They reported that carbon fibres have good homogeneity up to 

6% by weight beyond this threshold value a lot of clusters are 

observed dropping the wear resistance. In order to select the 

most suitable and optimal parameters for better tribological 

properties, numerous decision-making techniques such as 

AHP (Analytic Hierarchy method) and GRA (Grey Relational 

Analysis) are used for numerous applications by various 

researchers [12]. With simple steps and automating the overall 

process to save time, made Taguchi-GRA combinatorial 

approach as a foster technology in the field of composites. This 

Taguchi-GRA combinatorial approach was applied for various 

machining operations, milling, grinding, drilling, and turning 

to evaluate multi-objective optimization machining 

parameters [13-15]. 

In Multi objective decision-making weights to the responses 

plays a prominent role and influence the optimization process. 

Geeth et al. [16] conducted a series of experiments based on 

Taguchi orthogonal array on Polyester reinforced with carbon 

fibres they reported the GRA technique with equal weight 

consideration. However suitable techniques have to be 

implemented for effective consideration of weights rather than 

by equal weights. So, entropy method is one of the popular 

technique which determines the weights based on the 

difference of lowest to highest parameters in the particular set. 
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Therefore, an attempt is made here to apply entropy based 

weight method (EBWM) to calculate the weights and to report 

the effect of these methods on the multi objective optimization 

and wear behaviour of polyester/Carbon fiber reinforcements 

in different weight fractions. 

This paper report experimental details in section 2 which 

involves materials used, fabrication and testing methods, 

methodology in section 3 followed by results and discussions. 

Conclusions have been reported at the end of the paper. 
 

 

2. METHODOLOGY 
 

2.1 Materials and methods 
 

In this work, polyester resin is cured with addition of carbon 

fibres of size 85 µm in a mild steel mould of dimensions 

Ø1.5cm ×15cm in height. Figure 1 portrays the research 

methodology for fabrication and optimization of CFRP 

composites. 

 

 
 

Figure 1. Methodology of current research 
 

2.2 Composite fabrication 
 

Due to addition of hardeners Methyl Ethyl Ketone Peroxide 

(MEKP) and Cobalt octoate (CO) unsaturated polyester resin 

is cured with carbon fiber of 85 µm in size. Table 1 depicts the 

composition of various composites. Before pouring the resin 

into the mould the releasing agent is applied. For better yield 

of the casting semi solid state mixture is held for 24 hours at 

ambient conditions. After 24 hours specimens are withdrawn 

from the mould and are machined to 8 mm diameter at RVR 

& JC College of engineering and specimens were polished for 

wear tests in a calibrated machine.  
 

Table 1. The composition of various composites 
 

Sl. no Identification of 

Composite  

Wt% of 

Carbon 

fiber 

Wt% of 

Polyester 

resin 

Wt% of 

Hardener 

(MEKP+CO) 

1. 100% Pure 

Polyester 

0 200 2 

2. 2Wt% CF + 98% 

Polyester 

2 200 4 

3. 4Wt% CF + 96% 

Polyester 

4 200 6 

4. 6Wt% CF + 94% 

Polyester 

6 200 8 

2.3 Dry-sliding wear test 

 

Based on the literature available wear tests were conducted 

using pin-on-disc tribometer as per ASTM G99-95 standards 

[17]. Figure 2 depicts the pin on disc tribometer in which wear 

pins are prepared with dimensions Ø0.8 cm×5 cm in height. 

The load was imparted on to the pin against its counterpart on 

an EN32 steel disc during the test. After running over a sliding 

distance, the pins were removed, gutted with acetone, dried out, 

and weighted to know the wear due to loss of weight. The loss 

of wear is determined by difference in weight measured pre 

and post experimentation. The wear (W in µm) and frictional 

force (FF in N) of prepared CFRP composites were 

investigated as a function of normal loads (L), percent of 

reinforcement (R), sliding velocity (S), and sliding distance 

(D). 

 

 
 

Figure 2. Pin-on-disc tribometer [18] 

 

2.4 Taguchi’s design of experiments (DOE) 

 

Table 2. Control factors and their levels 

 

Control Factors 
Levels 

Units 
1 2 3 4 

S 2 4 6 8 m/s 

L 5 10 15 20 N 

D 1000 2000 3000 4000 m 

R 0 2 4 6 % 

 

Taguchi experimental design is a versatile method for 

finding the impacts of multiple parameter effect on response 

variables. The most critical step in the DOE is picking the 

monitoring factors that influence the output readings. Initially 

various factors are taken into account, out of those less 

significant factors affecting are nullified, leaving only the 

more significant aspects. In the experimentation of sliding 

wear, four major factors are taken into account, as shown in 

Table 2. At room temperature with reference to L16 OA four 

levels are opted namely load (L), sliding distance (D), sliding 

velocity (S), and percent of fibre reinforcement (R) and 

experimentation is conducted. The number of Experiments 

was decreased from 256 conventional runs to just 16 runs 

using Taguchi L16 OA, saving both time and money (Table 3). 

These tests results are converted into signal-to-noise ratios 

(SNR). To convert S/N ratio logarithmic function is used as 

shown in Eq. (1) [19-21]. 

“Smaller-the-Better”, 
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𝑆 𝑁 𝑆𝐵⁄ = −10 log10 [
1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

] (1) 

 

where, n represents number of runs (n=16) and 𝑦 represents to 

the output parameters (y=2). 

 

Table 3. L16 OA based on Taguchi approach 

 

Runs 
Independent Factors 

S L D R 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 1 4 4 4 

5 2 1 2 3 

6 2 2 1 4 

7 2 3 4 1 

8 2 4 3 2 

9 3 1 3 4 

10 3 2 4 3 

11 3 3 1 2 

12 3 4 2 1 

13 4 1 4 2 

14 4 2 3 1 

15 4 3 2 4 

16 4 4 1 3 

 

2.5 Grey Relational analysis (GRA) 

 

To enhance the process parameter in view of single 

objective Taguchi’s experimental design is enough. When 

there are two or more responses with different objectives, to 

optimize them GRA is applied. GRA [22, 23] can also be used 

to assess the familiarity of unknown data. Due to this reason 

for multi-objective optimization to evaluate wear parameters 

GRA approach is used. The ANOVA method identifies 

important factor that are influencing the wear behaviour. 

Taguchi GRA combinatorial approach is evaluated using as 

follows [24, 25]: 

Step-I: Wear and frictional force values are normalized 

based on "Smaller-the-Better" criteria, using Eq. (2). 

 

𝑦𝑖(𝑘) =
max 𝑥𝑖(𝑘) − 𝑥𝑖(𝑘)

max 𝑥𝑖(𝑘) − 𝑚𝑖𝑛𝑥𝑖(𝑘)
 (2) 

 

In Eq. (2), i=1, 2, 3, 4, 5 … 16 (no. of records), k=1, 2 (no. 

of output parameters), x_i (k) is empirical value, max xi(k) 

equals to maximum value of xi(k) and min xi(k) equals to 

minimum value of xi(k). 

Step-II: For all process variables using Eq. (3) the deviation 

sequence determined. 

 

Δ𝑜𝑖(𝑘) =  |𝑥𝑜(𝑘) −  𝑥𝑖(𝑘)| (3) 

 

where, 𝛥𝑜𝑖𝑘  is the base for both x𝑜𝑘  & the comparability 

sequence 𝑥𝑖𝑘 and it is known as deviation sequence. 

Step-III: To calculate the GRC (Grey Relational 

Coefficients) Eq. (3) is used. 

 

𝜉𝑖(𝑘) =
Δ𝑚𝑖𝑛 +  𝜁 Δ𝑚𝑎𝑥  

Δ𝑜𝑖(𝑘) + 𝜁 Δ𝑚𝑎𝑥

 (4) 

 

In Eq. (4), ζ is distinguishing coefficient and its value is 

calculated in two ways namely equal weights and unequal 

weights. In equal weight method all the parameters are 

affecting considered to be equally weighed and its value is 0.5 

each. But in real world equal weights are not suggestable and 

entire scenario changes so the allocation of weights to 

parameters are done by entropy method. 

Step-IV: The main step in employing equation is to 

anticipate the GRG (Grey Relational Grade) by taking the 

mean of all GRC values using Eq. (5). 

 

𝛾𝑖 =  
1

𝑛
 ∑ 𝜉𝑖(𝑘)

𝑛

𝑘=1

 (5) 

 

where, γi ranges from 0-1 and ‘n’=number of output readings. 

 

2.6 Entropy method 

 

Shannon Entropy method is used to calculating weights for 

the various parameters considered i.e., Distinguishing 

coefficient(ζ). The following method is employed to find the 

weightage of individual parameters affecting the process. 

Step 1: Normalization of the arrays of decision matrix to 

acquire the project outcomes pij 

 

pij =
xij

∑ xij
m
i=1

 (6) 

 

Step 2: Computation of the entropy measure of project 

outcomes using the following equation: 

 

𝐸𝑗 = −𝐾 ∑ 𝑝𝑖𝑗 𝑙𝑜𝑔𝑒 𝑝𝑖𝑗

𝑚

𝑖=1

 (7) 

 

where, 𝐾 =
1

𝑙𝑜𝑔𝑒 𝑚
. 

Step 3: Defining the objective weight based on the entropy 

concept 

 

𝑤𝑗 =
1 − 𝐸𝑗

∑ (1 − 𝐸𝑗)𝑛
𝑗=1

 (8) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Implementation of Taguchi method 

 

3.1.1 Calculation of S N⁄  ratio 

To perform statistical analysis of the experimental records 

Minitab 19 software was used. Table 4 forecasts wear and 

frictional force experimental data, as well as the corresponding 

S/N ratios, whereas Table 5 illustrate S/N ratio responses for 

wear (W) and frictional force (FF). Figures 3 and 4 depict how 

the S/N ratio is altered by controlling both the parameters i.e., 

W & FF. An optimal control factor setting for greater 

performance can be accomplished by evaluating the lowest 

S/N ratios values. The lowest S/N ratios are shown in bold in 

Table 5. Figure 3 and Table 5 illustrate that percent of 

reinforcement (R) has an impact on wear (W), whereas Figure 

4 and Table 5 show that load (L) has an impact on frictional 

force (FF). Based on S/N ratios, Minitab software throws a 

combination of parameters to get least wear as shown in Figure 

3 and Table 5. Due to amalgamation of parameters least wear 

is obtained at S1 L2 D2 R4 whereas for minimum frictional 

force S1 L4 D3 R3 is the optimal condition as in Figure 4 and 

Table 5. 
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3.1.2 Analysis of variance 

The key control parameters that influence wear and 

frictional force response values were identified using ANOVA 

(Analysis of Variance). The significant importance of factors 

is calculated using the overall sum of squared value. The 

bigger the total of squared values, the more important it is to 

manage the response values. These data are used to regulate 

the percentage contribution on the individual parameters [26]. 

The study is carried out with a 95% level of confidence and a 

significance level of 5%. The ANOVA results for wear and 

frictional force are shown in Tables 6 and 7, respectively. 

According to Table 6, the most important factor impacting 

wear is R which contributes for 65.61%, followed by L, S, and 

D, which contribute for 12.34%, 7.71%, and 5.35%, 

respectively. According to Table 7, the most important factor 

dominating frictional force is L which contributes about 

43.85%, followed by S which contributes 31.71%, R which 

contributes 9.18%, and D which contributes almost 9.00%. A 

high F-value signifies those factors selected as a major 

influencing on the performance of the process [27, 28]. 

 

 
 

Figure 3. Main effect of wear for the S⁄N ratio plots 

 

Table 4. Multi-response outputs along with S⁄N ratio for Taguchi L16 OA 

 

Runs 
Control Factors Response variables S⁄N Ratios 

S (m/s) L (N) D (m) R (%) W (µm) FF (N) W (dB) FF (dB) 

1 2 5 1000 0 162 10.5 -44.1903 -20.4238 

2 2 10 2000 2 83 7.25 -38.3816 -17.2068 

3 2 15 3000 4 63 5.12 -35.9868 -14.1854 

4 2 20 4000 6 48 4.11 -33.6248 -12.2768 

5 4 5 2000 4 62 16.3 -35.8478 -24.2438 

6 4 10 1000 6 39 11.03 -31.8213 -20.8515 

7 4 15 4000 0 325 19.25 -50.2377 -25.6886 

8 4 20 3000 2 121 4.39 -41.6557 -12.8493 

9 6 5 3000 6 76 12.91 -37.6163 -22.2185 

10 6 10 4000 4 84 12.36 -38.4856 -21.8404 

11 6 15 1000 2 138 15.25 -42.7976 -23.6654 

12 6 20 2000 0 184 9.32 -45.2964 -19.3883 

13 8 5 4000 2 92 12.76 -39.2758 -22.1170 

14 8 10 3000 0 133 11.37 -42.4770 -21.1152 

15 8 15 2000 6 69 9.1 -36.7770 -19.1808 

16 8 20 1000 4 95 4.83 -39.5545 -13.6789 

 

Table 5. Response table for wear and frictional force based on S⁄N ratio 

 
 Wear Frictional force 

Level S L D R S L D R 

1 -38.05 -39.23 -39.59 -45.55 -16.02 -22.25 -19.65 -21.65 

2 -39.89 -37.79 -39.08 -40.53 -20.91 -20.25 -20 -18.96 

3 -41.05 -41.45 -39.43 -37.47 -21.78 -20.68 -17.59 -18.49 

4 -39.52 -40.03 -40.41 -34.96 -19.02 -14.55 -20.48 -18.63 

Delta 3 3.66 1.33 10.59 5.75 7.7 2.89 3.17 

Rank 3 2 4 1 2 1 4 3 
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Figure 4. Main effect of frictional force for the S⁄N ratio plots 

 

Table 6. ANOVA table for the S⁄N ratio of wear 

 
Source SS a DF b MS c F-value P-value Contribution %  

S 5705 3 1902 0.86 0.549 7.71 

L 9136 3 3045 1.37 0.4 12.34 

D 3960 3 1320 0.6 0.66 5.35 

R 48561 3 16187 7.3 0.068 65.61 

Error 6653 3 2218     8.99 

Total 74016 15    100.00 

S=47.09, R2=91.01%, R2
adj=55.06% 

 

Table 7. ANOVA table for the S⁄N ratio of frictional force 

 
Source SS a DF b MS c F-value P-value Contribution % 

 S 95.47 3 31.825 5.07 0.108 31.71 

 L 132.01 3 44.004 7.01 0.072 43.85 

 D 27.1 3 9.033 1.44 0.386 9.00 

 R 27.65 3 9.218 1.47 0.38 9.18 

Error 18.82 3 6.275     6.25 

Total 301.06 15       100.00 

S=2.50, R2=93.75%, R2
adj=68.74% 

a Sum of Squares.     b Degrees of Freedom.      c Mean squares. 

 

Table 6 depicts that % reinforcement is the major 

contributing factor change in wear. Similarly, in Table 7 load 

is the major factor affecting change in frictional force. From 

Table 6 and 7 based on the R2 (i.e., coefficient of correlation) 

one may predict that the model as good linear fit with less error 

[29, 30]. 

 

3.2 Multi-response optimization using GRA 

 

Wear and frictional force are two characteristics that occur 

simultaneously. Consequently, they need to be optimized in 

tandem. GRA was chosen for this purpose since it has the 

ability to reduce a multi-objective problem to a single-

objective problem from which it can be optimized [31]. 

3.2.1 Calculation of GRG 

Using Eq. (3) based on the normalized values, deviation 

sequences are evaluated followed by calculations of GRC and 

GRG for all responses. The bold values in Table 8 signify that 

experimental run (4) has the maximum GRG value of 1.00, 

thereby indicating it as the optimal value. Using Eq. (3) based 

on the normalized values, deviation sequences are evaluated 

followed by calculations of GRC and GRG for all responses. 

The bold values in Table 8 signify that experimental run (4) 

has the maximum GRG value of 1.00, thereby indicating it as 

the optimal value. Using the equations i.e., from Eq. (6) to Eq. 

(8) the entropy weights of wear and frictional force are found 

to be 0.217, 0.783 and based on that GRG score is evaluated 

and mentioned in Table 9. 

For each parameter based on EWM and EBW methods, 

GRG responses are evaluated and are depicted in Table 10. 

Figure 5 and Figure 6 illustrates the main effect plots of GRG 

using Equal weighted method and Entropy based weight 

method. Based on EWM method S1 L4 D3 R4 is the optimised 

condition whereas for EBWM method S1 L4 D1 R4 is the 

optimal value obtained. The higher the GRG, the closer the 

product's quality is to its ideal value. As a result, a greater 

GRG is required for optimal performance. 
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Figure 5. Main effect plots of GRG using EWM 

 

 
 

Figure 6. Main effect plots of GRG using EBWM 

 

Table 8. Calculation of GRC and GRG for wear and frictional force based on equal weightage method (EWM) 

 

Runs 
Normalized data [yi(k)] Deviation sequence [Δoi(k)] 

GRC 

[ξi(k)] 
GRG 

(γi) 
Rank 

W FF W FF W FF 

1  0.328 0.393 0.672 0.607 0.427 0.451 0.439 14 

2  0.644 0.632 0.356 0.368 0.584 0.576 0.580 6 

3  0.774 0.858 0.226 0.142 0.689 0.778 0.733 2 

4  0.902 1.000 0.098 0.000 0.836 1.000 0.918 1 

5  0.781 0.108 0.219 0.892 0.696 0.359 0.527 8 

6  1.000 0.361 0.000 0.639 1.000 0.439 0.719 3 

7  0.000 0.000 1.000 1.000 0.333 0.333 0.333 16 

8  0.466 0.957 0.534 0.043 0.484 0.921 0.702 4 

9  0.685 0.259 0.315 0.741 0.614 0.403 0.508 9 

10  0.638 0.287 0.362 0.713 0.580 0.412 0.496 10 

11  0.404 0.151 0.596 0.849 0.456 0.371 0.413 15 

12  0.268 0.470 0.732 0.530 0.406 0.485 0.446 13 

13  0.595 0.266 0.405 0.734 0.553 0.405 0.479 11 

14  0.421 0.341 0.579 0.659 0.464 0.431 0.447 12 

15  0.731 0.485 0.269 0.515 0.650 0.493 0.571 7 

16  0.580 0.895 0.420 0.105 0.544 0.827 0.685 5 
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Table 9. Calculation of GRC and GRG for wear and frictional force based on entropy based weightage method (EBWM) 

Runs 
Normalized data [yi(k)] Deviation sequence [Δoi(k)] GRC [ξi(k)] GRG 

(γi) 
Rank 

W FF W FF W FF 

1 0.328 0.393 0.672 0.607 0.245 0.563 0.404 14 

2 0.644 0.632 0.356 0.368 0.379 0.680 0.530 6 

3 0.774 0.858 0.226 0.142 0.490 0.846 0.668 3 

4 0.902 1.000 0.098 0.000 0.689 1.000 0.845 1 

5 0.781 0.108 0.219 0.892 0.499 0.467 0.483 8 

6 1.000 0.361 0.000 0.639 1.000 0.550 0.775 2 

7 0.000 0.000 1.000 1.000 0.179 0.439 0.309 16 

8 0.466 0.957 0.534 0.043 0.289 0.948 0.619 4 

9 0.685 0.259 0.315 0.741 0.409 0.514 0.461 9 

10. 0.638 0.287 0.362 0.713 0.375 0.523 0.449 10 

11. 0.404 0.151 0.596 0.849 0.267 0.480 0.373 15 

12. 0.268 0.470 0.732 0.530 0.229 0.596 0.413 12 

13 0.595 0.266 0.405 0.734 0.349 0.516 0.433 11 

14 0.421 0.341 0.579 0.659 0.273 0.543 0.408 13 

15 0.731 0.485 0.269 0.515 0.447 0.603 0.525 7 

16 0.580 0.895 0.420 0.105 0.341 0.882 0.612 5 

Table 10. GRG response table using EWM and EBWM 

Equal weightage method (EWM) Entropy based weightage method (EBWM) 

Level S L D R S L D R 

1 0.6677 0.4885 0.5643 0.4164 0.6116 0.4451 0.541 0.3833 

2 0.5707 0.5608 0.5312 0.5437 0.5464 0.5405 0.4876 0.4887 

3 0.4659 0.5129 0.5979 0.6106 0.4241 0.4688 0.539 0.553 

4 0.5458 0.6879 0.5566 0.6793 0.4944 0.6219 0.5089 0.6515 

Delta 0.2018 0.1994 0.0668 0.2629 0.1875 0.1768 0.0534 0.2682 

Rank 2 3 4 1 2 3 4 1 

Table 11. ANOVA table for GRG using EWM 

Source SS a DOF b MS c F-value P-value Contribution %

S 0.083014 3 0.027671 7.99 0.061 23.87 

L 0.094656 3 0.031552 9.11 0.051 27.22 

D 0.0091 3 0.003033 0.88 0.542 2.62 

R 0.150627 3 0.050209 14.5 0.027 43.31 

Error 0.010386 3 0.003462 2.99 

Total 0.347783 15 100.00 

S=0.0588, R2=97.01%, R2adj=85.07% 

Table 12. ANOVA table for GRG using EBWM 

Source SS a DOF b MS c F-value P-value Contribution %

S 0.075747 3 0.025249 3.8 0.151 22.82 

L 0.076122 3 0.025374 3.82 0.15 22.94 

D 0.007899 3 0.002633 0.4 0.766 2.38 

R 0.152201 3 0.050734 7.64 0.065 45.86 

Error 0.019934 3 0.006645 6.01 

Total 0.331903 15 100.00 

S=0.0815, R2=93.99%, R2adj=69.97% 

a Sum of Squares.  b Degrees of Freedom (DOF)  c Mean squares. 

3.2.2 ANOVA for GRG 

Analysis of Variance (ANOVA) is used to examine aspects 

which have a substantial influence on an individual's 

performance. This is performed by dividing total GRG 

variability, as measured by the sum of squared deviations from 

the GRG's average value into contributions from each wear 

parameter and listing them in Table 11 and 12. For each 

parameter based on EWM and EBWM methods, ANNOVA 

analysis is performed are evaluated. The ANOVA results for 

EWM and EBWM methods are shown in Tables 11 and 12, 

respectively. According to Table 11, the most important factor 

affecting EWM method is R which contributes for 43.31%, 

followed by L, S, and D, which contribute for 27.22%, 23.87%, 

and 2.62%, respectively whereas Table 12 depicts the 

contributions of factors affecting under the influence of 

unequal weights (EBW method). The most important factor 

affecting EBWM method is R which contributes for 45.86%, 

followed by L, S, and D, which contribute for 22.94%, 22.82%, 

and 2.38%. 

3.2.3 Confirmation test 

A confirmation test was done to validate experimental 

results based on the discovery of the ideal parameter's 

effecting numerous replies. The projected GRG is calculated 
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using Eq. (9). Table 13 shows that the expected and 

experimental results are nearly identical for both the EWM and 

EBW method. Thus, indicating that the study was carried out 

satisfactorily. The measured GRG for the optimal combo level 

in EWM is 0.868, while the expected GRG is 0.869 whereas 

for EBW method experimental value is 0.943 while the 

expected GRG is 0.945. The experimental and expected 

outcomes were very similar. As a result, the grey relation 

approach is useful for optimising the wear parameter when 

numerous attributes must be investigated at the same time [32]. 
 

�̂� = 𝑦𝑚 + ∑(𝑦�̅� − 𝑦𝑚)

𝑞

𝑖=1

 (9) 

 

where, �̂�  means predicted grey relation grade, ym means 

average value of GRG, yi GRG at optimum levels and q equals 

to number of factors. 
 

Table 13. Confirmation test readings 
 

 
Best process parameters 

Expected Investigational 

Using Entropy weight 

method  
S1 L4 D1 R4 S1 L4 D1 R4 

GRG 0.869 0.868 

Equal weights 

consideration 
S1 L4 D3 R4 S1 L4 D3 R4 

GRG 0.945 0.943 

 

Both the methods have been successively applied to forecast 

the of wear behaviour of Polyester composite using GRA 

technique. The best experimental conditions have been 

considered and closely matched to predicted values within the 

margin of minimum error. EWM method calculates the GRC 

by considering all variables with equal importance however 

EBW method decides the weightages depending upon 

variation in larger to smaller values. Even though both 

methods produced satisfactory results it is up to the decision 

maker to choose the weightage scenario depending upon the 

condition and application. 

 

 

4. CONCLUSIONS 
 

Die casting technique was used to create polyester 

composites with carbon fiber additions rising from 2 to 6 Wt% 

at 2 Wt% intervals. The findings show that increasing the 

content of carbon fibers reduces the sliding wear dramatically. 

• Using Taguchi-GRA combinatorial approach, parameters 

of sliding wear along with multi-response characteristics 

using equal and by using Shannon Entropy method 

weights was optimized.  

• For equal weights S1 L4 D1 R4 (S1=2m/s L4=20N 

D1=1000m R4=6 Wt%) was found to have optimal value 

of wear process parameter in reference to low wear and 

frictional force whereas using unequal weights the 

optimized condition is changed and is found to be S1 L4 

D1 R4 (S1=2m/s L4=40N D1=1000m R4=6 Wt%). 

• As the contribution of both % reinforcement, load (L) are 

at high end using ANOVA analysis considered as they 

dominate the wear performance in comparison with other 

parameters compared. 

• The confirmation test validated that the optimal 

parameters determine for the multi-response 

characteristics were effective. 
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