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Dynamic modeling and control are research fields that hake kept the attention of 

researchers over the last decades. In this paper we describe a detailed approach to model, 

design and simulate a feedback controller for a quadrotor with the aim of giving the reader 

a detailed procedure to obtain the dynamic model and link this model with a controller 

design strategy. For this purpose, the dynamic model of the Parrot AR. Drone 2.0 was 

obtained using the Newton-Euler formulations. Next, the model was converted to the 

state space, and it was linearized to get the equations to perform a controller gain 

estimation process. Finally, the performance of state feedback controller visualized for 

both the linear and nonlinear models. Results shown that, the challenging goal of 

stabilizing the quadrotor at a desired trajectory, in short time without overshoot problems, 

can be achieved by means of a simple control strategy. 
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1. INTRODUCTION

Nowadays, unmanned aerial vehicles (UAVs) have gained 

an important space, as they can perform an autonomous track 

of pre-programmed routes. This allows performing complex 

aerial exploration tasks, transport of objects that represent a 

high risk for the crew and reconnaissance [1]. The box is a 

UAV consisting of four rotors located at the ends of a 

cruciform structure. A quadrotor is a UAV consisting of four 

rotors located at the ends of a cruciform structure that have 

become very popular in the recent years, due to its simplicity 

and easiness of use even when performing challenging tasks. 

The quadrotor has been studied in a timely manner by the 

scientific community. As they are easy to control compared to 

other UAVs and their ability to perform complex maneuvers 

[2], for their ability to navigate autonomously in structured and 

unstructured environments [3, 4]; for their ability to perform 

cooperative tasks and proper transportation of objects [5]. Also, 

in the detection and tracking of human targets in real time [6]. 

The most important advantages of the quadrotor are stationary 

flights, vertical takeoff, and landing, which allows them to be 

used in densely populated environments. However, a 

disadvantage of this type of UAV is its flight time since they 

cannot perform long duration flight. 

The AR. Drone 2.0 is a quadrotor manufactured by the 

French company Parrot. It has been selected as an 

experimental platform by several researchers due to the large 

number of sensors it carries and its low cost. However, 

because it has an internal controller to stabilize it, it is not 

possible to use the generic dynamic model to model its 

controller [7]. In the literature, it is possible to find works 

related to the modeling and control of these quadrotors [8]. 

Hernandez et al. [9] present a method to identify the modeling 

of the AR. Drone, they also propose a path tracing strategy to 

control its position. Bristeau et al. [10] show the architecture 

of the quadrotor. However, the values of its parameters are not 

disclosed. 

In quadrotor research it is common to use filters and 

observers, because of the noise present in the sensor 

measurements and in some cases, it is not possible to compute 

all the states of the system [11-13]. Mokhtari et al. [14] present 

a feedback linearization and a linear observer for the control 

of a quadrotor. Wang and Shirinzadeh [15] use nonlinear 

observers to estimate the uncertainties and velocities of a 

framer knowing its position [16]. For the case of the AR. 

Drone, Santana et al. [17] use a Kalman filter to determine the 

system states based on the combination of inertial and visual 

data.  

In the present research, the main contribution is the detailed 

description of a useful method, to perform modelling, 

simulation, and state feedback controller gain estimation of a 

quadcopter, by reducing the system to a linear simplification 

at the equilibrium point, to estimate the controller parameters 

that are used to control the real nonlinear model. As a first step, 

a complete dynamic model of the AR.Drone is proposed, 

which is obtained from the combination of the dynamic model 

of a generic quadrotor helicopter and the modeling of the 

internal controller of the AR. Drone. Then, the model is 

converted to the state space, and linearized at the equilibrium 

point. Next, the state feedback controller gains are calculated. 

Finally, the obtained gains are tested and simulated on both the 

linear and nonlinear model. 

2. MATERIALS AND METHODS

If a motion of the quadrotor in a three-dimensional space is 

considered, in which a fixed inertial frame of the earth Fe and 
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to a body frame attached to the quadrotor Fb are established, 

as shown in Figure 1 [18, 19]. 
 

 
 

Figure 1. Quadricopter coordinate system 
 

The position of the quadrotor center of mass would be at 

coordinates 𝜉 = [𝑥, 𝑦, 𝑧]𝑇 and that its orientation is given by the 

Euler angles yaw, roll and pitch 𝜂 = [𝜓, 𝜃, 𝜙]𝑇  and thus the 

dynamic equations of the quadrotor are [20]: 

 

𝑚𝜉̈ = 𝑚𝑔𝑫 + 𝑹𝐹 (1) 

 

𝐼Ω̇ = −Ω × 𝐼Ω + 𝜏 (2) 

 

where, 𝑫 = [0,0, −1]𝑇 , 𝑹 𝜖 𝑆𝑂(3)  is the rotation matrix of 

the quadrotor 𝐹𝑏  with respect to ground 𝐹𝑒 , furthermore the 

vector of forces applied on the quadrotor is 𝐹 = [0,0, 𝑢]𝑇 

where 𝑢  is the main thrust generated by the drone on the 

ground to propel itself. The total mass of the quadrotor is 

denoted as m and g is the gravitational acceleration. The 

variable Ω = [𝑟, 𝑞, 𝑝]𝑇  represents the vector that contains 

angular velocities of the drone, l represents the moment of 

inertia and 𝜏 is the total torque. Taking the functions 𝑠𝑖𝑛(∗) 

and 𝑐𝑜𝑠(∗) as 𝑆 ∗ and 𝐶 ∗ respectively, the rotation matrix is: 

 

𝑅 = (

𝐶𝜃𝐶𝜙 𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓
−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃

) 

 

Moreover, an additional vector �̃� = [�̃�𝜓, �̃�𝜃 , �̃�𝜙]𝑇  can be 

defined representing the generalized torque in the roll, pitch 

and yaw directions. Defined by the following expression: 

 

�̃� = 𝐼−1𝑊−1(−𝐼�̇��̇� − 𝑊�̇� × 𝐼𝑊�̇� + 𝜏) (3) 

 

where the equivalence between the angular velocities with 

respect to the coordinate system and in the mobile reference 

system in the drone is: 

 

Ω = 𝑊�̇� 

 

And the transformation matrix W as defined as: 

 

𝑊 = (
−𝑠𝑖𝑛𝜃 0 1

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0

) 

 

By substituting the dynamic equilibrium equations of forces 

and torques, and their respective clearance, the dynamic model 

of the quadrotor can be reduced by the following equations: 

�̈� =
𝑢

𝑚
(𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙) (4) 

 

�̈� =
𝑢

𝑚
(𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙) (5) 

 

�̈� =
𝑢

𝑚
(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙) − 𝑔 (6) 

 

�̈� = �̃�𝜓 (7) 

 

�̈� = �̃�𝜃 (8) 

  

�̈� = �̃�𝜙 (9) 

 

where the principal thrust and angular moments �̃�𝜓, �̃�𝜃, �̃�𝜙, s 

are the control inputs. In order to model an internal controller 

on board the drone, Eqns. (10) to (13) which relate to the 

vertical acceleration and angular accelerations, can be 

proposed with the inputs of the control system: 

 

�̈� = −𝑎1�̇� + 𝑎3𝑢𝑧 (10) 

 

�̈� = −𝑏1�̇� − 𝑏2𝜙 + 𝑏3𝑢𝜙 (11) 

 

�̈� = −𝑐1�̇� − 𝑐2𝜃 + 𝑐3𝑢𝜃 (12) 

 

�̈� = −𝑏1�̇� − 𝑏2𝜓 + 𝑏3𝑢𝜓 (13) 

 

�̇�3 = 𝑥4 (14) 

 
�̇�4

= (
−𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑠𝑖𝑛(𝑥11) 𝑠𝑖𝑛(𝑥9) cos(𝑥7)

𝑚
)𝑈(1) 

(15) 

 

�̇�5 = 𝑥6 

�̇�6 = −𝑔 + (
𝑐𝑜𝑠(𝑥9)𝑐𝑜𝑠(𝑥7)

𝑚
)𝑈(1) 

(16) 

 

�̇�7 = 𝑥8 

�̇�8 =
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥

𝑥10𝑥12 −
𝐽𝑡𝑝

𝐼𝑥𝑥

𝑥8𝜔 +
𝑈(2)

𝐼𝑥𝑥

 
(17) 

 

�̇�9 = 𝑥10 

�̇�10 =
𝐼𝑧𝑧 − 𝐼𝑥𝑥

𝐼𝑦𝑦

𝑥8𝑥12 −
𝐽𝑡𝑝

𝐼𝑦𝑦

𝑥8𝜔 +
𝑈(3)

𝐼𝑥𝑥

 
(18) 

 

�̇�11 = 𝑥12 

�̇�12 =
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧

𝑥8𝑥10 +
𝑈(4)

𝐼𝑧𝑧

 
(19) 

 

2.1 Modeling of the control system 

 

As can be noticed in the state equations proposed above, the 

flight control system is nonlinear and has special complexity 

due to the presence of the trigonometric functions sine and 

cosine. Therefore, the proposed controller developed consists 

of a feedback controller whose control laws will be obtained 

by means of an equivalent controller linearized only at an 

equilibrium point. 

To obtain the equilibrium point the first thing that was done 

is to equalize the derivatives of each state to zero where the 

equilibrium point of the system is obtained so that the 
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equations are: 

 

0 =  𝑥2 
x0

=  (
𝑠𝑖𝑛(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥9)𝑐𝑜𝑠(𝑥7)

𝑚
)𝑈(1)𝑄 

(20) 

 

0 =  𝑥4 
0

=  (
−𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑠𝑖𝑛(𝑥11)𝑠𝑖𝑛(𝑥9)𝑐𝑜𝑠(𝑥7)

𝑚
)𝑈(1)𝑄 

(21) 

 

0 =  𝑥6 

x0 =  −𝑔 + (
𝑐𝑜𝑠(𝑥9)𝑐𝑜𝑠(𝑥7)

𝑚
)𝑈(1)𝑄 

(22) 

 

0 =  𝑥8 

0 =
𝑙𝑦𝑦 − 𝑙𝑧𝑧

𝑙𝑥𝑥

𝑥10𝑥12 −
𝐽𝑡𝑝

𝑙𝑥𝑥

𝑥10𝜔 +
𝑈(2)𝑄

𝑙𝑥𝑥

 
(23) 

 

0 =  𝑥10 

0 =
𝑙𝑧𝑧 − 𝑙𝑥𝑥

𝑙𝑦𝑦

𝑥8𝑥12 −
𝐽𝑡𝑝

𝑙𝑦𝑦

𝑥8𝜔 +
𝑈(3)𝑄

𝑙𝑥𝑥

 
(24) 

 

0 =  𝑥12 

0 =
𝑙𝑥𝑥 − 𝑙𝑦𝑦

𝑙𝑧𝑧

𝑥8𝑥10 +
𝑈(4)𝑄

𝑙𝑧𝑧

 
(25) 

 

To obtain the equilibrium point we equated the derivatives 

of each state �̇�𝑖  to zero where we have the equilibrium point of 

the system 𝑥𝑄, for the corresponding equilibrium inputs 𝑈(1)𝑄, 

𝑈(2)𝑄 , 𝑈(3)𝑄  and 𝑈(4)𝑄 , thus replacing and simplifying 

Eqns. (14) to (25) we obtain: 

 

0 =  𝑥2 

0 = 𝑠𝑖𝑛(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥9)𝑐𝑜𝑠(𝑥7) 
(26) 

 

0 =  𝑥4 

0 = −𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑠𝑖𝑛(𝑥11)𝑠𝑖𝑛(𝑥9)𝑐𝑜𝑠(𝑥7) 
(27) 

 

0 =  𝑥6 

 

0 =  −𝑔 + (
𝑐𝑜𝑠(𝑥9)𝑐𝑜𝑠(𝑥7)

𝑚
)𝑈(1)𝑄 

 

0 =  𝑥8 

 

0 =
𝑈(2)𝑄

𝑙𝑥𝑥
 

 

0 =  𝑥10 

 

By subtracting 𝑠𝑖𝑛(𝑥9)cos (𝑥7) from (26) and replacing in 

(27) we have the value of 𝑥7 at the equilibrium point: 

 

𝑠𝑖𝑛(𝑥9)𝑐𝑜𝑠(𝑥7) =
𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥7)

𝑠𝑖𝑛(𝑥11)
 

 

0 = 𝑠𝑖𝑛(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑐𝑜𝑠(𝑥11)
𝑐𝑜𝑠(𝑥11)𝑠𝑖𝑛(𝑥7)

𝑠𝑖𝑛(𝑥11)
 

 

0 = 𝑠𝑖𝑛2(𝑥11)𝑠𝑖𝑛(𝑥7) + 𝑐𝑜𝑠2(𝑥11)𝑠𝑖𝑛(𝑥7) 

0 = 𝑠𝑖𝑛(𝑥7)(𝑠𝑖𝑛
2(𝑥11) + 𝑐𝑜𝑠2(𝑥11)) 

 

0 = 𝑠𝑖𝑛(𝑥7) 

 

𝑥7 = 𝑘𝜋 

 

Replacing this value in (27) gives 0 = 𝑠𝑒𝑛(𝑥11)𝑠𝑒𝑛(𝑥9), so 

𝑥9, 𝑥11 = 𝑘𝜋. Finally, the equilibrium point for the twelve state 

variables of the system is 𝑥𝑄 =

[𝑋, 0, 𝑌, 0, 𝑍, 0, 𝑘𝜋, 0, 𝑘𝜋, 0, 𝑘𝜋, 0]𝑇. 
For the linearization of the system, we proceed to obtain the 

matrices A B C D of a system of equivalent behavior at the 

equilibrium point, so the matrices for the linearized system are 

obtained as: 

The system in state space: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 

�̇� = 𝐶𝑥 + 𝐷𝑢 

 

It is equivalent at the break-even point with: 

 

∆�̇� = �̅�∆𝑥 + �̅�𝑢 

∆�̇� = 𝐶̅∆𝑥 + �̅�𝑢 

 

where: 

 

�̅� =
𝜕𝐹

𝜕𝑥
|𝑥𝑄
𝑢𝑄

 

�̅� =
𝜕𝐹

𝜕𝑢
|𝑥𝑄
𝑢𝑄

 

𝐶̅ =
𝜕𝐺

𝜕𝑥
|𝑥𝑄
𝑢𝑄

 

�̅� =
𝜕𝐺

𝜕𝑢
|𝑥𝑄
𝑢𝑄

 

 

Then the value of the equivalent state matrix of the 

linearized system is determined by obtaining the partial 

derivatives of each equation of states with respect to each of 

the states: 

 

�̅� =
𝜕𝐹

𝜕𝑥
|𝑥𝑄
𝑢𝑄

=

[
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑥1

𝜕𝐹1

𝜕𝑥2

𝜕𝐹2

𝜕𝑥1

𝜕𝐹2

𝜕𝑥2

⋯
𝜕𝐹1

𝜕𝑥𝑛

…
𝜕𝐹2

𝜕𝑥𝑛

⋮ ⋮
𝜕𝐹𝑛

𝜕𝑥1

𝜕𝐹𝑛

𝜕𝑥2

⋱ ⋮

…
𝜕𝐹𝑛

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

 

 

Performing this process for the twelve states we obtain the 

matrices A, B, C and D, which can be observed respectively in 

the linearized state space: 

 

A=

(

 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0

0
0

−𝑔
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0

±𝑔
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0

−𝐽𝑡𝑝 ∗
𝜔

𝑙𝑦𝑦
 

1
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0)
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B=

(

 
 
 
 
 
 
 
 
 

0 1 0 0
0
0
0
0

1/𝑚
0
0
0
0
0
0

0
0
0
0
0
0

1/𝑙𝑥𝑥

0
0
0
0

0
0
0
0
0
0
0
0

1/𝑙𝑦𝑦

0
0

0
1
0
0
0
0
0
0
0
0

1/𝑙𝑧𝑧)

 
 
 
 
 
 
 
 
 

      C =

(

 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 

      D =

(

 
 
 
 
 
 
 
 

0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 

 

 

Finally, the linearized equivalent state space is: 

 

∆�̇� =

(

 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0

0
0

−𝑔
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0

±𝑔
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0

−𝐽𝑡𝑝 ∗ 𝜔/𝑙𝑦𝑦 
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0)

 
 
 
 
 
 
 
 

∆𝑥 +

(

 
 
 
 
 
 
 
 
 

0 1 0 0
0
0
0
0

1/𝑚
0
0
0
0
0
0

0
0
0
0
0
0

1/𝑙𝑥𝑥

0
0
0
0

0
0
0
0
0
0
0
0

1/𝑙𝑦𝑦

0
0

0
1
0
0
0
0
0
0
0
0

1/𝑙𝑧𝑧)

 
 
 
 
 
 
 
 
 

(

𝑈(1)

𝑈(2)

𝑈(3)

𝑈(4)

)   (28) 

 

∆�̇� =

(

 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 

∆𝑥 +

(

 
 
 
 
 
 
 
 

0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0)

 
 
 
 
 
 
 
 

(

𝑈(1)

𝑈(2)

𝑈(3)

𝑈(4)

) (29) 

 

Once the linearized equivalent system has been obtained, a 

linear feedback controller is applied, whose objective is to 

transform the state variable in the available input by means of 

a gain matrix k, as follows: 

 

𝑢 = −𝑘𝑥 

 

Then the proposed matrix presents twelve gains 𝑘1 , 𝑘2 , 

𝑘3, …, 𝑘12 that will allow to have control of the outputs from 

the desired inputs for the twelve states and were placed in the 

matrix from the effect that each input has on the respective 

states. So for example if it is known that if the input 𝑈(1) 

corresponds to vertical thrust, this will have an effect on the 

state variables 𝑥5 and 𝑥6 corresponding to the vertical position 

𝑧 and its respective velocity �̇�, the input 𝑈(2) corresponds to 

a momentum in roll so this will have an effect on the state 

variables 𝑥7 and 𝑥8 causing an angular displacement in roll 𝜃 

and its respective angular velocity �̇�. Input 𝑈(3) corresponds 

to a momentum in pitch so this will have effect on state 

variables 𝑥9 and 𝑥10 causing an angular displacement in pitch 

∅ and its respective angular velocity ∅̇. Finally, the input 𝑈(4) 

corresponds to a moment in yaw, so this will have effect on 

the state variables 𝑥11  and 𝑥12  causing an angular 

displacement in pitch 𝜓 and its respective angular velocity �̇�. 

Then the proposed gain matrix is: 

 

𝑘 = (

0 0 0 0 𝑘5 𝑘6 0 0 0 0 0 0
0 0 0 0 0 0 𝑘7 𝑘8 0 0 0 0
0 0 0 0 0 0 0 0 𝑘9 𝑘10 0 0
0 0 0 0 0 0 0 0 0 0 𝑘11 𝑘12

) 

 

So the controller is, for the values of the state variables 𝑥i at 

the desired stabilization point 𝑥i𝛿  for 𝑖 = 1,2,3, … ,12, is: 

 

𝑢 = −(

0 0 0 0 𝑘5 𝑘6 0 0 0 0 0 0
0 0 0 0 0 0 𝑘7 𝑘8 0 0 0 0
0 0 0 0 0 0 0 0 𝑘9 𝑘10 0 0
0 0 0 0 0 0 0 0 0 0 𝑘11 𝑘12

)

(

 
 
 
 
 
 
 
 
 

𝑥1𝛿  
𝑥2𝛿

𝑥3𝛿

𝑥4𝛿

𝑥5𝛿

𝑥6𝛿

𝑥7𝛿  
𝑥8𝛿

𝑥9𝛿

𝑥10𝛿

𝑥11𝛿

𝑥12𝛿)

 
 
 
 
 
 
 
 
 

=(

−𝑘5 𝑥5𝛿 − 𝑘6 𝑥6𝛿

−𝑘7 𝑥7𝛿 − 𝑘8 𝑥8𝛿

−𝑘9 𝑥9𝛿 − 𝑘10 𝑥10𝛿

−𝑘11 𝑥11𝛿 − 𝑘12 𝑥12𝛿

) 

 

Since the system to be controlled is �̇� = 𝐴𝑥 + 𝐵𝑢, then by 

means of the input found as a function of gains it can be 

rewritten as: 
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𝐵𝑢 =

(

 
 
 
 
 
 
 
 
 

0 1 0 0
0
0
0
0

1/𝑚
0
0
0
0
0
0

0
0
0
0
0
0

1/𝑙𝑥𝑥

0
0
0
0

0
0
0
0
0
0
0
0

1/𝑙𝑦𝑦

0
0

0
1
0
0
0
0
0
0
0
0

1/𝑙𝑧𝑧)

 
 
 
 
 
 
 
 
 

(

−𝑘5 𝑥5𝛿 − 𝑘6 𝑥6𝛿

−𝑘7 𝑥7𝛿 − 𝑘8 𝑥8𝛿

−𝑘9 𝑥9𝛿 − 𝑘10 𝑥10𝛿

−𝑘11 𝑥11𝛿 − 𝑘12 𝑥12𝛿

)    =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0
0

−𝑘5 𝑥5𝛿 − 𝑘6 𝑥6𝛿

𝑚
0

−𝑘7 𝑥7𝛿 − 𝑘8 𝑥8𝛿

𝑙𝑥𝑥

0
−𝑘9 𝑥9𝛿 − 𝑘10 𝑥10𝛿

𝑙𝑦𝑦

0
−𝑘11 𝑥11𝛿 − 𝑘12 𝑥12𝛿

𝑙𝑧𝑧 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Finally, by summing the matrices 𝐴𝑥𝛿 + 𝐵𝑢, the following is obtained: 

 

�̇� =

(

 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0

−𝑘5/𝑚
0
0
0
0
0
0

0
0
0
1

−𝑘6/𝑚
0
0
0
0
0
0

0
0

−𝑔
0
0
0

−𝑘7/𝑙𝑥𝑥

0
0
0
0

0
0
0
0
0
1

−𝑘8/𝑙𝑥𝑥

0
𝑤
0
0

±𝑔
0
0
0
0
0
0
0

−𝑘9/𝑙𝑦𝑦

0
0

0
0
0
0
0
0

−𝐽𝑡𝑝/𝑙𝑥𝑥 

1
−𝑘10/𝑙𝑦𝑦

0
0

0
0
0
0
0
0
0
0
0
0

−𝑘11/𝑙𝑧𝑧

0
0
0
0
0
0
0
0
0
1

−𝑘12/𝑙𝑧𝑧)

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝑥1𝛿  
𝑥2𝛿

𝑥3𝛿

𝑥4𝛿

𝑥5𝛿

𝑥6𝛿

𝑥7𝛿  
𝑥8𝛿

𝑥9𝛿

𝑥10𝛿

𝑥11𝛿

𝑥12𝛿)

 
 
 
 
 
 
 
 
 

 

 

Furthermore, if we limit the range of rotation about the axes between −𝜋 < ∅ < 𝜋 then ±𝑔 = 𝑔 and applying the equilibrium 

point the matrix A the final system is: 
 

𝐴 =

(

 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0

−𝑘5/𝑚
0
0
0
0
0
0

0
0
0
1

−𝑘6/𝑚
0
0
0
0
0
0

0
0

−𝑔
0
0
0

−𝑘7/𝑙𝑥𝑥

0
0
0
0

0
0
0
0
0
1

−𝑘8/𝑙𝑥𝑥

0
𝑤
0
0

𝑔
0
0
0
0
0
0
0

−𝑘9/𝑙𝑦𝑦

0
0

0
0
0
0
0
0

−𝐽𝑡𝑝/𝑙𝑥𝑥 

1
−𝑘10/𝑙𝑦𝑦

0
0

0
0
0
0
0
0
0
0
0
0

−𝑘11/𝑙𝑧𝑧

0
0
0
0
0
0
0
0
0
1

−𝑘12/𝑙𝑧𝑧)

 
 
 
 
 
 
 
 
 

 

 

where, A is an element of great importance for the analysis due 

to the fact that by finding the eigenvalues of the matrix the 

characteristic polynomial can be found, which when equated 

to the poles located in the appropriate geometric location will 

allow a control action. The eigenvalues and the characteristic 

polynomial are obtained as shown in the following equation: 
 

(𝑠 + 𝑎)12 = |𝑆𝐼 − 𝐴| (30) 

 

where, (𝑠 + 𝑎)12  represents the location of the poles of the 

new stable and controlled system, which will be located in the 

position 𝑠 = −𝑎, which is appropriate since in this way it is a 

stable system since the poles are all located in the negative 

half-plane for 𝑥, where as a has 𝑎 higher value stability will be 

reached in less time, and |𝑆𝐼 − 𝐴| is the method by which the 

characteristic polynomial of the system is obtained. 

By making the poles of the controlled system equal to the 

poles of the characteristic polynomial the system is controlled 

by the gains 𝑘1, 𝑘2, 𝑘3, …, 𝑘12. 

Developing the left-hand side of the equation we have the 

polynomial: 

(𝑠 + 𝑎)12 = 𝑠12 + 12𝑎𝑠11 + 66𝑎2𝑠10 + 220𝑎3𝑠9 + 220𝑎3𝑠9

+ 495𝑎4𝑠8 + 792𝑎5𝑠7 + 924𝑎6𝑠6 + 792𝑎7𝑠5

+ 495𝑎8𝑠4 + 220𝑎9𝑠3 + 66𝑎10𝑠2 + 12𝑎11𝑠
+ 𝑎12 

 

Given the complexity of the system and the equations 

involved, a code was developed in Matlab software to obtain 

the characteristic polynomial. Then, from the coefficients of 

each degree of the equation, eight equations are generated to 

calculate the eight gains. 

By executing the eight equations of the controller were 

obtained, since although the equations are of degree 12 the 

elements of degree 𝑠0 , 𝑠1 , 𝑠2 , 𝑠3 , and 𝑠4  do not have 

coefficients. Being the following equations: 

 

𝑒𝑞1 = (𝑘5 ∗ 𝑘7 ∗ 𝑘9 ∗ 𝑘11)/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) = 495 ∗ 𝑎ˆ8 

 
𝑒𝑞2 = (𝑘5 ∗ 𝑘7 ∗ 𝑘9 ∗ 𝑘12 + 𝑘5 ∗ 𝑘7 ∗ 𝑘10 ∗ 𝑘11 + 𝑘5 ∗ 𝑘8 ∗ 𝑘9

∗ 𝑘11 + 𝑘6 ∗ 𝑘7 ∗ 𝑘9 ∗ 𝑘11)

/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 792 ∗ 𝑎ˆ7 

 

 

𝑒𝑞3 = (𝑘5 ∗ 𝑘7 ∗ 𝑘10 ∗ 𝑘12 + 𝑘5 ∗ 𝑘8 ∗ 𝑘9 ∗ 𝑘12 + 𝑘5 ∗ 𝑘8 ∗ 𝑘10 ∗ 𝑘11 + 𝑘6 ∗ 𝑘7 ∗ 𝑘9 ∗ 𝑘12 + 𝑘6 ∗ 𝑘7 ∗ 𝑘10 ∗ 𝑘11 + 𝑘6 ∗ 𝑘8 ∗ 𝑘9 ∗ 𝑘11

+ 𝑘7 ∗ 𝑘9 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝑘5 ∗ 𝑘9 ∗ 𝑘11 + 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘7 ∗ 𝑘11 + 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘7 ∗ 𝑘9 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘5 ∗ 𝑘11 ∗ 𝑤)

/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 924 ∗ 𝑎ˆ6 
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𝑒𝑞4 = (𝑘5 ∗ 𝑘8 ∗ 𝑘10 ∗ 𝑘12 + 𝑘6 ∗ 𝑘7 ∗ 𝑘10 ∗ 𝑘12 + 𝑘6 ∗ 𝑘8 ∗ 𝑘9 ∗ 𝑘12 + 𝑘7 ∗ 𝑘9 ∗ 𝑘12 ∗ 𝑚 + 𝑘8 ∗ 𝑘9 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝑘5 ∗ 𝑘9 ∗ 𝑘12

+ 𝐼𝑥𝑥 ∗ 𝑘5 ∗ 𝑘10 ∗ 𝑘11 + 𝐼𝑥𝑥 ∗ 𝑘6 ∗ 𝑘9 ∗ 𝑘11 + 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘7 ∗ 𝑘12 + 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘8 ∗ 𝑘11 + 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘7 ∗ 𝑘11 + 𝐼𝑧𝑧

∗ 𝑘5 ∗ 𝑘7 ∗ 𝑘10 + 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘8 ∗ 𝑘9 + 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘7 ∗ 𝑘9 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘5 ∗ 𝑘12 ∗ 𝑤 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘6 ∗ 𝑘11 ∗ 𝑤)

/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 792 ∗ 𝑎ˆ5 

 

𝑒𝑞5 = (𝑘6 ∗ 𝑘8 ∗ 𝑘10 ∗ 𝑘12 + 𝑘7 ∗ 𝑘10 ∗ 𝑘12 ∗ 𝑚 + 𝑘8 ∗ 𝑘9 ∗ 𝑘12 ∗ 𝑚 + 𝑘8 ∗ 𝑘10 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘11 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘5

∗ 𝑘9 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘7 + 𝐼𝑥𝑥 ∗ 𝑘5 ∗ 𝑘10 ∗ 𝑘12 + 𝐼𝑥𝑥 ∗ 𝑘6 ∗ 𝑘9 ∗ 𝑘12 + 𝐼𝑥𝑥 ∗ 𝑘6 ∗ 𝑘10 ∗ 𝑘11 + 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘8 ∗ 𝑘12

+ 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘7 ∗ 𝑘12 + 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘8 ∗ 𝑘11 + 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘8 ∗ 𝑘10 + 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘7 ∗ 𝑘10 + 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘8 ∗ 𝑘9 + 𝐼𝑥𝑥 ∗ 𝑘9

∗ 𝑘11 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝑘7 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑧𝑧 ∗ 𝑘7 ∗ 𝑘9 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝐽𝑡𝑝 ∗ 𝑘5 ∗ 𝑤 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘6 ∗ 𝑘12 ∗ 𝑤 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘11

∗ 𝑚 ∗ 𝑤)/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 495 ∗ 𝑎ˆ4 

 

𝑒𝑞6 = (𝑘8 ∗ 𝑘10 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘5 ∗ 𝑘12 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘11 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘10 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘9 +  𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘5 ∗ 𝑘8

+ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘7 + 𝐼𝑥𝑥 ∗ 𝑘6 ∗ 𝑘10 ∗ 𝑘12 + 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘8 ∗ 𝑘12 + 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘8 ∗ 𝑘10 + 𝐼𝑥𝑥 ∗ 𝑘9 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑥𝑥

∗ 𝑘10 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝑘7 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝑘8 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑧𝑧 ∗ 𝑘7 ∗ 𝑘10 ∗ 𝑚 + 𝐼𝑧𝑧 ∗ 𝑘8 ∗ 𝑘9 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝐽𝑡𝑝
∗ 𝑘6 ∗ 𝑤 + 𝐼𝑦𝑦 ∗ 𝐽𝑡𝑝 ∗ 𝑘12 ∗ 𝑚 ∗ 𝑤)/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 220 ∗ 𝑎ˆ3 

 

𝑒𝑞7 = (𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘5 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘6 ∗ 𝑘12 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘6 ∗ 𝑘10 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘11 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘9 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘7 ∗ 𝑚 + 𝐼𝑥𝑥

∗ 𝑘10 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝑘8 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑧𝑧 ∗ 𝑘8 ∗ 𝑘10 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝐽𝑡𝑝 ∗ 𝑚 ∗ 𝑤)/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 66 ∗ 𝑎ˆ2 

 

𝑒𝑞8 = (𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘6 + 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝑘12 ∗ 𝑚 + 𝐼𝑥𝑥 ∗ 𝐼𝑧𝑧 ∗ 𝑘10 ∗ 𝑚 + 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑘8 ∗ 𝑚)/(𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 ∗ 𝐼𝑧𝑧 ∗ 𝑚) == 12 ∗ 𝑎 

 

Finally, MATLAB is asked to solve the system obtaining 

the exact value of the controller gains: 𝑘5 =  40.00289, 𝑘6 =
 12.051, 𝑘7 =  30.30082, 𝑘8 =  5.00023, 𝑘9 =  30.30082, 𝑘10 =
 5.00023, 𝑘11 =  30.30082, 𝑘12 =  5.00023. 

Thus, the control laws are determined as follows: 
 

𝑈(1) =
𝑚(𝑔 − 𝑘5(𝑥5 − 𝑍𝑑) − 𝑘6𝑥6

cos (𝑥9)cos (𝑥7)
 (31) 

 

𝑈(2) = −𝑘7(𝑥7 − θ𝑑) − 𝑘8𝑥8               (32) 

 

𝑈(3) = −𝑘9(𝑥9 − ∅𝑑) − 𝑘10𝑥10         (33) 

 

𝑈(4) = −𝑘11(𝑥11 − 𝜓𝑑) − 𝑘12𝑥12       (34) 

 

The design of the linear and nonlinear controllers, whose 

mathematical equations were previously formulated, was 

developed in MATLAB where the calculation of the above 

gains is presented. 
 

 

3. RESULTS AND DISCUSSION 
 

This section presents, an example of the results obtained 

through the flight simulations done in MATLAB, using the 

controller defined by Eqns. (31) to (34). The differential 

equation system of the model was solved using ode45 function 

using state space Eqns. (14) to (25) for the nonlinear model 

and the linear model was solved to get the simulations trough 

Eqns. (28) and (29), which let us compare how much the 

linearized system approximates in performance to the real 

nonlinear model. As a first example we took the input desired 

values: 𝑧𝑑 = 1 𝑚 , 𝜃𝑑 = 450 , ∅𝑑 = 450, 𝜓𝑑 = 450 , thus the 

simulation output is presented in Figures 2 to 8. 

Results shown that the feedback controller works very well. 

Figures 4 and 8 show how the drone stabilizes at a height of 1 

meter, while it turns 45º in yaw linearly and at the same it turns 

45º in pitch then it keeps this orientation describing the 

trajectory shown in Figure 8, which was the desired trajectory. 

In addition, the correct operation of the controller is verified 

since the desired yaw angle of this example defined an 

inclination of 45 degrees which would orient the drone to 

ascend obliquely, but as a flight height of 1 meter was defined 

for the controller, the yaw angle only provides orientation 

keeping the same height through the whole trajectory. 

Summarizing, in Figures 2 to 8 it can be seen that, linear and 

nonlinear models performed pretty similar. This occurs die to 

the fact that the desired trajectory used for this example is 

close enough to the equilibrium point, thus demonstrating that 

linearization process was successful, but when a trajectory far 

enough from the equilibrium point is chosen, trajectories of the 

linear and nonlinear models would differ considerably, but in 

both cases the desired trajectory must be achieved.  

It must be mentioned that it is well known that some of the 

disadvantages that comes with the feedback linearization 

method, is its lack of robustness over parameter uncertainties, 

so the parameters considered for this model should maintain 

their values. As most of these parameters were geometric 

values, the model should perform safely, but some parameters 

as the weight or wind conditions must be considered for 

further implementations. Another simplification that must be 

considered is the simplification performed in Eqns. (26) and 

(27) which constraints the model to a range of operation of 0 

to 𝜋 for the roll and pitch angles. 
 

 
 

Figure 2. x-position of the quadrotor for the linear and 

nonlinear models 
 

 

Figure 3. y-position of the quadrotor for the linear and 

nonlinear models 
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Figure 4. z-position of the quadrotor for the linear and 

nonlinear models 
 

 

Figure 5. roll Angle for the linear and nonlinear models 
 

 
 

Figure 6. pitch Angle the linear and nonlinear models 
 

 
Figure 7. yaw Angle for the linear and nonlinear models 

 

 

Figure 8. Flight simulation for the linear and nonlinear 

models 

 

 

4. CONCLUSIONS 

 

In this paper we described a detailed approach of the 

modelling and design of a state feedback controller for a Parrot 

AR. Drone 2.0, as well as its dynamic modeling process, with 

the aim of giving the reader a detailed procedure to obtain the 

kinematics and link this model with the controller design 

strategies. The state feedback controller was selected as a good 

example that achieved the goal of controlling the drone 

trajectories, however, any other control strategy (like LQR, 

Fuzzy, Neural, and so on) could be used, and a comparison 

should be performed as further work. 

The results of both linear and nonlinear controllers are very 

similar, as the desired trajectory values are not far enough from 

the equilibrium point. If they are too far away, the linear model 

would fail.  

Results show that by applying an input for vertical thrust 

and moments in roll, pitch and yaw a vertical displacement of 

the quadrotor occurs because of the action of the U(1) thrust, 

while moving in x and y axis, due to the moments U(2), U(3), 

and at the same time, a rotation on yaw is performed by the 

momentum U(4); which corresponds to the expected results 

for the dynamic model with control. 

It can be mentioned that feedback controller performed well 

for this kind of drone, because the desired trajectory was 

achieved in a short time, without presenting overshoot or 

stabilization problems. 
 

 

REFERENCES  
 

[1] Schacht-Rodriguez, R., Ortiz-Torres, G., Garcia-Beltran, 

C.D., Astorga-Zaragoza, C.M., Ponsart, J.C., Perez-

Estrada, A.J. (2018). Design and development of a UAV 

experimental platform. IEEE Latin America 

Transactions, 16(5): 1320-1327. 

https://doi.org/10.1109/TLA.2018.8408423 

[2] Mellinger, D., Michael, N., Kumar, V. (2012). Trajectory 

generation and control for precise aggressive maneuvers 

with quadrotors. The International Journal of Robotics 

Research, 31(5): 664-674. 

https://doi.org/10.1177/0278364911434 

[3] Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N. 

(2009). Stereo vision and laser odometry for autonomous 

helicopters in GPS-denied indoor environments. In 

Unmanned Systems Technology XI, 7332: 733219. 

International Society for Optics and Photonics. 

https://doi.org/10.1117/12.819082 

[4] Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R. 

(2010). Vision based MAV navigation in unknown and 

unstructured environments. In 2010 IEEE International 

Conference on Robotics and Automation, pp. 21-28. 

https://doi.org/10.1109/ROBOT.2010.5509920 

[5] Michael, N., Fink, J., Kumar, V. (2011). Cooperative 

manipulation and transportation with aerial robots. 

Autonomous Robots, 30(1): 73-86. 

https://doi.org/10.1007/s10514-010-9205-0 

[6] Herrera-Granda, E.P., Herrera-Granda, I.D., Lorente-

Leyva, L.L., Granda-Gudiño, P.D., Caraguay-Procel, 

J.A., García-Santillán, I. (2019). Implementación de un 

Sistema de Visión Artificial y Seguimiento de Objetivos 

Humanos, utilizando un cuadricóptero. Revista Iberica 

de Sistemas e Tecnologias de Informacao, E19: 198-211. 

[7] Malisoff, M., Mazenc, F. (2009). Constructions of Strict 

Lyapunov Functions. Springer Science & Business 

Media. 

[8] de Jesus Rubio, J., Cruz, J.H.P., Zamudio, Z., Salinas, 

A.J. (2014). Comparison of two quadrotor dynamic 

models. IEEE Latin America Transactions, 12(4): 531-

537. https://doi.org/10.1109/TLA.2014.6868851 

27



 

[9] Hernandez, A., Copot, C., De Keyser, R., Vlas, T., Nascu, 

I. (2013). Identification and path following control of an 

AR. Drone quadrotor. In 2013 17th International 

Conference on System Theory, Control and Computing 

(ICSTCC), pp. 583-588. 

https://doi.org/10.1109/ICSTCC.2013.6689022 

[10] Bristeau, P.J., Callou, F., Vissière, D., Petit, N. (2011). 

The navigation and control technology inside the ar. 

drone micro UAV. IFAC Proceedings Volumes, 44(1): 

1477-1484. https://doi.org/10.3182/20110828-6-IT-

1002.02327 

[11] Kokotovic, P.V. (1992). The joy of feedback: Nonlinear 

and adaptive. IEEE Control Systems Magazine, 12(3): 7-

17. https://doi.org/10.1109/37.165507 

[12] Krstic, M., Kokotovic, P.V., Kanellakopoulos, I. (1995). 

Nonlinear and Adaptive Control Design. John Wiley & 

Sons, Inc. 

[13] Khalil, H.K., (2002) Nonlinear Systems. 3ed. New 

Jewsey: Prentice Hall. 

[14] Mokhtari, A., M'Sirdi, N.K., Meghriche, K., Belaidi, A. 

(2006). Feedback linearization and linear observer for a 

quadrotor unmanned aerial vehicle. Advanced Robotics, 

20(1): 71-91. 

https://doi.org/10.1163/156855306775275495  

[15] Wang, X., Shirinzadeh, B. (2015). Nonlinear augmented 

observer design and application to quadrotor aircraft. 

Nonlinear Dynamics, 80(3): 1463-1481. 

https://doi.org/10.1007/s11071-015-1955-y 

[16] Ortiz, J.P., Minchala, L.I., Reinoso, M.J. (2016). 

Nonlinear robust H-Infinity PID controller for the 

multivariable system quadrotor. IEEE Latin America 

Transactions, 14(3): 1176-1183. 

https://doi.org/10.1109/TLA.2016.7459596 

[17] Santana, L.V., Brandao, A.S., Sarcinelli-Filho, M., 

Carelli, R. (2014). A trajectory tracking and 3d 

positioning controller for the ar. drone quadrotor. In 2014 

International Conference on Unmanned Aircraft Systems 

(ICUAS), pp. 756-767. 

https://doi.org/10.1109/ICUAS.2014.6842321 

[18] Raffo, G.V. (2007). Modelado y control de un 

helicóptero quadrotor. Universidad de Sevilla. 

[19] Santiaguillo-Salinas, J., Rosaldo-Serrano, M.A., Aranda-

Bricaire, E. (2017). Observer-based time-varying 

backstepping control for parrot’s AR. drone 2.0. IFAC-

PapersOnLine, 50(1): 10305-10310. 

https://doi.org/10.1016/j.ifacol.2017.08.1497 

[20] Carrillo, L.R.G., López, A.E.D., Lozano, R., Pégard, C. 

(2013). Modeling the quad-rotor mini-rotorcraft. In Quad 

Rotorcraft Control, pp. 23-34. Springer, London. 

https://doi.org/10.1007/978-1-4471-4399-4_2 

 

28




