
Automatic Generation and Optimization of Combinatorial Test Cases from UML Activity

Diagram Using Particle Swarm Optimization

Subhash Tatale*, Vudatha Chandra Prakash

Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 520013, AP, India

Corresponding Author Email: subhashtatale@gmail.com

https://doi.org/10.18280/isi.270106 ABSTRACT

Received: 11 December 2021

Accepted: 7 February 2022

Generation of test cases is one of the essential activities of the software testing process. The

process of executing a programme to identify defects to improve the system's quality is

known as software testing. Manually writing test cases takes time, effort, and money. On

the other hand, generating test cases automatically is the solution to this problem. For this

automation process, a model-based test case generation technique would be acceptable. A

model is usually required to generate test cases in the model-based testing technique.

Nowadays, researchers have relied on the activity diagram to generate test cases. Test cases

for combinatorial logic systems are required. Combinatorial testing is essential for

producing a small number of test cases and identifying errors occurred by interactions

between system input parameters. Information about constraints, parameters and its values

are required for generation of test cases. It is difficult to extract information regarding

constraints, parameters, its values, and interactions between parameters from an Activity

Diagram. A novel approach is proposed to extract this information from an Activity

Diagram. The authors created a tool that automatically generates combinatorial test cases

using UML Activity Diagrams. The proposed tool has two main parts. First, the

combinatorial test design model is developed for extraction of input parameters. Second

part is generation of optimized number of combinatorial test cases using Particle Swarm

Optimization algorithm. Finally, the authors experimented on a real-world case study

namely viz. Railway Reservation using the proposed tool, and it is shown that the proposed

tool generated optimum number of combinatorial test cases.

Keywords:

covering arrays, combinatorial test case

generation, behavioral UML diagrams,

activity diagram, railway reservation

system, concession management system,

particle swarm optimization

1. INTRODUCTION

Developing test cases during the design phase of the

Software Development Life Cycle (SDLC) has significant

advantages over the coding phase. The design models created

can be used for generation of test cases during the design

process. The generation of test cases from the design model

assists in the early detection of flaws in the software

development process. Even if we make a minor change to the

code, the test cases developed during the design phase will still

be valid [1]. It reduces testing time and cost dramatically.

Unified Modelling Language (UML) models are simply

graphical representations of software requirement

specification documents. Test cases can be generated from

UML diagrams. A final state, an initial state, constraints, and

expected output comprise a test case, where constraints are pre

and post conditions for the input values. It is challenging to

extract information from a UML diagram, such as pre and

post-conditions.

The solution to this problem includes pre-condition, post-

condition, and system efficiency information in the design. As

a result, test case generation from UML models is challenging

[2].

Using UML Activity Diagrams, the various methodologies

and techniques are used by many researchers to generate test

cases automatically. Many systems use combinatorial logic,

such as Tuition Fee Concession Subsystem, College

Admission System, Concession Management SubSystem

(CMSS) and so on. Combinatorial Testing (CT) is becoming

very helpful to test such systems. Combinatorial testing has the

significant advantage of reducing the number of test cases. As

the number of test cases is reduced, the time required to

execute those test cases is reduced. Additionally, test coverage

has been increased (up to 100 per cent). As test coverage is

increased, the product's quality improves. The increased

coverage also increases the bug yield ratio. The overall cost of

product testing is reduced.

The Combinatorial Test Design Model (CTDM) is widely

used for generation of combinatorial test cases. Combinatorial

test cases must be created for any system that requires

combinatorial logic [3, 4].

Identifying the constraints, parameters and its values are the

most difficult part of creating combinatorial test cases using

Activity Diagram. Many times, an application will fail due to

interaction between the application's input parameters. A

pump, for example, may fail only when volume exceeds a

certain amount and the pressure drops below a certain level,

indicating a two-way interaction between volume and pressure.

The code below shows how such a two-way interaction could

occur. It should be noted that the failure will only occur if both

pressure 100 are true. Without the other, neither of the

conditions will be a problem.

if (pressure < 50) {

// do activity

if (volume >100) {

//wrong code

Ingénierie des Systèmes d’Information
Vol. 27, No. 1, February, 2022, pp. 49-59

Journal homepage: http://iieta.org/journals/isi

49

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270106&domain=pdf

 }

 else {

 //correct code

 }

}

else {

 // do activity

 }

Identifying the values, parameters, and constraints by

manually is error-prone and difficult task. Due to this,

modelling these parameters is required to minimize the

number of errors and improve the system quality.

Combinatorial testing focuses on various parameter and value

combinations [5]. A novel rule-based technique is provided for

extraction of constraints, parameters, and its values from UML

Activity Diagrams.

In the present research work, the authors proposed a

technique for generating combinatorial test cases using the

UML Activity Diagram. In the Test-Driven Development

(TDD) model, test cases are to be developed before design and

coding starts. In the case of systems that use combinatorial

logic, our proposed work will be useful for generating

combinatorial test cases. Similarly, in the case of

Combinatorial Logic Oriented Acceptance Test-Driven

Development (CLO-ATDD) model, customer has to generate

User Acceptance Tests before the design and development

starts. During the analysis phase, combinatorial test cases can

also additionally be generated that are useful for CLO-ATDD

model.

The authors presented a real-world case study i.e., Indian

Railway Reservation System for generating combinatorial test

cases in the current research. The results demonstrate that the

proposed approach produces useful results. The concepts of

Combinatorial Test Case Generation and UML Activity

Diagram are described in the following section.

1.1 Combinatorial test case generation

For quality assurance of modern software systems, CT has

become a vital and indispensable testing technique. CT has

traditionally assumed that the input parameters of the Software

under Test (SUT) are unrelated. However, input parameters of

the system are frequently constrained in real world system.

Such constraints may simply indicate that a particular

interaction is not feasible in the test case (for example, in the

concession management subsystem, a male passenger cannot

avail “widow concession”) [6]. As a result, any CT application

that fails to account for constraints may result in a large

number of invalid test cases; CT may consequently be less

effective than users would expect. The system inputs or

configuration are modelled as sets of parameters and values in

combinatorial testing; for each parameter (pi), a set of values

(v1, v2,..., vn) is designed [7]. This methodology generates test

cases by selecting a subset of the Cartesian product of all

parameter values (based on some coverage criterion); a

programme with five parameters, each with three values, has

a total of 35 or 243 programme configurations.

For example, the car ordering application enables for the

buying and selling of automobiles. It should be able to

facilitate trade in Mumbai and Pune. The application should

be able to trade Tata, Maruti, and Hundai automobiles. Input

parameters and values of this application are shown in Table

1. To test all combinations of parameters and values, a total of

3*2*2 = 12 test cases are required.

Table 1. Input parameters and values

Values

Parameters

Car Product Order Category Payment Mode

Tata Sell Online

Maruti Buy Offline

Hundai - -

The test case size has been reduced from 12 to 6 in Table 2.

The effectiveness of test cases can be validated by employing

complex test input. For example, an input with ten parameters

which are having ten values each. All combinations testing

resulted in the creation of 1010 test cases. The number of test

cases are reducing to 156 using pairwise testing.

Table 2. Generated test cases using 2-way testing techniques

Test Case

Number

Car

Product

Order

Category

Payment

Mode

1 Tata Sell Online

2 Tata Buy Offline

3 Maruti Sell Online

4 Maruti Buy Offline

5 Hundai Sell Online

6 Hundai Buy Offline

Designing the CTDM is an essential and significant pre-

requisite for developing combinatorial test cases [8]. CTDM is

made up of constraints, parameters, and its values that exist

between them. Identifying parameters and values is a creative

task which is not totally automated [9]. Because an activity

diagram may be constructed from a high-level design to a low-

level design, it is difficult to recognize CTDM elements from

them. In complex systems, the number of parameters and its

associated values are correspondingly large. Mixed Covering

Arrays (MCA) and Covering Array (CA) are mathematical

techniques to reduce test cases. CA(N; t; k; v) is a N x k array

on v symbols in which each N x t sub-array includes at least

one t-tuple from the v symbols. The parameters in CA have a

fixed number of values whereas MCA have multiple different

values of the parameters. A MCA (N; t; k; v1, v2,...,vn) is a N

x k array on v symbols whose rows cover all t-tuples of value

from the t columns at least once. The strength is referred to as

t in CA and MCA, while the sample size is referred to as N.

The parameter t specifies how actively to test the various

configuration combinations. Pairwise interaction testing is

used when t = 2.

1.2 Activity diagram

Activity diagrams are like traditional flowcharts but differ

in the extra activities done by the system. Activity diagrams

differ from flowcharts in that they can incorporate branching,

parallel flow, swim lanes, and other features. To justify the

diagram and its relevance, a thorough grasp of its main

components is required. Knowing the main parts also aids in

the correct development of the diagram. Following the

identification of the activities, the following stage is to

determine how they are related to limitations and

circumstances.

The following key aspects should be identified before

designing an activity diagram:

1. Activities

2. Association

3. Conditions

4. Constraints.

50

Once the pieces have been determined, an activity diagram

is drawn using StarUML tool.

1.3 Railway reservation system – A case study

Indian Railways is one of the most recognized government

organisations in India. The authors discussed the Indian

Railway Reservation System's Concession Management

SubSystem (CMSS) as a case study. Several concession

categories like Senior Citizen, Child, Disabled Passenger,

Patient, Student, Awardees, and War Widow are provided by

Indian Railways. These concessions are available for a wide

range of travel classes, including AC-I, Sleeper, First and

Second Class. In the CMSS of Indian Railways, each

concession category contains a variety of concession types.

Due to the large number of parameter and value

combinations in the input, the number of combinatorial test

cases generated for the journey class, concession categories,

and their types may be enormous. The authors conducted a

study on improving the ATDD Model using Combinatorial

Logic. The authors [10] suggested a new Software

Requirement Specification (SRS) for Indian Railways CMSS.

When we apply an Exhaustive testing strategy to those

concession parameters and values, we generate a total of

2x3x15x127x5x5x6x3x3x3x2 = 92583000 test cases.

Generating and testing a huge number of test cases is difficult

and impractical. Only a limited number of journey classes,

concession categories, and types are considered to prevent a

combinatorial explosion of test instances. Table 3 shows the

different concession categories, types and percentage of

concession as per the revised SRS of CMSS.

Figure 1 depicts UML Activity Diagram of Concession

Management SubSystem as per considering revised SRS. The

concession categories along with percentage of concession are

considered.

The rest of the paper is structured as follows: Section 2

presents an overview of the related work. Section 3 outlines

proposed work. Section 4 explains the experiments and

evaluations of the proposed tool, while the conclusion and

future scope is discussed in the section 5.

Table 3. Different concession categories, types and % of

concession

Passenger Category

Journey Class

First Second Sleeper AC-I

Percentage of Concession

Patient

Cancer 75 75 100 50

Heart 75 75 75 50

TB 75 75 75 50

Disabled Passenger

Mentally retarded 75 75 75 50

Handicapped 75 75 75 50

Blind 75 75 75 50

Passenger Type

Senior Citizen 50 50 50 50

Child 50 50 50 50

Widow

War Widow 50 50 75 0

Awardees

President Medal 50 50 50 50

Student

General 75 75 75 75

OBC 50 50 50 50

SC 25 25 25 25

Figure 1. Activity diagram of the revised CMSS

2. RELATED WORK

The authors provided an overview of the related work from

the different perspectives, focusing on generation of test cases

and the UML Activity Diagram-based combinatorial test

design paradigm.

2.1 Generation of test cases from UML activity diagram

Many research articles are published by the researchers on

generation of test case from Activity Diagrams using various

approaches, like Graphical representation, Direct UML and

formal specification, Heuristic, and Concurrent model.

Mu and Gu [11] presented a system test technique that

employs formal specifications as well as the development of

test coverage rules. Chen et al. [12] and Chen et al. [13]

presented an approach to validate consistency between

programme execution traces and behaviour. The authors

suggested another technique to minimize validation efforts by

lowering time of test case generation and needed test case size.

As a result, meeting the functional coverage criterion is

relatively simple. Teixeira and Braga e Silva [14]

demonstrated a method to UML specification by presenting

"Easy Test" tool based on the grey box approach.

Wang et al. [15] suggested the UMLTGF prototype tool,

which was created using a grey box approach. Swain et al. [16]

generated test sequences that met test adequacy criteria using

Model Flow Graph (MFG) and Activity Flow Graph (AFG) as

an intermediate model. Using the DFS method, all necessary

51

information such as branches, conditions, executions, and loop

expressions are retrieved. Samuel et al. [17] presented a

dynamic slicing system that generates dynamic slices using an

edge marking method. Each slice generates a set of test

scenarios. Ray et al. [18] introduced a Flow Dependency

Graph-based test case creation technique based on conditioned

slicing.

Mingsong et al. [19] suggested an AGTCG prototype tool

built with the DFS algorithm. This method verifies the

correctness of requirements and accompanying programmes.

As intermediate models, Boghdady et al. [20] and Boghdady

et al. [21] employ Activity Dependency Table and Graph. By

traversing graph with the Depth First Search method, all

feasible test paths are produced. The test paths are

automatically changed in the table to create the final test cases.

Chouhan et al. [22] generated test cases using Activity

Dependency Tables and Activity Dependency Graphs as

intermediary methods.

Monim and Nor [23] presented a model-based testing

technique for extracting, using, and preparing data from an

Activity diagram for test case generation. Thanakorncharuwit

et al. [24] presented a business flow constraint-based approach

for test case generation. This paradigm employs several sets of

rules for loop structures, as well as forks and joins. Hashim

and Salman [25] proposed a more efficient technique of test

case generation using an activity graph. Pechtanun and

Kansomkeat [26] generated test cases using the Activity

Convert grammar. Tiwari and Gupta [27] provided method for

generating safety validation test cases using Software Fault

and Software Success Tree.

To develop, optimise, validate, and prioritise test cases,

Singla [28], Shanthi and MohanKumar [29] and Jena et al. [30]

used Genetic algorithm. The test cases developed using these

methodologies can be used to discover other errors such as

synchronisation issues and loop faults. Nanda et al. [31] used

a heuristic approach to choose the best test case from a set of

existing path coverage. A heuristic rule is applied to the path

coverage set after parsing an activity diagram. Shanthi et al.

[32] employed the Tabu search approach to build, optimise,

validate, and prioritise test cases from an activity diagram. To

create an appropriate test path, Rhmann and Saxena [33]

suggested Firefly algorithm. An Information Flow Metric is

used to determine the adjacency measure of an activity graph.

The proposed strategy is suitable for detecting system faults

sooner. Arora et al. [34] developed concurrent test scenarios

using a bio-inspired technique. The authors observed that the

proposed bio-inspired technique performs better than the

present genetic algorithm and ant colony optimization with

respect to the size of test scenarios developed.

Oluwagbemi and Asmuni [35] used an activity diagram to

create an Activity Flow Tree (AFT). To extract information

from AFT, a parser is used. The activity sequences, related

descriptions, and conditions of the constructed tree are used to

produce test cases. By concentrating on the concurrency

problem, Kamonsantiroj et al. [36] and Yimman et al. [37]

created an activity graph. To create all the pathways from

concurrent test cases, a dynamic programming method is used.

This method satisfies the concurrent coverage criterion. The

suggested technique's output is said to be more efficient than

BFS and DFS methods.

Formal specification approach extracts information from

SUT specifications rather than implementations. This

approach is based on algebraic specifications. In the graphical

representation approach, UML diagrams are transformed into

tree or graph representations. These representations aid in the

generation of test cases in a variety of ways. To generate test

cases, various graph traversal methods and intermediate

models are used. Several meta-heuristic techniques like

simulated annealing, hill-climbing, genetic algorithm, tabu

search, PSO, and others, can be used to generate optimized test

cases. To exchange metadata information, the Object

Management Group defined a standard process called XML

Metadata Interchange (XMI). The use of XMI representations

of UML models, parsers like Simple API of XML and

Document Object Model has made direct processing of UML

models easier. The Direct UML specification method

generates test cases without the use of an intermediate model.

In the Hybrid behaviour model approach, UML diagram may

be used to obtain important information, followed by another

UML diagram to obtain additional information to ensure that

the generated test cases are complete. For example, an activity

diagram may improve test-specific details derived from

combined fragments of a Sequence diagram. A UML diagram

can be used as input for a test case generation technique, and

test cases can then be validated using another technique.

Concurrent models are commonly used in mission-critical

systems. The objective of this approach is to generate test

suites that meet concurrency coverage criteria. Concurrent

execution behaviour is provided in UML Sequence and

Activity diagrams via concurrent asynchronous messages and

fork-join constructs.

2.2 Combinatorial test design model

This section covers relevant research on the combinatorial

test design model. In the combinatorial testing technique [38],

a Neural Network approach [39] enhances combinatorial

coverage. Multi-objective crow search and Fruit-fly

optimization algorithms generates optimized number of

combinatorial test cases in a constraints-handling setting [40].

Combinatorial test cases are generated from safety-critical

embedded systems to check that the greater number of output

combinations are appropriately investigated. A genetic

algorithm is used to produce these test conditions [41, 42].

The combinatorial logic-oriented test case generation from

UML artefacts is essential. Subhash Tatale and Prakash [43]

conducted a review for generating test case from Sequence and

Activity diagrams and presented technique for improving the

ATDD model using combinatorial logic. To extract

parameters and values, Esfandyari and Rafe [44] utilized

model checking approaches. The directed graph is generated

from the states of the system using this approach. Satish and

Rangarajan [45] and Satish et al. [46] suggested a semi-

automated rule-based technique to obtaining combinatorial

test design model information. Bangare et al. and Pande et al.

[47-52] have proposed object-oriented metrics for software

quality measurement. Tatale et al. [53, 54] presented different

approaches for generating combinatorial test cases using

sequence diagram.

3. PROPOSED WORK

It takes time and effort to identify the exact number of

constraints, parameters, and its values from UML diagrams

manually. The authors described a method for extracting

preparatory information from the Activity Diagram, such as

constraints, parameters, and values. Combinatorial logic is

52

used to generate combinatorial test cases from the extracted

information.

The authors proposed Combinatorial Test Case Generator

(CTCG) tool for generating combinatorial test cases. A model

is created using StarUML as per the system requirements and

CTDM elements are produced. To extract information from

CTDM, a multi-stage algorithm is used.

As an input to the proposed system, a test manager will

provide Activity Diagram. The constraints, parameters and its

values are derived from the Activity Diagram. The derived

parameters and values are used to generate parameter and

value combinations. The constraints are applied to list that is

generated by combinatorial process. Following that, rules

based on combinatorial logic are applied to generate

combinatorial test cases. The activity diagram of the proposed

CTCG tool is depicted in Figure 2.

Figure 2. Flow chart of CLTG tool

3.1 Extraction of CTDM elements from activity diagram

The steps to extract CTDM elements like parameters, their

associated values and constraints are explained in this section.

3.1.1 Export XMI code

In the mentioned application, StarUML is used to draw an

activity diagram and to export the XMI code corresponding to

the same. StarUML is an advanced software modeller that

aims to support agile and concise modelling. StarUML has

XMI export as its key feature and support to import and export

XMI (XML Metadata Interchange) which makes it more

useful software. It is based on XMI 2.1 and UML 2.0 meta

model. XMI is for metadata interchange among various

software modeling tools.

Figure 3. XMI code generation in StarUML

The XMI code is generated in following ways in the

StarUML. The Figure 3 shows the screen of StartUML tool for

exporting XMI.

Select the menu: File > Export > XMI Export (v2.1).

3.1.2 Understanding the XMI

XMI defines few tags and attributes. The root element is

always XMI. It must include the xmi.version property.

XMI.header is a placeholder for model information. The

most significant of its descendants are XMI.metamodel and

XMI.documentation.

XMI.content contains the actual model.

XMI.metamodel records the metamodel to which the XMI

algorithm has been applied.

XMI.documentation holds end-user information as these

children elements whose names are self-explanatory:

XMI.notice

XMI.exporterID

XMI.exporterVersion

XMI.exporter

XMI.contact

XMI.shortDescription

XMI.longDescription

XMI.owner.

The attributes xmi.idref and xmi.id are used to encode

connections. xmi.idref is a reference to an element by its

identifier, and xmi.id is a unique element identification. The

Figure 4 depicts the snapshot of XMI code of the application.

Figure 4. XMI code for the mentioned application

3.1.3 Alter the XMI code

It is necessary to group the tags under the same tag to get

access of all of them to make is more reachable. The minor

changes that are done are quite visible in the further screenshot

of the modified XMI code. JavaScript code consists of an

function called the parameterValusMapping() function. By

using this function, the parameters and their associated values

are extracted. The steps of the algorithm show the extraction

of constraints, parameters, and values. XMI code is given as

an input to this algorithm.

Step 1: Mark parameter “p” to the node with xmi:type =

uml: OpaqueAction.

Step 2: Get the xmi:id of that node.

Step 3: Traverse the edges_array and find the edge

withxmi:id of node = source of edge.

Step 4: Consider target of that edge.

Step 5: Again, traverse the edge_array, and find all the

53

edges such that target of edge = source of edges. Collect ‘name’

attribute of all matching nodesand push into ‘v’.

Step 6: The 'v' array contains all the values of corresponding

parameter.

Step 7: push 'p' and 'v' in finalConfig array.

Step 8: Repeat till all the XMI tags are covered.

Output: Extracted parameters, values and constraints.

3.1.4 Conversion of XMI to JSON using JavaScript

JSON stands for JavaScript Object Notation. It is necessary

to convert XML code into JSON code in order to make use of

the feature of JSON of preserving the code in pairs. It helps to

deliver the output in the required format. The below JavaScript

code converts defined XMI code to JSON code.

constconvertXMITOJSON = () => {

 return new Promise((resolve, reject) => {

 xml2json(

 {

 input: "./test.xmi",

 output: "./check.json",

 },

 function (error, output) {

 if (error) {

console.error(error);

 reject(error);

 } else {

 resolve(output);

 }

 }

);

 });

};

3.1.5 Parse the JSON code

JSON is an incredibly lightweight syntax of data

transmission between server and client which is simple and

rapid to scan and create. It is a text-based syntax which is easy

for both machines and humans to produce and understand;

however, unlike XML, JSON data structures require less

bandwidth than their XML counterparts.

With the aid of Java-script, JSON data received from the

web server may be readily processed using the JSON.parse()

function. This function parses JSON string and returns the

JavaScript object. Syntax errors will be displayed if the

provided string is not in the specified JSON format.

This JavaScript object is used to convert JSON string into a

JavaScript object and access individual values using the dot

notation (.). All parameter-value pairs are saved in.csv files,

which are extracted via the JSON file. The output in the form

of pairs of parameters and values is displayed on the console.

Table 4 depicts extracted parameter-value pairs which are

extracted from UML Activity Diagram.

As per Activity Diagram shown in Figure 1, the Patient and

Disabled passenger categories have multiple selection options.

It indicates that multiple value combinations are chosen for the

Patient and Disabled Passenger parameters. As a result, an AC

test cases provides N-wise coverage.

Values for All combination = ∑ 2v, where v is number of

values.

All combination values for Patient and Disabled passenger

parameters are as below:

All Combinations value (Patient) = {NS, Heart, Cancer, TB,

Heart and Cancer, TB and Cancer, TB and Heart, Heart and

Cancer and TB}.

All combination value (Disabled Passenger) = {NS, Blind,

Handicapped, Mentally Retarded, Mentally Retarded and

Handicapped, Handicapped and Blind, Mentally Retarded and

Blind, Retarded and Handicapped and Blind}.

Table 4. Extracted parameter-value pairs

Parameters Type of Input No. of Value Values

Journey Class Compulsory and Mutually Exclusive 4 First, Second, Sleeper, AC-I

Gender Compulsory and Mutually Exclusive 2 Male, Female

Passenger Type Compulsory and Mutually Exclusive 3 Child, Adult, Senior Citizen

Awardees Optional and Mutually Exclusive 2 NS, President Medal

Disabled Passenger Optional and All Combinations 8 NS, Handicapped, Mentally Retarded, Blind

Patient Optional and All Combinations 8 NS, Cancer , Heart , TB

Widow Optional and Mutually Exclusive 2 NS, War

Student Optional and Mutually Exclusive 4 NS, General, OBC, SC

Table 5. Extracted constraints

S. N. Concession Categories Concession types Invalid concession categories

1 Passenger type Child Widow

2 Gender Male Widow

Table 6. Combinatorial logic-oriented concession rules

Rule No. 1 2 3 4 5

Criteria

No. of

concession types

selected= 1

No. of concession types

selected= 2

No. of concession types

selected= 3

No. of concession types

selected > 3

% of total

concession exceeds

maximum allowed

concession

Total

concession

(in %)

% Of total

concession is

applicable as per

Table 3.

% Of total concession

= % of highest

concession type + 5%

of remaining

concession type

% Of total concession

= % of highest

concession type + 7% of

remaining higher

concession type

% Of total concession

= % of highest concession

type + 10% of highest of

the remaining concession

type

% Of total

concession =

maximum allowed

concession

(=100%)

54

Table 7. Generated test cases using all combination strategy

TC

No.

Journey

class
Gender

Passenger

type
Awardees Disabled passenger Patient Widow Student

Expected

concession

(%)

1 First Male Child NS NS NS NA NS 50

2 First Male Child NS NS NS NA General 50.75

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

16383 AC-I Female
Senior

Citizen

President

Medal

Handicapped and

Mentally Retarded and

Blind

TB and

Heart and

Cancer

NS OBC 56.18

16384 AC-I Female
Senior

Citizen

President

Medal

Handicapped and

Mentally Retarded and

Blind

Cancer and

Heart and

TB

War SC 78.68

The constraints values are identified in the diagram using

fork and join synchronization bar in the activity diagram. The

infeasible combinations of parameters and values are shown in

Table 5.

The combinatorial logic rules are extracted from the JSON

file which are shown in Table 6.

3.2 Combinatorial test case generation techniques

In this section, the authors proposed Pairwise Testing and

All Combinations techniques for the generation of

combinatorial test cases. The PSO algorithm is used to

generate optimal pairwise test cases. In the construction of

combinatorial test cases, combinatorial logic-oriented rules,

constraints, parameters and its associated values are critical.

The test cases in the preceding section were generated using

All Combinations and the pairwise testing technique.

3.2.1 All Combinations (AC) testing technique

The AC testing technique generates every possible

parameter value combination. This method generates all

possible discrete parameter and value combinations. The

authors extracted parameters and values from the CMSS. As

shown in Table 4, the authors extracted eight parameters.

Number of test case combinations as per extracted

parameters shown in Table 4.

= 4x2x3x2x8x8x2x4=24576 --------------(I)

The below are the invalid combinations of parameters and

values: -

1. Child - Widow

2. Male - Widow

The redundant test cases are removed because of NS (Not

Selected) and NA (Not Applicable) value of parameters.

The redundant test combinations generated because of

invalid combinations of Child and Widow.

= 4x2x1x2x8x8x1x4= 4096 -------------(II)

The redundant test combinations because of invalid

combinations of Male and Widow.

= 4x1x2x2x8x8x1x4= 4096 -------------(III)

Total redundant test combinations because of invalid

combinations.

= 4096+4096 (From Eq.II, and III) = 8192 --------(IV)

Total distinct test combinations= 24576-8192 (from Eq. I

and IV) = 16384.

As a result, using All Combinations technique, a total of

16384 test cases are generated from the Activity Diagram

which are shown in Table 7. The expected concession in

percentage is calculated as per combinatorial logic-oriented

rules which are shown in Table 6.

These test cases also covers the constraints of parameter-

value combinations. All invalid combinations are shown in the

test case by a 'NA' value. For smaller parameter and value sizes,

the all combinations testing strategy works well. It is a very

time-consuming task to generating test cases using all

combinations techniques for large number of input parameters

and values. As a result, the number of test cases should be

reduced while maintaining coverage. Pairwise testing is much

faster than all combinations testing, which tests all possible

combinations of all input parameters. Chandra Prakash and

Kadiyala Priyanka [55] and Kondhalkar and ChandraPrakash

[56] proposed pairwise plus testing strategy for generating

combinatorial test cases.

3.2.2 Pairwise technique using PSO algorithm

Poli et al. [57] introduced the PSO algorithm, which is based

on social behaviour observed in flocks of birds. A swarm is

refered as the entire search space whereas a particle is refered

as a single member of the search space. Each particle

represents a single solution. Each particle has a velocity, which

aids in navigating the multidimensional search space. This

velocity provides a direction for travelling toward an

approximate solution to the specified goal function. The

fitness value of each particle is calculated by the fitness

function. Chen et al. [58] proposed the PSO algorithm for

generating combinatorial test cases. Bewoor et al. [59-61] used

PSO algorithm to solve combinatorial optimization problem of

No Wait Flow Shop Scheduling (NWFSSP). Chandraprakash

et al. [62] surveyed various PSO variant algorithms. One of the

PSO variant algorithms works as follows. The number of

parameters, values and constraints are given as input to the

algorithm. The below are the steps for generating

combinatorial test cases using PSO algorithm.

1. Generate a set P of all unexplored pair combinations of

parameter and values;

2. Initialise particles randomly with random velocities and

positions.

3. while set P of pairs is not empty.

4. Assess the coverage of pair combinations using fitness

function.

5. Select the particle with greatest coverage.

6. Determine the particles' fitness value.

7. Determine each particle's global best (gbest) and personal

best (pbest).

8. Remove from set P all pairings that are covered by the

best particle.

9. Update velocity according to Eq. (1).

10. Update position according to Eq. (2).

11. Repeat steps 4–9 until step 3 is satisfied.

55

Table 8. Generated test cases using particle swarm optimization

TC

No.

Journey

class
Gender

Passenger

type
Awarsssdees

Disabled

passenger
Patient Widow Student

Expected

concession

(%)

1 Sleeper Male Child NS NS NS NA NS 50

2 AC-I Male Adult
President

Medal

Mentally Retarded

and Blind

Cancer and

TB
NA OBC 55.11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

74 First Female Adult NS Blind
Cancer and

Heart and TB
NS SC 82.5

75 Sleeper Female Adult
President

Medal

Handicapped and

Blind

Cancer and

Heart
War General 100

The particles are initialized at random locations initially,

and then they explore the search space by changing their

positions in order to find a better solution. After each iteration,

each particle changes its velocity to follow one of the two best

possibilities. By maintaining its current velocity and position,

each particle indicates a possible solution. Swarm keeps track

of global best (gbest) and personal best (pbest) in addition to

their unique solutions. To explore solution space, the position

and velocity are changed repeatedly. The exploitation was

considered by locating potential neighbours and is heavily

reliant on the values of gbest and pbest. The termination

criteria for this iterative technique are dependent on the

maximum number of iterations and swarm convergence. To

change the particle's position and velocity in the search space,

various update criteria are used. Each particle velocity is

adjusted based on the aforementioned algorithm for improved

mobility throughout the search space. This updated velocity is

used to determine the new position of the particles.

Eq. (1) indicates rule for the velocity updating of particles.

𝑉𝑒𝑙𝑖,𝑑(𝑛) = 𝑤𝑉𝑒𝑙𝑖,𝑑(𝑛 − 1) + 𝑐1𝑟1𝑖,𝑑(𝑔𝑏𝑒𝑠𝑡𝑖,𝑑(𝑛

− 1) − 𝑃𝑜𝑠𝑖,𝑑(𝑛 − 1))

+ 𝑐2𝑟2𝑖,𝑑(𝑝𝑏𝑒𝑠𝑡𝑖,𝑑(𝑛 − 1)

− 𝑃𝑜𝑠𝑖,𝑑(𝑛 − 1))

(1)

Eq. (2) shows rule of updating of position of particles.

𝑃𝑜𝑠𝑖,𝑑 = 𝑋 − 𝑃𝑜𝑠𝑖,𝑑(𝑛 − 1) + 𝑉𝑒𝑙𝑖,𝑑(𝑛) (2)

where, n denotes the number of iterations, i denotes the

particle index and d is the dimension. w is the weight factor

for inertia, r1 and r2 are random values, acceleration

coefficients (c1 and c2) are used to alter the inertia weight.

The PSO method was applied to the inputs generated by

Figure 1. The pairs are created using the input 23314282. The

activity diagram generates a total of 75 test cases, resulting in

a 100% coverage criterion. Table 8 displays the test cases

created by PSO.

4. EXPERIMENT AND EVALUATION

The authors developed CTCG tool to generate

combinatorial test cases from an activity diagram to expedite

and improve the testing process. The authors provided

Pairwise Testing and All Combinations techniques for

creating combinatorial test cases from an activity diagram.

PSO algorithm is used to generate optimal combinatorial test

cases. The input 23314282 shows that three parameters with two

values, one with three values, two with eight values, and two

with four values. The accuracy percentage denotes the

proportion of pairs covered by the test cases that were created.

Using All Combinations techniques, a total of 16384 test cases

are generated. This strategy generates all possible input

parameter combinations. Combinatorial explosion occurs

when the number of input parameters is extremely large. To

avoid the problem of combinatorial explosion, the pairwise

testing technique is used. The pairs of input parameters are

generated during pairwise testing. As mentioned in section

3.2.2, the PSO algorithm generates test cases. This algorithm

will continue to run until all of the pairs have been covered.

Using the pairwise and PSO algorithms, a total of 75 test cases

are generated. 100% accuracy means all the pairs generated

for the input 23314282 are covered by those 75 test cases. Table

9 displays the outcomes of the proposed approach.

Table 9. Summary of the results

Sr.

No.

Input

size
Techniques used

No. of test cases

generated

Accuracy

(%)

1 23314282 All Combinations 16384 100

2 23314282
Pairwise & Particle

Swarm Optimization
75 100

5. CONCLUSION AND FUTURE SCOPE

The authors demonstrated how to generate combinatorial

test cases using a UML Activity Diagram. The authors

demonstrated a two-stage method for extracting constraints,

parameters, and values from UML Activity Diagrams. The

various combined fragments, actions, and activity states are

used to identify constraints, parameters and values.

The proposed Combinatorial Test Case Generation Tool is

used to generate combinatorial test cases from an Activity

Diagram. The All-Combinations method ensures complete

coverage but has a greater number of test cases. Constructing

combinatorial test cases using the All-Combinations technique

is difficult and time consuming. However, in terms of size of

test cases, the PSO algorithm gives better results than the All-

Combinations technique.

The suggested approach produces combinatorial test cases

from constraints, parameters, and its values extracted from the

Activity Diagram, whereas previous approaches generate test

cases from transition, activity, simple and concurrent paths,

and so on.

The proposed technique for generating combinatorial test

cases from UML Activity Diagrams can be particularly useful

for TDD and CLO-ATDD models. If certain systems are built

56

on Combinatorial Logic and developed using the TDD

approach, the presented work will be highly valuable to such

systems in order to produce combinatorial test cases. The

authors claimed that the proposed tool is extremely efficient

and reliable.

In the future, the different techniques can be proposed to

extract CTDM information to generate combinatorial test

cases from other UML diagrams like State Chart Diagram.

REFERENCES

[1] Hartmann, J., Vieira, M., Foster, H., Ruder, A. (2005). A

UML-based approach to system testing. Innovations in

Systems and Software Engineering, 1(1): 12-24.

https://doi.org/10.1007/s11334-005-0006-0

[2] Briand, L., Labiche, Y. (2002). A UML-based approach

to system testing. Software and Systems Modeling, 1(1):

10-42. https://doi.org/10.1007/s10270-002-0004-8

[3] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.M.

(2006). Automatic test generation: A use case driven

approach. IEEE Transactions on Software Engineering,

32(3): 140-155. https://doi.org/10.1109/TSE.2006.22

[4] Grindal, M., Offutt, J., Andler, S. F. (2005). Combination

testing strategies: A survey. Software Testing,

Verification and Reliability, 15(3): 167-199.

https://doi.org/10.1002/stvr.319

[5] Kuhn, R., Lei, Y., Kacker, R. (2008). Practical

combinatorial testing: Beyond pairwise. It Professional,

10(3): 19-23. https://doi.org/10.1109/MITP.2008.54

[6] Kuhn, D.R., Kacker, R.N., Lei, Y. (2010). Practical

combinatorial testing. NIST Special Publication,

800(142): 142. https://doi.org/10.1109/MITP.2008.54

[7] Kuhn, D.R., Bryce, R., Duan, F., Ghandehari, L.S., Lei,

Y., Kacker, R.N. (2015). Combinatorial testing: Theory

and practice. Advances in Computers, 99: 1-66.

https://doi.org/10.1016/bs.adcom.2015.05.003

[8] Lott, C., Jain, A., Dalal, S. (2005). Modeling

requirements for combinatorial software testing. ACM

SIGSOFT Software Engineering Notes, 30(4): 1-7.

https://doi.org/10.1145/1082983.1083281

[9] Nie, C., Leung, H. (2011). A survey of combinatorial

testing. ACM Computing Surveys (CSUR), 43(2): 1-29.

https://doi.org/10.1145/1883612.1883618

[10] Tatale, S.B., Prakash, V.C. (2020): Enhancing

acceptance test driven development model with

combinatorial logic. International Journal of Advanced

Computer Science and Applications (IJACSA), 11(10):

268-278.

https://doi.org/10.14569/IJACSA.2020.0111036

[11] Mu, K., Gu, M. (2006). Research on automatic

generating test case method based on UML activity

diagram. Journal of Computer Applications, 4(3): 15-22.

[12] Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., Li, X.

(2009). UML activity diagram-based automatic test case

generation for Java programs. The Computer Journal,

52(5): 545-556. https://doi.org/10.1093/comjnl/bxm057

[13] Chen, M., Mishra, P., Kalita, D. (2010). Efficient test

case generation for validation of UML activity diagrams.

Design Automation for Embedded Systems, 14(2): 105-

130. https://doi.org/10.1007/s10617-010-9052-4

[14] Teixeira, F.A.D., Braga e Silva, G. (2018). EasyTest: An

approach for automatic test cases generation from UML

activity diagrams. In Information Technology-New

Generations, pp. 411-417. https://doi.org/10.1007/978-3-

319-54978-1_54

[15] Wang, L.Z., Yuan, J.S., Yu, X.F., Hu, J., Li, X.D., Zheng,

G.L. (2004). Generating test cases from UML activity

diagram based on gray-box method. In 11th Asia-Pacific

Software Engineering Conference, pp. 284-29.

https://doi.org/10.1109/APSEC.2004.55

[16] Swain, R.K., Panthi, V., Behera, P.K. (2013). Generation

of test cases using activity diagram. International Journal

of Computer Science and Informatics, 3(2): 1-10.

https://doi.org/10.47893/IJCSI.2014.1172

[17] Samuel, P., Mall, R. (2009). Slicing-based test case

generation from UML activity diagrams. ACM

SIGSOFT Software Engineering Notes, 34(6): 1-14.

https://doi.org/10.1145/1640162.1666579

[18] Ray, M., Barpanda, S.S., Mohapatra, D.P. (2009). Test

case design using conditioned slicing of activity diagram.

International Journal of Recent Trends in Engineering,

1(2): 117.

[19] Chen, M.S., Qiu, X.K., Li, X.D. (2006). Automatic test

case generation for UML activity diagrams. In

Proceedings of the 2006 International Workshop on

Automation of Software Test, pp. 2-8.

[20] Boghdady, P.N., Badr, N.L., Hashem, M., Tolba, M.F.

(2011). A proposed test case generation technique based

on activity diagrams. International Journal of

Engineering & Technology IJET-IJENS, 11(3): 1-21.

[21] Boghdady, P.N., Badr, N.L., Hashim, M.A., Tolba, M.F.

(2011). November. An enhanced test case generation

technique based on activity diagrams. In The 2011

International Conference on Computer Engineering &

Systems, pp. 289-294.

[22] Chouhan, C., Shrivastava, V., Sodhi, P.S. (2012). Test

case generation based on activity diagram for mobile

application. International Journal of Computer

Applications, 57(23):4-9.

http://dx.doi.org/10.5120/9436-3563

[23] Monim, M.A., Nor, R.N.H. (2018). An automated test

case generating tool using UML activity diagram.

International Journal of Engineering & Technology,

7(4.31): 58-63.

http://dx.doi.org/10.14419/ijet.v7i4.31.23342

[24] Thanakorncharuwit, W., Kamonsantiroj, S.,

Pipanmaekaporn, L. (2016). Generating test cases from

UML activity diagram based on business flow

constraints. In Proceedings of the Fifth International

Conference on Network, Communication and

Computing, pp. 155-160.

https://doi.org/10.1145/3033288.3033311

[25] Hashim, N.L., Salman, Y.D. (2011). An improved

algorithm in test case generation from UML activity

diagram using activity path. In: 3rd International

Conference on Computing and Informatics (ICOCI

2011), pp. 226-231.

[26] Pechtanun, K., Kansomkeat, S. (2012). Generation test

case from UML activity diagram based on AC grammar.

In 2012 International Conference on Computer &

Information Science (ICCIS), 2: 895-899.

https://doi.org/10.1109/ICCISci.2012.6297153

[27] Tiwari, S., Gupta, A. (2013). An approach to generate

safety validation test cases from UML activity diagram.

In 2013 20th Asia-Pacific Software Engineering

Conference (APSEC), 1: 189-198.

https://doi.org/10.1109/APSEC.2013.35

57

[28] Singla, I., Amandeep, Pratibha. (2015). A semantic

approach for the generation of test cases from activity

diagram. International Journal of Computer Applications,

116(10): 12-16.

[29] Shanthi, A.V.K., MohanKumar, G. (2012). A novel

approach for automated test path generation using tabu

search algorithm. International Journal of Computer

Applications, 48(13): 28-34.

http://dx.doi.org/10.5120/7410-0449

[30] Jena, A.K., Swain, S.K., Mohapatra, D.P. (2014). A

novel approach for test case generation from UML

activity diagram. In 2014 International Conference on

Issues and Challenges in Intelligent Computing

Techniques (ICICT), pp. 621-629.

http://dx.doi.org/10.1109/ICICICT.2014.6781352

[31] Nanda, P., Biswal, B.N., Mohapatra, D.P. (2008). A

novel approach for test case generation using activity

diagram. International Journal of Computer Science and

Applications, 1(1): 60-63.

[32] Shanthi, A.V.K., Kumar, G.M. (2012). A heuristic

technique for automated test cases generation from UML

activity diagram. I-Manager's Journal on Software

Engineering, 6(3): 13.

http://dx.doi.org/10.26634/jse.6.3.1787

[33] Rhmann, W., Saxena, V. (2016). Optimized and

prioritized test paths generation from UML activity

diagram using firefly algorithm. International Journal of

Computer Applications, 145(6): 16-22.

http://dx.doi.org/10.5120/ijca2016910718

[34] Arora, V., Bhatia, R., Singh, M. (2017). Synthesizing test

scenarios in UML activity diagram using a bio-inspired

approach. Computer Languages, Systems & Structures,

50: 1-19. https://doi.org/10.1016/j.cl.2017.05.002

[35] Oluwagbemi, O., Asmuni, H. (2015). Automatic

generation of test cases from activity diagrams for UML

based testing (UBT). Jurnal Teknologi, 77(13): 37-48.

http://dx.doi.org/10.11113/jt.v77.6358

[36] Kamonsantiroj, S., Pipanmaekaporn, L., Lorpunmanee,

S. (2019). A memorization approach for test case

generation in concurrent UML activity diagram. In

Proceedings of the 2019 2nd International Conference on

Geoinformatics and Data Analysis, pp. 20-25.

https://doi.org/10.1145/3318236.3318256

[37] Yimman, S., Kamonsantiroj, S., Pipanmaekaporn, L.

(2017). Concurrent test case generation from UML

activity diagram based on dynamic programming. In

Proceedings of the 6th International Conference on

Software and Computer Applications, pp. 33-38.

https://doi.org/10.1145/3056662.3056699

[38] Ramgouda, P., Chandraprakash, V. (2018). Neural

network-based approach for improving combinatorial

coverage in combinatorial testing approach. Journal of

Theoretical and Applied Information Technology, 20(96):

6677-6687.

[39] Gouda, R., Chandraprakash, V. (2019). Optimization

driven constraints handling in combinatorial interaction

testing. International Journal of Open Source Software

and Processes (IJOSSP), 10(3): 19-37.

https://doi.org/10.4018/IJOSSP.2019070102

[40] Ramgouda, P., Chandraprakash, V. (2019). Constraints

handling in combinatorial interaction testing using multi-

objective crow search and fruitfly optimization. Soft

Computing, 23(8): 2713-2726.

https://doi.org/10.1007/s00500-019-03795-w

[41] Vudatha, C.P., Nalliboena, S., Jammalamadaka, S.K.,

Duvvuri, B.K.K., Reddy, L.S.S. (2011). Automated

generation of test cases from output domain of an

embedded system using Genetic algorithms. In 2011 3rd

International Conference on Electronics Computer

Technology, 5: 216-220.

https://doi.org/10.1109/ICECTECH.2011.5941989

[42] Vudatha, C.P., Jammalamadaka, S.K., Duvvuri, B.K.K.

(2011). Automated generation of test cases for testing

critical regions of embedded systems through adjacent

pair-wise testing. IOT based Test Bed, 2(2): 10-15.

https://doi.org/10.1007/978-3-642-01653-0_5

[43] Tatale, S.B., Prakash, V.C. (2021). A survey on test case

generation using UML diagrams and feasibility study to

generate combinatorial logic oriented test cases.

International Journal of Next-Generation Computing,

12(2). https://dx.doi.org/10.47164/ijngc.v12i2.781

[44] Esfandyari, S., Rafe, V. (2020). Extracting combinatorial

test parameters and their values using model checking

and evolutionary algorithms. Applied Soft Computing,

91: 106219. https://doi.org/10.1016/j.asoc.2020.106219

[45] Satish, P., Rangarajan, K. (2016). A preliminary survey

of combinatorial test design modeling methods.

International Journal Of Scientific Engineering Research,

7(7): 1455-1459.

[46] Satish, P., Sheeba, K., Rangarajan, K. (2013). Deriving

combinatorial test design model from UML activity

diagram. In 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation

Workshops, pp. 331-337.

https://doi.org/10.1109/ICSTW.2013.44

[47] Bangare, S.L., Bangare, P.S. (2012). Automated testing

in development phase. International Journal of

Engineering Science and Technology, 4(2): 677-680.

[48] Bangare, S.L., Borse, S., Bangare, P.S., Nandedkar, S.

(2012). Automated API testing approach. International

Journal of Engineering Science and Technology, 4(2):

673-676.

[49] Bangare, S.L., Khare, A.R., Bangare, P.S. (2010). Code

parser for object oriented software modularization.

International Journal of Engineering Science and

Technology, 2(12): 7262-7265.

[50] Bangare, S.L., Khare, A.R., Bangare, P.S. (2011).

Quality measurement of modularized object-oriented

software using metrics. In Proceedings of the

International Conference & Workshop on Emerging

Trends in Technology, pp. 771-774.

https://doi.org/10.1145/1980022.1980190

[51] Bangare, S.L., Khare, A.R., Bangare, P.S. (2011).

Measuring the quality of Object-oriented software

Modularization: Defining metrics and algorithm.

International Journal on Computer Science and

Engineering, 3(1): 445-450.

[52] Pande, S.D., Patil, U.A., Chinchore, R., Chetty, M.S.R.

(2019). Precise approach for modified 2 stage algorithm

to find control points of cubic Bezier curve. In 2019 5th

International Conference on Computing,

Communication, Control and Automation (ICCUBEA),

pp. 1-8.

https://doi.org/10.1109/ICCUBEA47591.2019.9128550

[53] Tatale, S., Chandra Prakash, V. (2022). Combinatorial

test case generation from sequence diagram using

optimization algorithms. International Journal of System

Assurance Engineering and Management, pp. 1-16.

58

https://doi.org/10.1007/s13198-021-01579-w

[54] Tatale, S., Prakash, V.C. (2021). Generation of

combinatorial logic oriented test cases from UML

sequence diagram. Journal of Theoretical and Applied

Information Technology, 99(21): 5201-5216.

[55] Prakash, V.C., Priyanka, K. (2016). Test case generation

for pairwise + testing. Asian Journal of Information

Technology, 15(23): 4800-4805.

https://doi.org/10.3923/ajit.2016.4800.4805

[56] Kondhalkar, V., ChandraPrakash, V. (2018). Automated

generation of test cases for conducting pairwise plus

testing. Journal of Advanced Research in Dynamical and

Control Systems, 1484-1492.

[57] Poli, R., Kennedy, J., Blackwell, T. (2007). Particle

swarm optimization. Swarm Intelligence, 1(1): 33-57.

https://doi.org/10.1109/SIS.2007.368035

[58] Chen, X., Gu, Q., Qi, J., Chen, D. (2010). Applying

particle swarm optimization to pairwise testing. In 2010

IEEE 34th Annual Computer Software and Applications

Conference, pp. 107-116.

https://doi.org/10.1109/COMPSAC.2010.17

[59] Bewoor, L.A., Chandraprakash, V., Sapkal, S. (2019).

Evolutionary hybrid particle swarm optimization

algorithm to minimize makespan to schedule a flow shop

with no wait. Journal of Engineering Science and

Technology, 14(2): 609-628.

[60] Bewoor, L.A., Chandra Prakash, V., Sapkal, S.U. (2017).

Evolutionary hybrid particle swarm optimization

algorithm for solving NP-hard no-wait flow shop

scheduling problems. Algorithms, 10(4): 121.

https://doi.org/10.3390/a10040121

[61] Bewoor, L.A., Prakash, V.C., Sapkal, S.U. (2018).

Production scheduling optimization in foundry using

hybrid Particle Swarm Optimization algorithm. Procedia

Manufacturing, 22: 57-64.

https://doi.org/10.1016/j.promfg.2018.03.010

[62] Prakash, V., Tatale, S., Kondhalkar, V., Bewoor, L.

(2018). A critical review on automated test case

generation for conducting combinatorial testing using

particle swarm optimization. Int. J. Eng. Technol, 7(3):

22. https://doi.org/10.14419/ijet.v7i3.8.15212

59

