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 Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, with just around 

nine percent of those diagnosed surviving for more than five years after diagnosis. A 

significant part of the poor result may be attributed to late detection. However, the illness 

is identified at an initial phase. While growths remain quite tiny and manageable, five-year 

existence rates can rise to as high as seventy percent. Because of this, there is a huge clinical 

demand for the creation of a non-invasive examination targeted at the earliest identification 

of PDAC, which has the ability to recover the current prospects of patients. Considering the 

grim future for pancreatic cancer, new strategies for early detection and prevention must be 

developed as rapidly as feasible. Researchers have revealed that proteomics technology is 

effective in discovering important biomarkers for early-stage pancreatic cancer, according 

to recent research. One of the most challenging difficulties is recognizing and collecting 

physiologically relevant information from the huge quantity of data collected when it comes 

to proteome profiling. Because of the tremendous complexity of proteomics datasets and 

the fact that they typically have minuscule sample numbers, it is vital to apply non-classical 

statistical approaches for data processing. Deep learning models are more effective; few 

efforts have lately made to identify PDAC, but the models are not developed successfully. 

This paper used an enhanced Convolution neural network (CNN) model to classify 

pancreatic decease at different stages accurately to clinical correction. The model has 

effective results compared to existing models.  
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1. INTRODUCTION 

 

In the early stages of the illness, pancreatic ductal 

adenocarcinoma (PDAC) [1] presents with few symptoms. 

However, after cancer has progressed, the symptoms become 

more severe. It is the sixth greatest reason for cancer humanity 

in both sexes combined, and most patients [2] die within two 

years of being diagnosed with the disease. The prognosis for 

individuals with PDAC is inferior, owing to a lack of early 

detection and appropriate therapy. According to the most 

recent cancer survival statistics, the overall five-year survival 

rate of PDAC is nine percent, the bottommost percentage of 

all malignancies. As a result of the changes in people's dietary 

habits and lifestyles that have occurred because of fast 

economic development, the incidence of PDAC has risen 

significantly in recent years, with the rate of increase 

increasing year after year. For their part, pathologists continue 

to struggle with establishing the diagnosis of PDAC, 

especially in well-differentiated adenocarcinoma [3], which 

exhibits clinical and histological characteristics like those of 

chronic pancreatitis. Unfortunately, many symptoms, such as 

significant weightiness damage, stomach discomfort, and 

novel start kind two diabetes [4, 5] mellitus, jaundice, and 

nausea, are vague and manifest themselves dawn in the 

sequence of the illness, making it difficult to diagnose. Patients 

with pancreatic cancer eligible for a possibly healing resection 

account for just 20% of all patients [6]. There are no practical 

tumor markers for use in population screening currently. 

Current indications for pancreatic cancer, particularly 

carcinoembryonic antigen, and cancer antigen, do not have 

enough sensitivity and specificity, according to the American 

Cancer Society. A more personalized approach to pancreatic 

cancer treatment is required, as is the development of 

biomarkers for therapeutic evaluation, identification of 

remaining or recurring disease, and even beleaguered 

treatment. Biomarker discovery in pancreatic cancer is thus 

critical for improving prognosis and treatment response rates. 

Due to the large quantities of disease-specific markers 

found pancreatic growth matter is the greatest straight cause of 

proteome biomarkers for tumour diagnosis now accessible. 

Pancreatic tumour [7-10] muscle is the greatest straight basis 

of proteomic biomarkers for tumour analysis currently 

available. There are, however, two main reasons why it is less 

widely accessible for cancer screening than other methods. 

The availability of aggressive operation samples aimed at 

broadcast purposes is not always guaranteed, and 

percutaneous operations may result in the introduction of 

cancer cells into the patient's tissue. When pancreatic cancer 

tissue is obtainable for inspection, pathological examination is 

the most accurate way of establishing a definite diagnosis and 

is the most preferable form of treatment. Biomarker [11-15] 

research is being carried out now on pancreatic cancer tissue, 
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and this study is being carried out not just for analytic 

determinations, then too for the growth of possible upcoming 

battered treatments. 

The discovery of diagnostic biomarkers for differentiating 

between pancreatitis and pancreatic cancer has remained the 

topic of much research. Unfortunately, the efficacy of the 

diagnostic biomarkers that are now available is limited. 

Consequently, we need an innovative technique that may 

quickly and reliably diagnose PDAC [16-20] as an adjuvant 

diagnosis, thereby allowing for early therapy. Using urine 

samples, we were able to identify a panel of three protein 

biomarkers (REG1A, TFF1 and LYVE1) [21-25] that showed 

potential in identifying significant PDAC. Using many 

retrospectively collected samples, the urine biomarker panel 

and associated risk were effectively verified, and the results 

indicate that this is a viable method for totally non-invasive 

early diagnosis of prostate cancer. 

Once this patient [26-32] stratification method has been 

tested in a prospective cohort, it may be used in scientific 

practice, with the possible to enhance the existing analytic 

route for people with prostate tumor. In current years, the 

development of proteomic methods has heightened interest in 

the therapeutic use of biomarkers in the action of pancreatic 

disease. But there has been little progress in the identification 

of suitable biomarkers for pancreatic cancer that are both 

complex and exact sufficient to be used therapeutically. In this 

research, we explore the possibility of using proteome-based 

biomarkers to aid in the discovery and treatment of pancreatic 

disease in the future. But analysis of these proteomic data 

required large space for storage and analysis. In the last three 

decades, significant advancements have been achieved in the 

storage and processing capacities of computers. The evolution 

of graphics processing units has been very fast. They provide 

a strong parallel processing capacity, which is particularly 

useful for research involving many samples. Although there 

has been some study on automated analysis of pancreatic data, 

there has been very little done in this area. It is possible that a 

major contributing factor is the scarcity of publicly accessible 

datasets including pancreatic genomic data, particularly 

datasets are enough to be castoff for exercise convolutional 

neural networks (CNNs).  

In this article, we current a novel automated method aimed 

at identifying PDAC in from genomic data that is based on 

convolutional neural networks (CNNs). Our understanding to 

the best of our ability indicates that this is the first CNN 

architecture for PDAC identification to be trained on genomic 

dataset. The rest of this work is structured in the following 

manner: Our deep-learning-based PDAC diagnostic system, as 

well as the dataset, are introduced under Materials and 

Methodology. After that, the technique that was used in this 

research is thoroughly explained. Our experiments and 

findings are then presented in Experiments and Results, which 

is the last section of this section. Finally, in the section Debate, 

the results of the discussion are given. 

 

 

2. LITERATURE SURVEY 

 

According to Lian et al. [1], ubiquitin exact peptidase 5 

(USP5) increases STAT3 signaling in pancreatic cancer cells, 

which results in enhanced migration and invasion. UBR5, an 

E3 ubiquitin ligase, has been found to promote pancreatic 

disease development then aerobic glycolysis through 

downregulating FBP1, which is achieved via instability of the 

C/EBP protein complex, as reported by Chen et al. [2]. Yang 

et al. [3] originate that USP44 overpowers the growth of 

pancreatic growth and overwhelms gemcitabine confrontation 

by deubiquitinating the FBP1 protein, which was previously 

thought to be toxic. No one can deny that the processes of 

ubiquitination and deubiquitinating are closely linked to the 

development of pancreatic disease. It is also needed to study 

the function of ubiquitination and deubiquitinating connected 

genetic factor in the growth of pancreatic disease. 

Adenocarcinoma is the greatest communal histological 

subtype of pancreatic disease, owing to the absence of 

indications in the early stages of the illness and the fast 

development of the disease [4, 5]. When compared to other 

histological subtypes, adenocarcinoma has a higher mortality 

rate. It has been shown that an adenocarcinoma is the supreme 

shared histological subtype of pancreatic cancer and that it is 

linked with a high mortality rate [4, 5] because it manifests 

itself without presenting symptoms in the early stages of the 

illness and because the disease progresses rapidly. It has been 

shown that, in addition to the overexpression of KRAS [4, 5], 

the inactivation of the tumor-suppressor genes, is associated 

with the development of PDAC. KRAS beginning is believed 

toward be a contributing role to the growth of PDAC, and 

many attempts have been undertaken to decrease its activity 

[11, 12]. While this is going on, it seems to be intractable [12]. 

In addition to combined genome examines that have 

confirmed the involvement of KRAS, TP53, SMAD4, and 

CDKN2A in a fraction of PDAC tumors [14], comprehensive 

gene and protein investigations of PDAC have also been 

reported in the literature [13]. 

Because there are currently no viable treatments available 

and a poor overall survival rate in PDAC, researchers are 

continuing to look for novel biomarkers and therapeutic 

targets [15-17]. There have already been several gene 

expression alterations associated with pancreatic cancer that 

have been characterized and presented as biomarkers. 

Potential biomarkers for cancer in ribosome and spliceosome 

pathway genes, among other locations, have been identified 

[18]. The semantic of PDAC microarray data [19] revealed 

five indicators. Those biomarkers have been classified as 

either PDAC or regular samples with 94% accuracy and 89.6% 

specificity. 

Greater computer advances like as system biology and AI 

enable data to be integrated and patterns recognized, leading 

not only in new understandings of illnesses, but also the 

identification of new objectives and the creation of future 

therapy biomarkers [20]. It has been utilized in various kinds 

of cancer research with promising findings to categories 

cancer samples based on gene expression, methylation 

information, and artificial intelligence. If these findings were 

put into practice, they would help to enhance the 

categorization of samples used in tumor diagnosis and 

subtyping [21-23]. A good classification performance has 

been shown in investigations employing automated techniques 

to predict risk or diagnosis [24-27], with sensitivity > 90 

percent in most cases. 

Given the wide range of characteristics generated after 

microarray genetic factor appearance and the methylation 

genomic evidence cast-off to sequence AI models for 

judgment of the cancer [21, 22], excellent sample classes may 

be achieved, reducing both training and validation samples' 

rates of false-negative findings. Due to the many 

characteristics, however, the diagnosis may only be available 

for selections having thousands of gene expression levels [21] 
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because of the high number of attributes. Several studies have 

demonstrated that fewer criteria may provide the same or 

better results than hundreds of variables [28, 29]. 

The use of AI in pancreatic tumor necessity increases initial 

diagnosis and improves treatment results and patient existence. 

Artificial intelligence consumes remained demonstrated to 

forecast hazards and diagnoses using pancreatic pictures and 

individual strength data [30]. A logistic deterioration and 

artificial neural network (ANN) evaluated the forecast of 

pancreatic disease danger in persons by variety two diabetes, 

utilizing personal health information again and demonstrating 

the presence of replicas forecasting disease danger factors [27]. 

The AI models were also developed using four plasma proteins 

designated from the bulk ranges for the diagnosis of pancreatic 

cancer [25], which demonstrate the potential for artificial 

intelligence for forecasting the rank of an example founded on 

highly sensitive (90.9%) and specific (91.1%) biological 

markers [25]. The Lustgarten Foundation stated AI should be 

included in the PDAC identification using MRI and CT X-rays 

[32]. New methods to help prevent and diagnose pancreatic 

cancer must be developed because patients' overall survival 

would be increased. The variations in gene expression in 

pancreatic cancer may be used to help diagnose the illness, as 

well as to build an artificial intelligence computer model to 

forecast sample status. 

 

 

3. PROPOSED MODEL 

 

Pancreatic cancer is usually not detected until a late stage 

because early symptoms are difficult to detect. As pancreatic 

tumors grow larger, they make their presence known by 

compressing surrounding organs, such as the bile ducts and 

duodenum [9]. Once the tumors are large enough to cause 

noticeable symptoms, the cancer has often reached an 

advanced stage and is virtually uncurable. Earlier symptoms 

of pancreatic cancer are often vague, including jaundice (a yel-

lowing of the skin and eyes caused by excess bile); digestive 

problems caused by the tumor pressing against the stomach; 

back pain; unexplained weight loss; abdominal bloating; new-

onset diabetes; and depression. Pancreatic cancer may also 

cause bio-chemical processes such as consumption of LDL 

(low-density lipoprotein, also known as "bad" cholesterol) by 

the tumour [10] and protein breakdown [11-13]. Studies 

suggest that these symptoms may exist years before a patient 

is formally diagnosed with pancreatic cancer, which gives us 

hope that machine learning models may be able to detect risk 

factors for pancreatic cancer from previous medical data [14]. 

Genetic and genomic processes that underlie pancreatic 

carcinogenesis and development have been unravelled in 

detail in recent years because to advancements in sequencing 

technology. These studies have made significant advances in 

our knowledge of the essential molecular processes and 

mechanisms, such as the driver genes that are characteristic of 

this tumour type and the fundamental signalling pathways to 

which they relate. We now have a better understanding of the 

timing of the occurrence of these genetic events in pancreatic 

cancer development and progression, as well as the 

significance of this knowledge for targeted treatments in the 

context of personalised medicine.  

The PDAC was predicted in this study using the CNN 

model. Urine is used as the training input for the CNN. Though 

historically considered the most reliable source of indicators, 

urine has emerged as a potential alternative biological fluid [16, 

17]. The dynamic range and proteome of plasma are both less 

than those of blood [18, 19], however when compared to blood, 

plasma provides a totally non-invasive sample, great capacity 

gathering, and the simplicity of recurrent capacities. 

According to the preceding statement, it is also anticipated that 

the continual ultrafiltration of body fluid by the organ meats 

would consequence in growth of at least some of the 

biomarkers in urine, which will result in a greater 

concentration of those biomarkers in urine [16]. Although this, 

urine is still understudied in the arena of biomarkers, despite 

the fact that it contains a large number of them. As a result, 

there is a possibility that confounding variables such as poor 

kidney function may have an impact on the amounts of 

biomarkers present in the urine, which necessitates this 

precaution. Despite the fact that only a few biomarker 

discovery studies in PDAC urine samples have been published 

to date, including ours [20-26], the urine proteome has been 

shown to have the potential to provide biomarkers for cancers 

other than urological cancers, such as colon cancer [27], 

ovarian cancer [28], lung cancer [29], and cholangiocarcinoma 

[30-32].  

 

 
 

Figure 1. PDAC classification using CNN 

 

Figure 1 illustrates the proposed PDAC classification using 

CNN model working. Takes the input data, and made pre-

processing of the data by removing out of bound values and 

also fill the missing data by averaging method. After pre-

processing apply CNN mode and made classification of the 

pancreatic data. 

The urine proteome has been demonstrated to be capable of 

giving biomarkers for a variety of cancer types, including 

breast cancer and colon cancer, in addition to urological 

malignancies. The input to the CNN algorithm is a bio-mark 

dataset, and the algorithm is trained using various layers of 

CNN, which are depicted as follows. 

 

3.1 Convolution neural network (CNN) 

 

Convolutions organize the interconnections among neurons 

into local groups. A fully connected layer, as the name 

suggests, connects every input neuron to the output neuron. 

Generally, convolutional neural networks (CNNs) utilize fully 

connected layers at the end of the architecture. Deep CNNs 

apply various sets of considerable numbers of filters at every 

convolutional layer to feed the following layers. CNN layers 

start learning with general edges, then with the next layer, they 

apply filters to detect shapes. With every successive 
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convolutional layer, CNN learns to distinguish and learn more 

specific features to the problem. The network uses these high-

level features to make predictions. Convolutional layers 

usually consist of several CNN building blocks that are part of 

this section's next part. There are two significant advantages 

of CNN, local invariance and compositionality. For instance, 

local invariance enables the CNN classification of objects in 

the image without considering the object's exact location. 

CNNs can achieve identification of the region with the usage 

of pooling layers. Compositionality is the idea of creating 

high-level features from low-level features. This concept 

enables people to utilize another significant contributor to 

deep learning's success -transfer learning. CNN's building 

blocks are convolutional layer, activation, pooling layer, fully-

connected/linear layer, batch normalization, and dropout. At 

the core of CNN is the convolutional layer, which for obvious 

reasons, is the most crucial block of CNN. Convolutional 

layers consist of filters/kernels that are set to specific widths 

and heights. Convolutional layer shifts or extends these 

kernels throughout a specified input space and applies 

convolutions based on specified stride (sliding the kernel 

window from left to right and top to bottom) and padding. 

These kernels generate activation maps where activation 

indicates the presence of filter properties such as shapes. 

Activation such as ReLU is applied after every convolutional 

layer and generally outputs a reduced, original input size. The 

next layer is the pooling layer that reduces parameters further 

and helps to prevent overfitting. Pooling kernel can reduce the 

input by either getting the maximum value or getting an 

average. While max pooling is applied in the middle of the 

network, average pooling is part of the last layers and 

sometimes can substitute the fully connected layer. As 

mentioned above, fully connected layer(s) are the last building 

in CNN architecture. Batch normalization is used to normalize 

the convolutional layer's activations before feeding it to the 

next layer. Overall, batch normalization enables an efficient 

training process. Dropout is the form of regularization that has 

the primary purpose of reducing the chances of overfitting a 

network by dropping the connection with inputs from the 

previous layer at random. 

 

3.2 PDAC-CNN algorithm 

 

Input: Urine bio-mark data with dimensions of w x h x d, 

where w denotes the width of the data point, h denotes the 

height of the, and d is the number of channels in the gene data. 

Begin: 

The first step is the convolution process. 

1. Pass the input as a genomic matrix to the programme (i.e., 

matrix with genomic data with proteomic value). 

2. Calculate the matrix K as a 3x3x1 matrix, where K is the 

kernel/filter with stride equal to one. 

It is common to see the asterisk * symbol used to indicate 

convolution in mathematical notation. If we have an input data 

set represented by X and a filter set represented by f, then the 

equation would be as follows: 

 

Z = X * f 

 

The feature from the original data is then extracted using 

this method (i.e. called Convolved feature). 

(The convolution layer's primary function is to extract 

features from the source picture.) 

Activation function is applied in the second step. 

1. Activation of the Rectified Linear Unit (ReLU) is 

performed. 

 

f(x)=max(0,x) 

 

This is accomplished mostly via the activation function, 

which converts the input to a result, which then serves as the 

input for the next layer. 

Step 3: Creating a pooling layer 

1. Over the convolved feature, a maximum pooling of 

window size 2x2 is applied. 

2. The maximum value is assigned to each window size. 

(The primary goal of this layer is to decrease the overall size 

while still retaining the most essential information.) 

Step 4: Fully connected layer 

1. Convert the output of the preceding layer (which is in 

matrix form) into a 1-D feature vector by using the following 

procedure: (or we can say column vector). 

2. The feature vector is used as input for the next layer (i.e., 

fully connected layer). 

Step 5: The last layer of connection 

1. The Fed flattens the output as an input to the ANN system 

(Artificial Neural network). 

2. The activation function of SoftMax is utilised to 

categorise malware families into groups. 

End 

The final product is the classification of the pictures into 

their respective families. 

 

 

4. EXPERIMENTAL RESULTS & DISCUSSION 

 

Dataset: 

It was decided to analyse the data from 590 urine specimens 

that were collected retrospectively (183 control, 208 benign, 

and 199 PDAC). Even though there were statistically 

significant differences between the experimental groups in 

terms of the proportion of males versus females and in terms 

of the age of participants. Since they were differently 

expressed in the experimental groups in both sexes [21], we 

selected these urine biomarkers as our study's focus. 

Here Figure 2 represents number of samples of the dataset 

of each label. On x-axis takes different labels like control, 

benign and PDAC and on y-axis takes count of each label. 

Control labels are 180, benign labels are 220 and conformed 

PDAC labels are 200.  

 

 
 

Figure 2. Number of samples of each data item 
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Figure 3. Each attribute distribution of dataset 

 

Here Figure 3 represents each attribute of data set and its 

distribution. Even though some of the samples were previously 

reported [23], modifications in the TFF1 and LYVE1 

commercially obtained ELISAs (in both instances, different 

quantification ranges in various kit versions were observed) 

necessitated the re-assay of all of the samples in the current 

study. When comparing PDAC urine specimens at all phases 

to benign and control samples, the analyses revealed a 

statistically significant increase in the concentrations of all 

three biomarkers despite these discrepancies. Although 

biomarker levels were greater in the early stages of PDAC, this 

difference did not approach statistical significance in our study. 

This document contains a comprehensive summary of all raw 

data collected from ELISAs for the three biomarkers studied. 

Accuracy measure indicates how well the model performs 

across all classes and is used to evaluate its accuracy. It is 

helpful when all the courses are of similar relevance to the 

student. Heuristics are used to compute this as the ratio of 

accurate guesses to the total number of forecasts. 

Here Figure 4 represents the accuracy of proposed CNN 

model and existing ANN model. On x-axis takes epochs and 

y-axis represents accuracy. Evaluate the model with 1000 

epochs. Proposed model is good in handling genomic data and 

produces 95% accuracy. Existing model onlyproduces 70%. 

 

 
 

Figure 4. Accuracy 

 
 

Figure 5. Precession 
 

 
 

Figure 6. Recall 
 

Presence of positive samples that were correctly classified 

is defined as the ratio of the number of Positive samples that 

were correctly classified to the total number of samples that 

were correctly recognised as Positive (either correctly or 

incorrectly). In statistics, precision is a measure of a model's 

ability to accurately categorise a sample as either positive or 

negative. Here Figure 5 represents the precession of proposed 

CNN model and existing ANN model. On x-axis takes epochs 

and y-axis represents precession. Evaluate the model with 

1000 epochs. Proposed model is good in handling genomic 

data and produces 96% precession. Existing model 

onlyproduces 65%.  

When calculating the recall, take the ratio of the number of 

Positive samples that were properly categorised as Positive to 

the total number of Positive samples into consideration. When 

a model is recalled, it indicates how well it can identify 

positive samples. The greater the recall, the greater the number 

of positive samples discovered. Here Figure 6 represents the 

recall comparison between proposed CNN model and existing 

ANN model. On x-axis takes epochs and y-axis represents 

recall. Evaluate the model with 1000 epochs. Proposed model 

is good in handling genomic data and produces 96% recall 

whereas existing model only produces 65%.  

The F1 Score is equal to the product of 

2*((precision*recall)/(precision+recall)) and the precision. It 

is referred to as the F Score or the F Measure in certain circles. 

For better or worse, the F1 score represents the balance 

between accuracy and recall in a given situation. Here Figure 

7 represents the F1-score comparison between proposed CNN 

model and existing ANN model. On x-axis takes epochs and 

y-axis represents F1-score. Evaluate the model with 1000 

epochs. Proposed model is good in handling genomic data and 

produces 96% F1-score whereas existing model only produces 

65%.  

AUC (Area under the ROC Curve) offers a comprehensive 

performance measurement over all conceivable rating criteria. 

One method of understanding AUC is the likelihood that a 

random positive example is higher than a random negative one. 

Here Figure 8 represents the AUC comparison between 

proposed CNN model and existing ANN model. On x-axis 

takes epochs and y-axis represents AUC. Evaluate the model 

with 1000 epochs. Proposed model is good in handling 

genomic data and produces 97% AUC whereas existing model 

only produces 85%.  
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Figure 7. F1-score 

 

 
 

Figure 8. Area under curve 

 

 
 

Figure 9. Region of curve 

 

When a classification model performs well at all 

classification levels, the receiver operating characteristic 

curve (ROC curve) is a graph that shows this (receiver 

operating characteristic curve). The two parameters of this 

curve are the True Positive Rate and the False Positive Rate, 

respectively. The relationship between TPR and FPR is shown 

by a ROC curve at different grading levels. The reduction of 

the grading threshold categorises more objects as positive, 

raising both false positives and true positives. Here Figure 9 

represents the ROC comparison between proposed CNN 

model and existing ANN model. On x-axis takes epochs and 

y-axis represents ROC. Evaluate the model with 1000 epochs. 

Proposed model is good in handling genomic data and 

produces 98% ROC whereas existing model only produces 

82%.  

 

 

5. CONCLUSIONS 

 

Our approach for identifying PDAC in genomic data is 

based on convolutional neural networks and can be used to a 

broad variety of genomic data samples, as shown in this article 

(CNNs). This is the suitable CNN architecture for PDAC 

detection which is important in terms of scientific 

advancements. We were able to successfully validate our 

deep-learning-based PDAC diagnosis system in many 

retrospectively collected samples by using a urine biomarker 

panel and the related detection methods. This is a viable 

method for totally non-invasive early diagnosis of PDAC. 

Once this patient stratification method has been tested in a 

prospective cohort, it may be used in clinical practise, with the 

potential to enhance the existing diagnostic route for people 

with prostate cancer. CNN model shows effectiveness in 

classification of PDAC data when compared to the existing 

ANN model, the experimental findings indicate that the 

suggested CNN model outperformed it. 
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