
Smart-Approach Based Internet of Things and Skyline Query for Multicriteria Decisions for

Travel Services

Oum Elhana Maamra1,2*, Mohamed-Khireddine Kholladi1,2, Okba Kazar3,4, Saad Harous5

1 Faculty of Science Exact, Computer Science Department, University of El-Oued, El Oued 39000, Algeria
2 MISC Laboratory, Abdelhamid Mehri University of Constantine 2, Constantine 25000, Algeria
3 Department of Computer Science, Smart Computer Science Laboratory, University of Mohamed Khider, Biskra 07000,

Algeria
4 Department of Information Systems and Security, College of Information Technology, United Arab Emirate University, Al-

Aïn 15551, UAE
5 Computer Science Department, College of Computing and Informatics, University of Sharjah, Sharjah 27272, UAE

Corresponding Author Email: maamra-oumelhana@univ-eloued.dz

https://doi.org/10.18280/isi.270112 ABSTRACT

Received: 27 September 2021

Accepted: 12 January 2022

The Internet of Things (IoT) and the recent advancements in cloud computing have gained

importance with the surge in the amount of data generated globally. Moreover, the rapidly

increasing applications of the Internet in many scientific and real-time practical applications

have ushered in a new era of complex applications of data flow. Tourism and related

services are routinely accessed by millions of customers worldwide. Furthermore, with

newer, attractive, rapidly growing services, it has become essential for dealers to promote

their services using up-to-date technological tools. The major challenge is to efficiently

determine and select the best travel options conforming to the needs and financial

requirements of the customers. In this study, the use of a dynamic skyline operator for

multicriteria decisions is examined using a time-dependent database to select the best

services. Moreover, the impact of implementing the operator on optimizing resource

consumption is explored. Results indicate that the implementation of this operator is more

efficient than the existing techniques.

Keywords:

Internet of Things, business intelligence and

analytics, skyline query, cloud computing,

data mining, multicriteria decision

1. INTRODUCTION

Nowadays, processing a skyline query has become a crucial

topic in database research as it allows extracting interesting

objects from multidimensional datasets. Skyline query

processing can be employed in many applications requiring

multicriteria decisions without using a cumulative

functionality to identify the best results based on users’

preferences or conditions. The main feature that distinguishes

a skyline query from many other preference queries, such as

TopK queries, is that it is independent of the definition of a

score function while classifying tuples. However, the only

limitation to the functioning of the skyline query is a partial

relationship among the values of each dimension [1]. The

skyline query and its concept can be explained in detail using

practical examples. For example, online tourism booking

allows customers to carefully select their tourism services

based on their needs and financial situation; multiple choices

and options are available for suitable booking services and

low-cost services.

The Internet of Things (IoT) is concerned with connecting

people and physical objects. People can now easily

interconnect with physical objects and services using simple

gear. For example, interconnection smartphones with sensors

deployed in cars and industrial facilities.

This work focuses on applying the principle of skyline

queries to booking services to help users select the best

available service in an IoT context using a distributed

architecture. The selection is performed using a multicriteria

decision (selection) among the best elements within a database

pack considering two factors, namely, quality and minimum

search and selection time.

To fulfill the growing demands of booking and online

tourism services, dynamic skyline operators provide active

assistance for reducing the search time and cost of the offered

services based on the users’ requirements. Therefore, the main

objective of this study is to propose an efficient approach for

searching and selecting the best booking services based on the

customers’ needs in the shortest possible time. The rest of this

paper is organized as follows. In Section 2, an overview of

business intelligence and analytics, IoT, cloud computing, and

skyline query is provided. In Section 3, the relevant leading

research on skyline queries and skyline-join queries in

distributed databases is described. In Section 4, the proposed

architecture modeling is described along with the motivation

for its adoption. In Section 5, the proposed approach is

presented. In Section 6, the implementation and result

evaluation are described. Finally, in Section 7, conclusions and

future research directions are discussed.

2. RELATED WORK

In this section, we first briefly present the purpose of using

the cloud computing and business intelligence and present the

purpose of using the cloud computing and business

Ingénierie des Systèmes d’Information
Vol. 27, No. 1, February, 2022, pp. 101-109

Journal homepage: http://iieta.org/journals/isi

101

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270112&domain=pdf

intelligence and analytics in this study. Then, we introduce the

success of approaches based on the Internet of Things for

reservations systems. Finally, we review related works for

distributed databases applications by using skyline query

approaches.

2.1 Business intelligence and analytics

Business intelligence and analytics (BI&A) has become a

significant topic for many researchers and practitioners. This

is attributed to the remarkable impact of data-related problems

on the technologies, systems, practices, methodologies, and

applications that analyze critical business data, and the

inevitability of establishing new approaches and terms for

solving problems in contemporary business organizations [2].

Over the years, a huge amount of historical data has been

collected various types structured and unstructured data. Such

data are crucial for small and large business organizations.

Successful companies make strategic business decisions based

on the analysis of such data. For further improvement,

business organizations must implement integrated data

management systems and use BI&A techniques. Big data

analytics have several applications related to many academic

and industrial fields [3].

2.2 Cloud computing

Cloud computing is a common solution for managing high-

speed computing using large-scale databases. This

revolutionary concept allows the enhanced use of distributed

resources [4]. Moreover, the data -warehousing approach has

currently become a popular and efficient solution that can

improve decision-making in companies [5].

2.3 Smart-approach based Internet of Things for

reservation systems

In an IoT architecture, sensors collect a wide variety of

information from their closest environments. The gathered

data are sent via gateways from objects (different devices) to

the cloud and vice versa. The gateways enable data

preprocessing and filtering before sending the data to the cloud.

Such data may also be transferred to the cloud for detailed

processing and storing. Furthermore, the gateways ensure the

transit of the control commands from the cloud to the objects

(things) [6]. Subsequently, actuators within these objects

(things) execute these control commands [7]. The services

provided by the IoT include booking services reliant on

distributed and heterogeneous data, where the user seeks to

obtain appropriate booking services in a reasonable time.

Furthermore, scientific analysis is required for big businesses

in this field to make strategic decisions, thereby improving the

quality of services provided to the user.

Sagar et al. [8] proposed a vehicle-booking reservation

system using IoT. They employed automatic car parking using

a microcontroller and adopted the global system for mobile

communications to monitor available space for booking via a

mobile application.

2.4 Skyline query approaches for distributed databases

applications

The skyline query [9] is a popular approach for minimizing

the search space to select only few data objects exhibiting

certain characteristics.

Let D be a d-dimensional database; d1, ..., dm denote the

dimensions of the Skyline; for example, price, distance to the

beach, rating, ect. A tuple p = (p1,...,pk, pk+1,...,pl,

pl+1, ...,pm, pm+1,...,pn)dominates tuple q = (q1,...,qk,

qk+1,...,ql, ql+1,...,qm, qm+1,...,qn) if p is not worse than q in

any d dimension and p is better than q in no less than one d

dimension. “The skyline query is defined as the process of

recovering a set of points where each one is not dominated by

another point [10]. It has been applied in several multicriteria-

based decision-making applications. Search database systems

[11] web service composition [12], and routing in wireless ad

hoc networks [13] are examples of such applications.

Skyline queries have been used in many scenarios and

configurations. For instance, a skyline query is usually used

for handling large or anticorrelated datasets. Moreover, it can

be used when the customer is keen to inspect a particular

subspace rather than the entire data space or when the users or

customers show interest in specific constraints. Each

constraint is typically expressed as a range along a dimension

of the dataset [14]. In a study by Borzsony et al. [9] the skyline

operator in large-scale datasets offers three algorithms: block-

nested-loops (BNL), divide-and-conquer, and B-tree-based

schemes. Zaman and Morimoto [10] proposed area skyline

query for selecting good locations in maps.

The dynamic skyline query [15, 16] is a type of query in

which the coordinates of each point are given by a set of

distance (dynamic) functions, which consider the distance

between a given query/reference point q and a point p of the

original dataset [14].

Zou et al. [17] derived a pruning rule that leverages graph

properties to determine the candidates for the problem of

dynamic skyline queries in a large graph (hereinafter, a DSG-

query). To efficiently process a query, they used a filter-and-

refine framework. They showed that the DSG-query is

answered and short distances between the summits are

computed in O(H). Here, H represents the number of maximal

hops between any two summits.

Many methods have been developed for skyline-join

queries in distributed and no distributed environments, where

data are stored in multiple tables requiring the existence of join

operations between them to compute the final skyline and then

propose efficient approaches for sharing the join processing

cost with the skyline computation cost [14]. For example,

Vlachou et al. [18] SFSJ (Sort-First-Skyline-Join) can

compute the correct skyline set by accessing only a subset of

the input tuples, i.e., it exhibits the early termination property.

It can be easily implemented in existing database systems, as

it relies on a common infrastructure. However, this algorithm

is not practical for complex database systems.

Sun et al. [19] proposed a distributed adaptation of SaLSa

and an iterative algorithm to calculate the skyline join in a

distributed manner. This algorithm is a hybrid of the skyline

and joins operations. Raghavan and Rundensteiner [20]

established a ProgXe framework for skyline join calculation.

This framework supports progressive result generation.

ProgXe divides the input relations using a multidimensional

grid access approach. It transforms the execution of Multi

Criteria Decision Support (MCDS) queries, comprising

skyline over joins, to be non-blocking by progressively

generating results early and often restricts the framework to

joins using base tables; however, in practice, the join may also

be calculated over complex relational expressions.

Jin et al. [21] described a skyline operator on multirotational

102

tables. This operator combines a Trimerge join technique with

skyline processing. Given A and B, two relations for

computing the skyline over A >< B, where a one-to-many

relationship exists between A and B such that the join

operation is performed if A has a primary key corresponding

to a foreign key in B. Further, the join operation on A and B

with a many-to-many relationship can be solved by

introducing a third table C that contains the attributes of B and

the join attribute of A; then, a join between A and C and one

between the resultant join and B can be performed.

Vlachou et al. [22] proposed an algorithm called SKYPEER

in peer-to-peer networks, where the dataset is horizontally

distributed across the peers. First, in a preprocessing phase

each peer Pi computes the local ext-skyline of its dataset Si

and sends it to the associated super-peer. The super-peer

calculates its own ext-skyline, by merging the local skyline

results. This result is a threshold value. In processing request

the SKYPEER forwards the skyline query requests among

peers according to local results.

Kalyvas et al. [23] used skyline queries and introduced the

time factor in traditional skyline algorithms in temporal

databases.

Zhang et al. [24] proposed a skyline join algorithm called

Skyjog for two or more relations based on group division

approach. For each relation, tuples are grouped according to

the join attribute. This proposed algorithm divides the tuples

into diverse partitions depending on the dominance

relationships of inter-group and intra-group. The final result of

Skyjog is the tuples generated by some join combinations to

be skyline points.

Table 1. Comparison between different approaches

Works

Multi criteria decision

skyline

query type
Data type

IOT

architecture

Sagar et al.

(2016) [8]
none

Electric

signals
+

Borzsony (2001)

[9]

Operator

skyline

Relational

database
-

Zaman et al.

(2016) [10]

Spetial

skyline

query

Maps data

(area)
-

Kalyvas

&Tzouramanis

(2017) [14]

Temporal

skyline

query

Temporal

Databases
-

Zou et al. (2010)

[17]

Dynamic

skyline

query

Graph

properties
-

Vlachou et al.

(2011) [18]

Skyline join

algorithm

Relational

database
-

Sun et al. (2008)

[19]

Join skyline

query

Distributed

data
-

Raghavan et al.

(2010) [20]

Join skyline

query

Distributed

data
-

Jin et al. (2007)

[21]

Join skyline

query

Multi-

relational

databases

-

Kertiou et al.

(2018) [6]

Dynamic

skyline

query

Distributed

data
+

Zhang et al.

(2016) [24]

Skyline join

algorithm

Multiple

relations
-

Amiruzzaman et

al. (2020) [25]

Multi-

dimensional

Skyline

query

Single data

set
-

Amiruzzaman and Jamonnak [25] proposed web-based

system focusing on customers’ stratification with used the

multidimensional Skyline query. This system provides ranks

of shopping malls based on customers’ preferences and helps

to find best shopping malls based on users’ requirements.

In Table 1, we compare the presented related works of the

multicriteria decision such that the comparison lines are

skyline query type, data type and distributed architecture.

In brief, the previous studies on skyline were restricted to

either single relation or multi-relations in distributed and no

distributed environments. Moreover, these approaches did not

consider the fact that IoT systems are naturally distributed.

The present work focuses on exploiting the distributed nature

of IoT to employ a local join dynamic skyline on the gateway

level and then proceed to employ a global join dynamic

skyline on the server level for a typical example (i.e., booking

services). The main goal is to search and select the best

available services considering users’ requests.

In this work, the skyline queries were used for tourism-

condition search and selection of the best booking services.

The proposed scheme achieves optimization of the time

required to execute queries and reduces resource consumption,

thereby improving the quality of decision-making. Further

details of our proposed optimization are as presented below:

• The focus is on the dynamic skyline during user-based

booking service selection to remove the no dynamic

skyline booking services that are dominated by dynamic

skyline booking services; in other words, dynamic skyline

booking services have better user-based responses with

respect to the users’ requests and the number of available

booking services than no dynamic skyline booking

services. The dynamic skyline returns the best services to

answer the users.

• This work exploits the parallel nature of IoT architectures,

wherein the architecture comprises distributed gateways

in the network and is connected to a local server in cloud

computing. Each local server manages the data of

different travel services before locally responding to users’

requests. Thereafter, the global server implements a

global dynamic skyline operator to gather the results of all

local services; ultimately, the final answer is provided

based on the client requirements.

• The server in this architecture is linked to a predefined

database comprising services already customized based

on the clients’ selections. This database is primarily used

to analyze different requests related to tourism. This

analysis effectively improves access to high-quality

services and offers a considerable amount of tourism-

service data in a short duration. Moreover, it creates and

boosts competition among the businesses that offer

similar services to meet the client requirements.

3. MOTIVATION AND ARCHITECTURE MODELING

In this section, the concept of the proposed technology is

presented by providing an overview of the proposed

architecture for selecting appropriate travel services. Further,

a detailed description of the overall implementation flow and

action steps is described.

3.1 Booking service detection architecture

In this work, the proposed structure is divided into three

103

sections. In the first section, the users’ request is first

introduced in the interface system. In the second section, the

global server employs a global booking skyline (GBS) by

gathering the results of all local services and subsequently

provides the final answer based the clients’ specified needs.

Moreover, the server of this architecture is linked to a service

database established in advance using clients’ selections; this

database is essentially used to analyze different tourism

requirements preferred by the user using methods such as data

mining. This approach helps make decisions for improving

services to gain as many customers as possible. In the third

section, the local booking skyline (LBS) is employed at the

local server level. This section consists of gateways dispersed

in the network and connected to a local server in cloud

computing. Each local server manages a data warehouse of

different travel services, and each local server locally responds

to users’ requests. Thus, in this study, the quantity of data that

must be treated during the search is reduced and the best

booking services are selected. Figure 1 shows the proposed

architecture. Details of the three sections are provided below:

Figure 1. Architecture for detecting booking services

Section 1-the requests and responses of users are introduced

in the interface system.

Section 2-The GBS comprises a global server and a

database.

• Global server: This server processes the consumer

requests, combines the results of all local servers, delivers

the final answer to the users, and stores users' preferred

selections.

• Database of users’ preferred choices: The database is

linked to the global server and is used for analyzing

different tourism requirements preferred by the users

using data mining.

Section 3-The LBS comprises the local servers, gateways,

and tourism services.

• Local servers: They are responsible for sending the server

requests and collecting the data from the gateways.

Additionally, they manage a data warehouse of different

tourism services.

• Gateway: The gateway is responsible for navigating data

from tourism services to the local server in the cloud and

vice versa. It also preprocesses and filters the data before

forwarding them to the local server. This step reduces the

amount of data to be processed and stored. Furthermore,

the gateway handles the sensor updates of travel services.

• Tourism services: They are objects such as hotels,

airplanes, cars, and restaurants. A sensor is mounted on

each one of these objects for data collection. These objects

transfer the data over a network using actuators. The

sensors associated with these objects send their

measurements to the corresponding gateways.

3.2 System description and modeling

The problem addressed in this study is how to select and

book a subset of best various travel services based on the

clients’ conditions from large groups of tourism services

offered on the Internet. The user determines the travel costs

that helps in selecting the services that offer prices appropriate

to the situation of the customer. Consequently, this problem

should be adequately modeled to help represent the problem

of research and efficiently select the most effective elements

from various travel services. Therefore, we propose an

effective technique for solving the problem that has been

addressed.

Our model (Figure 2) shows how a user sends a request and

how research and selection of the best travel service solution

are performed. As for the details of the proposed architecture

shown in Figure 3.

Figure 2. Proposed Processes configuring queries and

searching and selecting the best booking services

Figure 3. Details of the proposed architecture

104

This process contains three layers: User layer, System layer

and Datasets layer.

• User layer: In this layer the user sends a specific request

and implements the basic procedures of process. When

all steps of the process are performed, the user receives

the best results.

• System Layer: In this layer the global server injects the

user’s request into the network to access the database

servers available to work on. After it receives the results

of each server, the global server merges the selected

results. Then, it selects the best result and displays it to

the user.

• Datasets layer: In this layer the server of each dataset

searches and selects the appropriate information for the

customer. Each server sends its results to the global

server.

3.3 Detailed viewpoint of the proposed architecture

Here, the main constructions of the class diagram are

illustrated.

3.4 Functioning viewpoint of the system

Here, a “functional” viewpoint of the system architecture is

presented. Through use cases, we will gain sufficient

information of the system components to define the limits of

the system.

3.4.1 Booking travel services

The following figure (Figure 4) shows our proposed

sequence diagram of booking travel services.

Figure 4. Sequence diagram of booking travel services

3.4.2 Feedback users

Figure 5. Sequence diagram of answer

With regard to answer, the user selection and comment are

stored in the database of clients’ preferred selections; this

database is used for analyzing different tourism services

preferred by the user. Figure 5 shows the proposed sequence

diagram of answer.

4. PROPOSED SKYLINE APPROACH FOR TOURISM

In this section, we discuss in detail the proposed approach

for travel booking using skyline queries in an IoT environment.

4.1 Problem formulation

Let B be a set of booking services categorized as m services,

B={B1, B2, B3, …, Bm}. Each service has a relation in the

database. B1={h1, h2, h3, …., hn}B represents the relation

of hotels, B2={a1, a2, a3, …, ak}B represents the relation of

airplanes, and B3={r1, r2, r3, …, rd}B represents the relation

of restaurants, etc. Each booking service type is classified into

permanent services, which are effective throughout the period

of travel, or temporary services, which are effective at a

specific time during travel. The permanent services are

annotated using the “+” sign (e.g., B+), whereas the temporary

services are annotated using the “−” mark (e.g., B−).

Let C be a set of user conditions, where the common

characteristics of travel services represent join attributes J

between the relations; let d denote a dynamic scoring attribute

between the relations. Let K be a set of numerical attributes in

the schema of every relation, where K=(K1 ∪ K2 ∪ K3 ∪ ... ∪
Km).

For example, the number of services is m=3(R1=hotels,

R2=planes, R3=restaurant), C={Travel_money, Location,

start_date, date_retoure}; in this case J={Location,

date_travel}, D={Travel_money}, K1={price, nb_star},

K2={price, class}, and K3={price, quality}.

4.1.1 Search space of the booking skyline query

For defining the search space of the LBS, we have a query

<K, J, d> and let B be a table. We can define the search space

of booking skyline BS by achieving the following conditions:

a) BS = B1 ⊳⊲ B2 ⊳⊲ B3...Bm,B𝑖 ∈ BS;

b) ∀att𝑖 ∈ (𝑘 ∪ 𝑑) → ∃𝐵𝑖(𝐵𝑖 ∈ BS) ∧ (att𝑖 ∈ 𝐵𝑖);

c) ∀𝐵𝑖(𝐵𝑖 ∈ BS) → ∃att𝑖(att𝑖 ∈ 𝐵𝑖) ∧ (att𝑖 = price𝑖);

d) In this case, d is the total price of booking services. Hence,

for the best search space, first, we define the travel time using

variable t, where t = date_retoure − start_date; we use the

variable t with the permanent services B+.

∀𝐵𝑖
+(𝐵𝑖

+ ∈ BS) → ∃price𝑖
+(price𝑖

+ ∈ 𝐵𝑖
+) ∧ (price𝑖

+ =
price𝑖 × 𝑡)

For temporary services B−, we use the following definition:

∀𝐵𝑖
−(𝐵𝑖

− ∈ BS) → ∃price𝑖
−(price𝑖

− ∈ 𝐵𝑖
−) ∧ (price𝑖

− =
price𝑖)

Then, we cannot determine BS and the total prices are less

than or equal to the dynamic attribute:

∑ price𝑖
+𝑚

𝑖=1 + ∑ price𝑖
−𝑚

𝑖=1 ≤ 𝑑

105

e) BS’ that has two properties (described above) and fewer

tables than BS cannot be found.

∄ ∑ price𝑗
+ + ∑ price𝑗

−𝑚
𝑗=1

𝑚
𝑗=1 ≤ ∑ price𝑖

+ +𝑚
𝑖=1

∑ price𝑖
−𝑚

𝑖=1 ,j ≠ 𝑖

f) The search space of the distributed booking skyline β for

a query <K, J, d> is defined as follows:

𝛽 = BS1 ∪ BS2 ∪ BS3.. ∪ BSn,BS𝑖 ∈ 𝛽

4.1.2 Local booking skyline domination

For a given booking skyline query <K, J, d> and its search

space BS, assume t1 = (v0, v1, v2,..., vd) and t2 = (v’0, v’1,

v’2,..., v’d) are two tuples of BS. t1 dominates t2 if

∀att𝑖(att𝑖 ∈ 𝐾) ∧ (att𝑖 = price𝑖) → |𝑑 − ∑ 𝑣𝑖

𝑚

𝑖=1

|

≺ |𝑑 − ∑ 𝑣𝑖
′

𝑚

𝑖=1

| ∧ ∃att𝑗(att𝑗 ∈ 𝑘):v𝑗
′ ≤ 𝑣𝑗

For clarity, we use ti <dom tj to indicate that the tuple ti

booking skyline dominates tj and ∑ price𝑖
𝑚
𝑖=1 ≺𝑑 ∑ price𝑗

𝑚
𝑗=1

to indicate that ti booking skyline dominates tj in the sum of

price services for d.

4.1.3 Global booking skyline domination

The global result set G for a booking skyline query Q = <K,

J, d> in its search space β must have the following properties:

a) ∀𝑡𝑖 ∈ 𝐺 → ∃𝑡𝑗(𝑡𝑗 ∈ 𝛽) ∧ 𝑡𝑗 ≻ 𝑡𝑑𝑜𝑚

𝑖;

b) Suppose ti ∈ G and ti = (v0, v1,..., vm); if atti ∈ K, vi

must satisfy the corresponding conditions.

4.2 Booking skyline query

In this section, we propose an approach for selecting

tourism booking services using distributed databases in an IoT

environment.

Our algorithm for computing the booking skyline enables

the selection of the best tourism services based on the users’

requirements in terms of the cost of travel, location, and travel

time. For joining services (tables) in getaways, we determine

the location as a join attribute between different tables, leading

to the first filtrate in the tables. Tables join is an extension of

the original skyline join. The dynamic skyline query is adapted

to minimize the search space as much as possible to improve

the selection efficiency of the booking services based on the

user conditions. The booking skyline is a set of all the services

not dynamically dominated by any other service with respect

to the distance of a given query service. In particular, we focus

on the booking skyline services for user-based service

selection, where the ones booked via skyline dominated the no

booking skyline services. This is attributed to the fact that the

booking skyline services allow better user results than the non

booking skyline services.

The steps for executing the proposed skyline procedure are

specific in the instructions of Algorithm 1. Table 2 provides

the definition of different abbreviations. As noted in the

section 4. 1, booking services comprises search and selection

processes. It consists of four steps.

Table 2. Different abbreviations used

Abbreviations Definition

Si Local server i

Q User query

GBS Global booking skyline

GBSO Ordering booking services of GBS

LBS(Si) Local booking skyline of Si

BSi Dataset of the booking server Si

Bi Table of the travel booking service i

V
Indicates whether service i not temporary

during travel

J Join attribute

Ki Numerical attributes of Bi

Gi Group tuples of Bi by J

D Scoring attribute

LG
Temp table for union selected tuples of

different tables

4.2.1 Capturing the user request

Once a consumer logs in to the users interface, he/she enters

his/her requirements through a web interface. Then, the

interface manager forwards the request to the server, which

sends it to the gateways.

Algorithm 1 Best booking service selection at local

servers.

Input: Local Servers S, Q;

Output: GBS and GDSR;

1: Initialize:

2: Q: capturing the user request;

3: for each Si do

4: LBS(Si): computing the local booking skyline (Si, Q);

5: end for

6: GBS: computing the global booking skyline from LBS;

7: GBSR: ordering booking services of GBS;

4.2.2 Computing the LBS

After the gateways receive the user’s request, each local

server in the different gateways calculates the LBS. Algorithm

2 illustrates the process of LBS as follows.

Algorithm 2 Local booking skyline

input: BS, v, K, J, d

output: result of the local booking skyline

1: Initialize:

2: for Bi ∈ BS do

3: group tuples of Bi by J

4: if v then

5: for tj of Gi do

6: pricej = pricej. t

7: LG = LG join Gi

8: end for

9: for each tuples ti of LG do

10: if sum (pricek) ≤ d then

11: for ki Ki do

 12: if ∈ k’j Ki and k’j ≠ pricei: k’j < ki then

13: record ti into LBS

14: end for

15: end for

16: end for

17: return LBS

The user’s requirements are divided into three parts: part

one for joining relations, part two for determining the scoring

106

attribute between the relations, and part three represents the

numerical attributes of every relation. Moreover, the user

defines the scoring attribute, which is the main point in the

booking skyline algorithms.

After the user’s request arrives, the LBS algorithm group

begins the identification of tuples using the join attribute. It is

the first filter operation of booking services. Then, we check

the service type; if it is not temporary during the travel, we

multiply the price attribute of table Bi at a period of travel t.

The second filtering process of reserving data starts from

the temporary table LG. For each tuple ti of LG, we calculate

the total travel cost and compare it with the scoring attribute

of user d; if it agrees with the condition, we apply the skyline

query at the numerical attributes. If the tuple agrees with all

conditions, we add it in the result of computing LBS.

Step 3—Computing the GBS: after concluding the result of

the LBS server, the result is transmitted to the global server,

which merges the results of all the booking services and

computes the GBS. Algorithm 3 illustrates the process of

determining the GBS as follows:

Algorithm 3 Global booking skyline

input: S, J, K, d

output: result of the global booking skyline

1: Initialize:

2: for Si∈ S do

3: LBSi = LocalBookingSkyline (Si, J, K, d)

4: GBS = GBS ∪ LBSi

5: end for

6: for each tuples ti of GBS do

7: for each tuples tj of GBS do

8: if tj dominated b ti then

9: remove tj from GBS

10: else

11: remove ti from GBS

12: end for

13: end for

14: return GBS

A GBS algorithm runs right after the results of the local

servers are gathered from distributed gateways. This algorithm

manages to combine all results into a temporary GBS table.

Then, the skyline query is applied to the GBS tuples, where

delete dominated tuples by another tuples.

Step 4—Ordering booking services: immediately after

calculating the GBS, the final result is integrated within the

algorithm of ranking booking results. Then, the result becomes

accessible to be displayed to the user.

5. IMPLEMENTATION AND RESULT EVALUATION

In this section, the proposed architecture model and the

datasets used are described. Moreover, the results of the

analysis of different cases are discussed. Finally, a comparison

between the performance of the proposed skyline model and

that of the iterative algorithm [19] is presented.

5.1 Implementation

Our proposed algorithms that were implemented in Java

Eclipse Helios as a prototype of the proposal with a private

network were composed of three computational nodes. The

data are saved in MySQL database. The first form allows the

users to submit their preferences for multiple booking and

travel services (hotels, airplanes, restaurants, etc.) according to

the dynamic scoring attribute. In this case, to achieve the finest

results with a minimum search time, the payment currency

used by the customer is predefined. The hardware environment

used for the experiments consists of a personal computer with

an Intel Core i5, 3.2-GHz processor with 4-GB RAM.

5.2 Data collection

The IoT is crucial for executing the proposed query; hence,

it is considered integration environment for the information

related to all travel services. In fact, there are no existing

datasets with the data of various tourism services; hence, a

synthetic 100,000 tuple dataset is generated on three local

servers. The experiences have been repeated ten times, and we

have taken the average for analysis the results.

5.3 Performance analysis

For performance analysis, the proposed query is examined

based on its multiple parameters. The main factor based on

which any query is evaluated is the processing time. Therefore,

the impact of changing the number of booking services and the

size of the datasets on processing time is analyzed. Finally, the

impact of the number of services on the number of reservations

based on the clients’ preferences is investigated.

5.4 Effect of the number of services on processing time

When evaluating the effect of the number of services on the

processing time, LBS and GBS are separately measured.

Further, the number of services is changed from 2 to 6. The

size of datasets is set constant at 50,000 tuples. The obtained

results (Figure 6) show that increasing the number of services

increased the processing time for both LBS and GBS.

However, the increase in the processing time was higher in the

case of LBS than in the case of GBS because of the increasing

join operations between different services (tables) within the

LBS itself.

Figure 6. Effect of the number of services on the processing

time for local and global booking skylines

5.5 Effect of the size of datasets on processing time

The impact of the size of the datasets on the processing time

is examined for both LBS and GBS. The size of the datasets is

increased by generating new data, from 1000 tuples to 100,000

tuples.

Figure 7 illustrates the change in the required processing

time with an increase in the size of the datasets following the

107

user’s requirement. The analysis findings indicate that when

the dataset size was less than 1000 tuples, the difference in the

processing times of LBS and GBS significantly decreased.

However, immediately after the dataset size exceeded 1000

tuples, the processing time increased until reaching the dataset

size of 50,000 tuples.

Beyond 50,000 tuples, the difference in the processing times

of LBS and GBS is significantly large.

Figure 7. Effect of the dataset size on the processing time for

local and global booking skylines

5.6 Effect of the number of services on the number of

booking services

Figure 8 shows the impact of the number of tourism services

(tables) on the number of booking service results. During these

experiments, the principal user’s requirement is retained

constant in all cases when the number of services is changed.

The obtained results clearly reveal that increasing the number

of services significantly increased the number of reservation

results.

Figure 8. Effect of the number of booking selected for

increasing numbers of services and dataset size

5.7 Comparison and results

The steps of the iterative algorithm can be described as

follows:

• Compute the local skyline points for each table,

• Calculate the result of partial skyline join,

• Compile the results of the partial skyline join.

In contrast, the proposed skyline model started by

computing the local join dynamic skyline, compiling its results,

and immediately computing the resulting global join dynamic

skyline point. To compare the performance of the proposed

skyline model and SaLSa in terms of the processing time, the

used datasets size is 500,000 and the number of booking

services is 6. Figure 9 shows the results, which clearly indicate

that the proposed skyline model achieves better processing

time than the iterative algorithm. Because repeated computing

results in high-energy consumption with longer processing

time, this is why the proposed model outperforms the iterative

algorithm.

Figure 9. Performance comparison of the proposed model

with the iterative algorithm

6. CONCLUSION AND FUTURE WORK

In this study, the problem of the dynamic skyline operator

with join in applied in a multicriteria decision-making

environment is examined. An IoT architecture is considered.

The aim is to establish temporal databases in a particular

skyline query processing implemented in tourism booking

services. The proposed approach relies on considering

distributed gateways on the network connected with a local

server within a cloud computing framework. Every local

server manages a data warehouse with the data on different

tourism services; simultaneously, each local server locally

responds to the user’s requests. Subsequently, the server runs

a global dynamic skyline operator to collect all available local

results, thus providing a suitable response based on

customized selections of the client. In fact, the server of this

architecture is linked to a database containing customized

service preferences of multiple clients. A data mining tool is

primarily used to analyze the incoming requests regarding

travel services of this database. The proposed model achieves

high performance; however, to realize less processing time and

save resources, the best available traveling services based on

the users’ requests must be selected. Future works may involve

parallel calculation techniques such as MapReduce at

distributed local servers.

REFERENCES

[1] Maabout, S., Ordonez, C., Wanko, P.K., Hanusse, N.

(2016). Skycube materialization using the topmost

skyline or functional dependencies. ACM Transactions

on Database Systems (TODS), 41(4): 1-40.

https://doi.org/10.1145/2955092

[2] Chen, H., Chiang, R.H., Storey, V.C. (2012). Business

intelligence and analytics: From big data to big impact.

MIS Quarterly, 36(4): 1165-1188.

https://doi.org/10.2307/41703503

[3] Boinepelli, H. (2015). Applications of big data. Big Data,

108

161-179. https://doi.org/10.1007/978-81-322-2494-5_7

[4] Mouha, R.A. (2021). Internet of Things (IoT). Journal of

Data Analysis and Information Processing, 9(2): 77-101.

https://doi.org/10.4236/jdaip.2021.92006

[5] Jadeja, Y., Modi, K. (2012). Cloud computing-concepts,

architecture and challenges. In 2012 International

Conference on Computing, Electronics and Electrical

Technologies (ICCEET), pp. 877-880.

https://doi.org/10.1109/ICCEET.2012.6203873

[6] Kertiou, I., Benharzallah, S., Kahloul, L., Beggas, M.,

Euler, R., Laouid, A., Bounceur, A. (2018). A dynamic

skyline technique for a context-aware selection of the

best sensors in an IoT architecture. Ad Hoc Networks, 81:

183-196. https://doi.org/10.1016/j.adhoc.2018.08.011

[7] Teste, O. (2010). Elaboration d'entrepôts de données

complexes. arXiv preprint arXiv:1005.0220.

[8] Sagar, S.V., Balakiruthiga, B., Kumar, A.S. (2016).

Novel vehicle booking system using IOT. In 2016 Online

International Conference on Green Engineering and

Technologies (IC-GET), pp. 1-5.

https://doi.org/10.1109/GET.2016.7916811

[9] Borzsony, S., Kossmann, D., Stocker, K. (2001). The

skyline operator. In Proceedings 17th International

Conference on Data Engineering, pp. 421-430.

https://doi.org/10.1109/ICDE.2001.914855

[10] Zaman, A., Morimoto, Y. (2016). Area skyline query for

selecting good locations in a map. Journal of Information

Processing, 24(6): 946-955.

https://doi.org/10.2197/ipsjjip.24.946

[11] Babanejad, G., Ibrahim, H., Udzir, N.I., Sidi, F.,

Aljuboori, A.A.A. (2014). Finding skyline points over

dynamic incomplete database. In Malaysian National

Conference of Databases, pp. 60-64.

http://dx.doi.org/10.13140/2.1.1270.8162

[12] Wu, J., Chen, L., Yu, Q., Kuang, L., Wang, Y., Wu, Z.

(2013). Selecting skyline services for QoS-aware

composition by upgrading MapReduce paradigm.

Cluster Computing, 16(4): 693-706.

https://doi.org/10.1007/s10586-012-0240-9

[13] Abourezq, M., Idrissi, A., Yakine, F. (2016). Routing in

wireless Ad Hoc networks using the Skyline operator and

an outranking method. In Proceedings of the

International Conference on Internet of Things and

Cloud Computing, pp. 1-10.

https://doi.org/10.1145/2896387.2900333

[14] Kalyvas, C., Tzouramanis, T. (2017). A survey of skyline

query processing. arXiv preprint arXiv:1704.01788.

[15] Papadias, D., Tao, Y., Fu, G., Seeger, B. (2003). An

optimal and progressive algorithm for skyline queries. In

Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, pp. 467-478.

https://doi.org/10.1145/872757.872814

[16] Papadias, D., Tao, Y., Fu, G., Seeger, B. (2005).

Progressive skyline computation in database systems.

ACM Transactions on Database Systems (TODS), 30(1):

41-82. https://doi.org/10.1145/1061318.1061320

[17] Zou, L., Chen, L., Özsu, M.T., Zhao, D. (2010). Dynamic

skyline queries in large graphs. In International

Conference on Database Systems for Advanced

Applications, pp. 62-78. https://doi: 10.1007/978-3-642-

12098-5_5

[18] Vlachou, A., Doulkeridis, C., Polyzotis, N. (2011).

Skyline query processing over joins. In Proceedings of

the 2011 ACM SIGMOD International Conference on

Management of Data, pp. 73-84.

https://doi.org/10.1145/1989323.1989332

[19] Sun, D., Wu, S., Li, J., Tung, A.K. (2008). Skyline-join

in distributed databases. In 2008 IEEE 24th International

Conference on Data Engineering Workshop, pp. 176-181.

https://doi.org/10.1109/ICDEW.2008.4498313

[20] Raghavan, V., Rundensteiner, E.A. (2010). ProgXe:

Progressive result generation framework for multi-

criteria decision support queries. In Proceedings of the

2010 ACM SIGMOD International Conference on

Management of data, pp. 1135-1138.

https://doi.org/10.1145/1807167.1807300

[21] Jin, W., Ester, M., Hu, Z., Han, J. (2007). The multi-

relational skyline operator. In 2007 IEEE 23rd

International Conference on Data Engineering, pp. 1276-

1280. https://doi.org/10.1109/ICDE.2007.368992

[22] Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis,

M. (2007). Skypeer: Efficient subspace skyline

computation over distributed data. In 2007 IEEE 23rd

International Conference on Data Engineering, pp. 416-

425. https://doi.org/10.1109/ICDE.2007.367887

[23] Kalyvas, C., Tzouramanis, T., Manolopoulos, Y. (2017).

Processing skyline queries in temporal databases. In

Proceedings of the Symposium on Applied Computing,

pp. 893-899. https://doi.org/10.1145/3019612.3019677

[24] Zhang, J., Lin, Z., Li, B., Wang, W., Meng, D. (2016).

Efficient skyline query over multiple relations. Procedia

Computer Science, 80: 2211-2215.

https://doi.org/10.1016/j.procs.2016.05.381

[25] Amiruzzaman, M., Jamonnak, S. (2020). Multi-

dimensional skyline query to find best shopping mall for

customers. In 2020 6th Conference on Data Science and

Machine Learning Applications (CDMA), pp. 71-76.

https://doi.org/10.1109/CDMA47397.2020.00018

109

