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Black widow optimization algorithm is a recently evolutionary metaheuristic that imitates 

the unique mating behaviour of the black widow spiders in the real life. The trend of 

published papers utilizing the BWO algorithm is growing rapidly due to its efficiency in 

solving various engineering optimization problems. However, the BWO does not always 

perform as well as it should, and this is due to the random initialization of the spiders also 

the loss of good candidate solutions during the search. To remedy these problems, we 

propose in this paper a modified black widow optimization algorithm (MBWO) based on 

three ideas. First, an efficient initialization technique is adopted, which can guarantee 

starting the search with finest quality spiders and plays a significant role in determining an 

optimal or near-optimal solution. Second, the sexual cannibalism phase is modified to avoid 

the loss of high-quality solutions. Finally, an adaptive adjustment of crossover and mutation 

probabilities is presented to achieve a compromise between the diversification and 

intensification. Experiments are carried out on nineteen standard benchmark functions with 

different dimensions. The simulation results reveal that MBWO algorithm outperforms the 

original one also other metaheuristic algorithms in term of solution accuracy, global 

optimality, and the convergence speed. 

Keywords: 

black widow optimization algorithm, 

diversification, intensification, benchmark 

functions, evolutionary algorithms 

1. INTRODUCTION

Over the last decade, optimization theory and methods have 

grown rapidly and widely been applied in different 

engineering fields [1]. The complexity of the real-world 

optimization problems increases so that optimization 

algorithms especially those that are inspired from nature have 

received growing attention regarding their efficiency potential 

and ability to give the desired results [2]. 

Evolutionary algorithms are biologically inspired 

population-based approaches that mimic the Darwinian 

evolutionary in nature. Although, such efforts date back to the 

1950s, so far, they have become popular tools for search, 

machine learning, and design problems [3]. These algorithms 

employ simulated evolution such as selection and procreation 

to find solutions for complicated problems. Within this 

paradigm achieving the best solution is seen as a survival duty, 

where all the possible solutions compete with each other to 

survive and this competition is the power of the evolutionary 

algorithms [4]. Several evolutionary algorithms have been 

proposed in the literature, historically the first proposition was 

the Genetic Algorithms (GAs) [5] then the Evolutionary 

strategies (ES) [6], Evolutionary programming (EP) [7] and 

Differential Evolution (DE) [8] popped out, the proposed 

approaches did not stop here, in the early nineties researchers 

have proposed other EAs, Genetic programming (GP) [9], 

Evolutionary Computation (EC) [10], Neuroevolution 

Algorithms (NAs) [11], etc. A brief review on the evolutionary 

algorithms can be found in research [12]. 

The Black Widow Optimization algorithm (BWO) is a 

recent metaheuristic, proposed by Hayyolalam and Kazem 

[13], inspired from the black spider’s unique behaviour mating. 

The working principle of this evolutionary algorithm is the 

same as that of the genetic algorithms (GAs) in procreation 

and mutation processes, however the mating of spiders 

involves an exclusive stage known as cannibalism, where the 

female black widow consumes its husband and the children 

consume each other and sometimes they consume their mother, 

due to this stage, individuals with insufficient fitness are 

excluded from the competition. 

The trend of published papers utilizing BWO algorithm is 

growing rapidly. Houssein et al. [14] have proposed a novel 

Black Widow Optimization Algorithm for Multilevel Thresh-

olding image segmentation named BWO-MT. The proposed 

algorithm is about to explore the search space for the aim of 

finding the optimal configuration of thresholds that maximize 

the Otsu’s and Kapur’s method using the crossover mutation 

and cannibalism operators, in which the widow is encoded a 

set of thresholds and tested each generation using Otsu or 

Kapur fitness functions. The BWO-MT was tested on a set of 

images with different degrees of complexity, and compared 

with six metaheuristics in which the results of the novel 

algorithm were the best in all metrics. However, when the 

Kapur’s entropy is used, the BWO’s fitness values are not the 

best. This fact occurs due to the randomness of the algorithm. 

Nanjappan et al. [15] presented an adaptive neuro fuzzy 

inference system and Black Widow Optimization approach 

(ANFIS-BWO) for optimal resource utilization and task 

scheduling in a cloud environment. The aim of the algorithm 

is to minimize computational time, cost, and energy 
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consumptions of the tasks with useful resource utilization. 

Kumar [16] have developed an Energy Efficient Black Widow 

Optimization based Scheduling algorithm (EEBWOSA), for 

solving the problem of the increased demand of services of 

cloud computing that leads to increase in demand of energy 

consumption by data-center, and this by minimizing the 

consumption of power, energy costs and rising the profit. 

Micev et al. [17] proposed a hybrid method for identification 

of synchronous generator parameters using an adaptive BWO 

algorithm, where the aim was to minimize the normalized sum 

of squared errors (NSSE) between simulation and 

experimental results. The proposed algorithm ensures a 

balance between exploration and exploitation of the search 

space because of the adaptive change of the procreation and 

mutation probabilities. The obtained results show the superior 

performance of the ABWO in comparison with other 

algorithms also its ability in escaping the local optima trap. 

However, their proposed approach is just a tuning of the basic 

BWOA parameters without any modifications in procreation 

and mutation processes. Munirah et al. [18] presented a 

development of parameter estimation method for Chinese 

hamster ovary model (CHO) using the BWO algorithm, in 

order to define the best value for a particular parameter. The 

BWO algorithm tends to get the fittest graph model, correct 

the data that is used to be not fit, and estimate the value based 

on the behaviour of data. The proposed algorithm has obtained 

better results in comparison with other meta-heuristics, but it 

would be limited in terms of the metabolic field. Other related 

works of BWO can be found in works [19-24]. 

This paper presents a modified black widow optimization 

algorithm (MBWO) with an efficient initialization technique 

that provides a high-quality initial population and avoids low 

convergence speed, saving the good fathers each generation by 

modifying the sexual cannibalism, and an adaptive adjustment 

of crossover and mutation rates for the purpose of keeping the 

balance between exploration and exploitation and maintaining 

population diversity to jump out of the potential local optima. 

The remainder of this paper is organized as follows: Section 

2 presents the traditional BWO algorithm; Section 3 

introduces the proposed MBWO algorithm; the computational 

experiments and results are presented in Section 4 and finally 

Section 5 concludes the paper. 

 

 

2. BLACK WIDOW ALGORITHM 

 

The BWO algorithm mimics the unique mating behaviour 

of the black spiders in nature. Spider’s life forms a cycle starts 

from an egg to a spider lays eggs in which the male plays the 

role of an assistant, this cycle can be summarized into two 

main phases, the mating with the reproduction in which the 

female controls the process and cannibalism, the latter is 

divided into three steps, the first one is where the female 

consumes her husband and it’s called sexual cannibalism, then 

the process proceeds among spiderlings, where they consume 

each other and just spiders with high fitness survive. Finally, 

unfertilized spiderlings eat their mother, however this does not 

occur frequently. The remaining section presents the main 

steps of the BWO following the description [13]. 

 

2.1 Initialization 

 

In initialization step, the BWO algorithm generates a 

random distributed population of size Npop where the 

individuals are widows, and each widow is an array of 1×Nvar 

defined as widow=[x1, x2, ...., xNvar], where Nvar is the 

dimension of the optimization problem. The widow fitness can 

be determined by assessing the fitness function f at each 

widow given as (𝑥1, 𝑥2, . . . , 𝑥𝑁𝑣𝑎𝑟
) . Therefore 

Fitness=f(widow). 
 

2.2 Procreate 
 

In procreation step two parents are chosen randomly, then 

an array α with size of Nvar signified within the rang [0, 1] will 

be created, so the offspring will be produced through the use 

of the alpha array with the following equations: 
 

{

𝑦1 = 𝛼 × 𝑥1 + (1 − 𝛼) × 𝑥2

𝑦2 = 𝛼 × 𝑥2 + (1 − 𝛼) × 𝑥1

 (1) 

 

where, 

x1 and x2 represent the parents; 

y1 and y2 are the offspring. 

The number of the participated spiders in the mating process 

is defined by the procreation rate (Pc). This process is repeated 

for Nvar/2 times, although the random selected numbers should 

not be duplicated, then the mother and the survivor children 

will be added to an array and sorted according to their fitness.  
 

2.3 Cannibalism 
 

The cannibalism process is divided into three steps, its 

started by the sexual cannibalism where the female widow 

consumes, the male either before, during or after mating, so 

the worst in term of fitness between x1 and x2 will be 

eliminated, then the siblings cannibalism starts where the 

stronger spiders consume the weaker ones, resulting in 

competition amongst them. Finally, if the spiderlings are fitter 

than their mother, the latter will be eliminated from the set of 

the solutions but it has only happened a few times. After 

applying the cannibalism process, the new population is 

evaluated and stored in an array called pop2, where the number 

of survivor spiders is defined by the cannibalism rate (Cr). 
 

2.4 Mutation 
 

The mutation process begins with the selection of 

individuals from the population at random. The number of the 

selected individuals is determined by the mutation rate (Pm). 

Each of the chosen solutions randomly exchanges two 

elements of the array. 

After applying mutation, the new population is evaluated 

and stored in a new array named pop3. Finally, the new 

population can be obtained as the migration of pop3 and pop2, 

which will be sorted to return the best widow of threshold 

values with Nvar dimension. 
 

 

3. MODIFIED BLACK WIDOW ALGORITHM 
 

It is well known that the quality of the initial individuals is 

critical to the time taken in the execution, keeping hold of the 

fit candidates throughout the course of a run affects the final 

results, and the compromise between the exploration and the 

exploitation is the key to the success of any metaheuristic. Our 

proposed approach is to focus on all of them. 
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3.1 Population initialization  

 

In general, bio-inspired algorithms start with initializing a 

random population, and try to improve its performance until a 

predefined criteria are satisfied. The random initialization 

includes no priori information about the population, this means 

that the search may start with poor quality individuals which 

affects the final results. To solve this problem, we propose the 

use of the opposite-based learning concept that was introduced 

by Tizhoosh [25]. 

First, we initialize our population randomly Pop(N), where 

N is the number of individuals. Second, we compute the 

opposite population OppPop(N) according to Eq. (2). 

 

𝑂𝑝𝑝𝑃𝑜𝑝𝑛𝑚 = 𝑢𝑏 + 𝑙𝑏 − 𝑃𝑜𝑝𝑛𝑚 

n=1, 2, ..., N; m=1, 2, ..., nVar 
(2) 

 

where, ub and lb are the upper and lower bound respectively 

of the variables, nVar is the problem dimensions. Finally, we 

select the fittest individuals from the union of the population 

and its opposite (𝑃𝑜𝑝(𝑁) ∪ 𝑂𝑝𝑝𝑃𝑜𝑝(𝑁))  as the initial 

population for the problem [26]. 

Figure 1 show the fitness of a population initialized 

randomly in comparison with an opposite based population 

using three different benchmark functions with 100 

individuals in a space of [-5, +10], [-32.768, +32.768], [-5.12, 

+5.12] respectively, where the individuals of the opposite-

based initialization are fitter than those of the random-based. 

 

3.2 Saving the father  

 

The BWO differs from other evolutionary algorithms with 

the step of cannibalism. The latter divides into three types 

where the famous one is the sexual cannibalism, in which the 

female consumes the male either before, during or after mating 

[13]. 

Generally, in spider’s society, the mother is fitter than the 

father. However, he can be fitter than his children so, 

destroying the male at the beginning of the procreation process 

leads to a loss of one of the best solutions which may influence 

the global results. To avoid this loss, we propose to remove the 

sexual cannibalism and delay destroying the father in the 

siblings cannibalism, which means at each generation if the 

father is fitter than his children, we save him for the next 

generation, otherwise we destroy him. 

To get an idea of how many fit fathers are surviving each 

generation after sexual cannibalism, we have applied a test on 

the BWO algorithm with 100 individuals and the results are 

presented in Figure 2. We notice that in each generation at least 

7% high-quality spiders survive, and in some cases, up to 35%. 

 

 

 

 
 

Figure 1. Random population vs Opposite based population 

 

 
 

Figure 2. Number of survived fit fathers 

 

3.3 Adaptive procreation and mutation rates 

 

BWOA distinguishes itself with parameters that are 

important for exploring the search space and avoiding the local 

optima trap. These parameters are procreation, mutation, and 

cannibalism rates. Procreation rate (Pc) is responsible for 

introducing new solutions into the population which means 

exploring the search space, mutation rate (Pm) helps the search 

process to escape from any local optima trap and keep the 

balance between exploration and exploitation, cannibalism 

rate (Cr) ensures high performance for the exploitation stage 

by transferring the search agents from local to the global stage 

and vice versa [13]. The values of these rates are determined 

statically prior to the execution of the algorithm, which 

critically affects its performance. To solve this problem and 

inspired by the work of Li and Sang [27], we propose an 

adaptive change of crossover and mutation probabilities, that 
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ensures a high value of 𝑃𝑐 at the beginning of the search and 

a low value in the last iterations, the same with mutation rate 

where its value is expected to rise as the number of generations 

increases. This process guarantees a balance between the 

exploration and exploitation. The adaptive description of the 

crossover and mutation probabilities is the following: 

 

𝑃𝑐 = 𝑃𝑐𝑚𝑎𝑥 − (𝑃𝑐𝑚𝑎𝑥 − 𝑃𝑐𝑚𝑖𝑛) × 𝑒−(
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
)
 (3) 

 

𝑃𝑚 = 𝑃𝑚𝑚𝑎𝑥 + (𝑃𝑚𝑚𝑎𝑥 − 𝑃𝑚𝑚𝑖𝑛) × 𝑒−(
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
)
 (4) 

 

where, Pmmax, Pmmin are the upper and the lower bounds of 

mutation rate, the recommended parameters for these two 

mutation probabilities are 0.5 and 0.25 respectively. Pcmax, 

Pcmin are the upper and the lower bounds of crossover rate and 

the recommended parameters for these two crossover 

probabilities are 0.83 and 0.6. The parameter iter is the current 

iteration and MaxIter is the maximum number of iterations.  

 

Algorithm 1: Modified Black Widow Algorithm 

 

Input: MaxIter, Cannibalism rate, ub, lb, P mmax; P mmin; P 

cmax; P cmin; 

Output: Near optimal solution to the objective function; 

 

//Initialization 

1. Initialize the random population of black widow 

spiders Pop(N); 

2. Calculate the opposite population OppPop(N) 

according to Eq. (2). 

3. Select the fittest individuals from (Pop(N) ∪ OppPop(N)) 

as the initial population; 

4. t = 0; 

while (t<Maxiter) do 

5. Based on Eq. (3) and Eq. (4), calculate Pc and 

Pm; 

6. Based on the procreation rate, calculate the 

number of reproduction "nr"; 

7. Select the best nr solution in pop and save them 

in pop1; 

 

//Procreating and cannibalism; 

8. for i=1 to nr do 

Randomly select two solutions as parent from 

pop1; 

Generate D children using Eq. (1) and Eq. (2). 

Save the father if he is fitter than his children; Based 

on cannibalism rate destroy some of the children; 

Save the remain solution into pop2; 

end 

 

//Mutation 

9. Based on the mutation rate, calculate the number 

of mutation children "nm"; 

10. for i=1 to nm do 

Select a solution from pop1; 

Randomly mutate one chromosome of the 

solution and generate a new solution; 

ave the new one in pop3; 

end 

 

//Update 

11. Update pop = pop2 + pop3; 

12. Returning the best solution; 

13. Return the best solution from pop; 

14. t = t + 1; 
end 

 

 
 

Figure 3. The flowchart of the proposed algorithm 

 

Both of procreation rate and mutation rate change 

exponentially, which guarantees a constant Pc and Pm at the 

beginning of the search because of the high value of (
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
) 

in the first generations which means exploring the space first 

then, after performing the exploration the adaptation of the 

parameters starts where the Pc decreases and Pm increases 

hence the process of exploitation starts. 

The flowchart of the Modified Black Widow Optimization 

MBWO is presented in Figure 3 and the pseudo-code is shown 

in Algorithm 1. 

 

 

4. SIMULATION RESULTS  

 

In order to investigate the effect of the modifications that 

we have made on the BWO algorithm, 19 optimization 

standard functions have been evaluated where the stop 

condition is the maximum number of iterations. The algorithm 

is compared with other bio-inspired approaches, which are 

BWO (Black Widow Optimization), ABWO (Adaptive Black 

Widow Optimization) [17], BBO (Bio-geography-based 

optimization) [28], GA (Genetic Algorithm) and IWO 

(invasive weed optimization) [29]. The algorithms have been 

implemented in an Octave environment using the same 

personal computer with windows 10 operating system (64-bit 

professional), and the following hardware settings: Core(TM) 

i7-8565U CPU @ 1.80GHz 1.99 GHz, 8 GB RAM, 1 TB hard 

drive.  

 

4.1 Test functions 

 

All the functions that have been used in this simulation are 

defined in Table 1, among these functions, f1, f2, f3, ..., f8 are 

uni-modal functions that have not many local optimum but 

only a global one, these functions are used to verify the 

convergence rate of the algorithm. The functions from f9 to 

f15 are multi-dimensional functions with many local optima, 

these functions are used to test the ability of the algorithm to 

jump from the local optima and avoid getting trapped in it. The 

remained functions f16, f17, f18, f19 are complexe two 
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dimensional functions which are used to test the algorithm in 

handling problems with low dimensions. 

 

4.2 Results on benchmark functions 

 

The results presented in Table 3 are obtained after running 

each of the noticed algorithms 20 times with each function in 

the dimensions of 10, 20 and 30, and with 500 iterations where 

"Best" is the best result fitness returned by the algorithm in 20 

runs, "Mean" and "Median" refer to the mean value and the 

median value of the cost returned in 20 runs respectively. 

"STD" is the value of the standard derivation of the algorithm, 

and it is a measure of how much dispersed the individuals are 

in relation to the mean. Therefor the lower the value of "STD", 

the more robust and reliable the algorithm is. All the values 

that are less than 10E-50 are supposed to be 0. The used 

parameters of each algorithm are set in Table 2. 

From the results shown in Table 3, it is observed that our 

proposed algorithm MBWO provides better results than the 

mentioned experimental algorithms in most of benchmark 

functions. 

 

Table 1. Test functions adopted for experiments 

 

 
 

Table 2. Parameters values 

 
Algorithm Parameters 

BWO Pc= 0:6; Pm=0:4; Cr=0:44 

ABWO 
P cmin=0:6; Pcmax=0:8; Cr=0:5 

P mmin = 0:2; P mmax = 0:4 

MBWO 
P cmin = 0:6; Pcmax=0:83; P mmin = 0:25 

P mmax = 0:5; Cr = 0:44 

BBO 
keepRate = 0:6; Absorption Coeff = 0:9 

P m = 0:4 

GA P c = 0:67; P m = 0:33 

IWO 
initial = 0:5; final = 0:001; Exponent = 2 

seedmin = 0; seedmax = 5 

 

In the case of functions with many local optima such as F9, 

F13 and F15, the MBWO outperformed the other algorithms 

in terms of “Best”, "Mean","Median" and "STD" values, 

proving its ability to escape from the local optima trap, since 

these functions are difficult to optimize, especially with F15 

where the MBWO has placed results equal to the global 

optima in the dimensions of 20 and 30. 

According to the results achieved for F3, F8 and F11, 

although the BWO and the adaptive BWO have returned the 

exact global optima in terms of "Best" in all dimensions and 

with F10 in the dimension of 20. However, in terms of 

“mean”,"median" and the standard derivation values the 

MBWO has provided results quite better than the others. 

For the first function F1 (Sphere), MBWO outperformed the 

other algorithms in the dimension of 10. However, in the 

dimensions of 20 and 30 the performance of MBWO was a 

little bit weaker than BWO in the case of "Best", the same with 

F2 in the dimension of 30. 

Considering the global optima of F16 and F18 functions are 

-1,-186.73 respectively, all the algorithms have achieved the 

exact global optima in terms of "Best" and "Median". However, 

in terms of "STD", the values returned by MBWO were the 

best ones. This proves that the algorithm achieves almost the 

same optimum in each independent run. With F17 (Schaffar 

2), all the algorithms excluding IWO have achieved the global 

optima in terms of "Best". However, GA, ABWO and MBWO 

performed better with this function in the case of "Mean" and 

"Median". 

With F7 (Dixon Price), the IWO was the best in returning 
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the optimum results in all dimensions. The MBWO has 

returned the same optimum as that of the IWO in case of 

"Best". However, "Mean", "Median" and "STD" could not 

obtain acceptable results. 

For the F12 function (Periodic), which has the optimum of 

0.9, all the algorithms except the BBO have returned similar 

results in the dimensions of 20 and 30 in terms of "Best", and 

in the dimension of 10 only the MBWO achieved the best 

results. 

The simulation results reveal that the MBWO has better 

solution performance on 10, 20, and 30-dimensional test 

functions as well as two-dimensional functions. It is mainly 

due to the introduction of opposite-based initialization, which 

ensures the high-quality of the initial population and increases 

the probability that the individuals will achieve the optimum 

solution faster, as is well observed from the values of the 

optimum returned by the algorithm. The addition of the 

adaptive adjustment of the parameters in Eq. (3) and Eq. (4) 

helps to protect the diversity of spiders in the search space and 

improves the optimization accuracy of the MBWO in each run, 

which is well observable from the values of the standard 

derivation. At the same time, saving the father each generation 

helps to accelerate the convergence speed in the later stages of 

iteration. The algorithm's performance and accuracy for 

solving complex high-dimensional functions are improved, as 

demonstrated by functions, and the problem of the algorithm's 

propensity to slip into a local optimum is resolved. 

 

Table 3. Comparison of various algorithms 

 
Function  F1   F2   F3   

Dim  10 20 30 10 20 30 10 20 30 

BWO Best 2.19E-29 2.54E-37 1.88E-23 2.59E-24 4.84E-26 8.77E-24 0 0 0 

 Mean 2.99E-07 2.12E-10 1.78E-08 3.36E-13 1.79E-14 8.45E-16 4.17E-06 2.07E-05 4.93E-31 

 Median 1.43E-10 5.82E-18 3.02E-20 3.37E-15 1.84E-17 1.66E-16 8.66E-16 0 0 

 STD 8.63E-07 4.92E-10 5.63E-08 9.57E-13 6.63E-14 1.92E-15 1.14E-05 5.01E-07 1.55E-30 

ABWO Best 1.34E-27 3.85E-30 3.54E-22 4.00E-20 2.55E-26 7.01E-23 0 0 0 

 Mean 5.85E-08 8.16E-12 6.04E-10 3.72E-14 7.70E-15 1.41E-13 1.37E-07 2.21E-26 6.43E-05 

 Median 1.45E-12 9.73E-21 2.37E-20 2.35E-14 5.42E-16 1.85E-16 0 0 0 

 STD 2.32E-07 3.32E-11 1.91E-09 1.00E-13 1.98E-14 3.84E-13 5.16E-07 9.92E-26 2.03E-04 

MBWO Best 4.10E-64 2.03E-33 2.47E-22 5.10E-26 7.42E-27 9.06E-24 0 0 0 

 Mean 6.88E-10 4.15E-17 3.83E-13 7.63E-15 1.22E-16 2.46E-17 7.77E-13 0 0 

 Median 8.24E-13 9.69E-31 9.66E-21 1.03E-16 3.01E-19 7.30E-19 0 0 0 

 STD 1.99E-09 1.86E-16 1.21E-12 1.61E-14 2.72E-16 6.60E-17 1.55E-11 0 0 

GA Best 1.00E-13 2.94E-07 5.32E-12 5.82E-24 1.91E-22 1.28E-20 9.11E-24 3.61E-18 2.81E-17 

 Mean 9.49E-06 1.20E-03 8.35E-05 4.02E-10 3.36E-11 9.25E-14 1.98E-03 9.31E-05 7.18E-06 

 Median 1.12E-07 1.11E-04 1.52E-03 9.80E-14 1.13E-16 3.44E-16 3.35E-05 1.85E-07 2.73E-07 

 STD 3.45E-05 3.32E-03 3.81E-03 1.56E-09 1.03E-10 2.91E-13 8.00E-03 8.13E-03 2.06E-05 

BBO Best 1.06E-04 1.48E-02 9.60E-02 5.71E-14 3.09E-15 4.64E-15 4.22E-10 4.08E-10 1.80E-09 

 Mean 2.60E-04 2.46E-02 1.08E-02 1.95E-13 1.40E-12 5.58E-13 2.82E-06 1.20E-06 8.09E-07 

 Median 4.99E-04 2.48E-02 1.06E-01 1.95E-13 9.98E-14 6.17E-14 2.47E-07 1.70E-07 1.21E-07 

 STD 1.06E-04 4.34E-03 1.08E-02 1.32E-13 3.97E-12 9.47E-13 8.75E-06 2.19E-06 1.32E-06 

IWO Best 1.40E-06 1.50E-05 5.85E-05 2.90E-10 8.25E-09 2.94E-08 3.61E-11 3.59E-10 4.84E-10 

 Mean 2.62E-06 2.11E-05 8.35E-05 7.29E-09 3.42E-08 1.11E-07 6.50E-09 4.82E-08 6.80E-09 

 Median 2.66E-06 2.25E-05 8.47E-05 4.58E-09 2.64E-08 1.12E-07 4.19E-09 4.49E-08 4.59E-09 

 STD 6.33E-07 3.70E-06 1.45E-05 7.39E-09 2.70E-08 4.63E-08 6.75E-09 2.99E-08 6.02E-09 

Function  F4   F5   F6   

Dim  10 20 30 10 20 30 10 20 30 

BWO Best 3.75E-11 6.22E-03 1.31E-03 4.52E-12 2.93E-19 2.87E-13 9.46E-14 5.24E-05 7.98E-07 

 Mean 4.35E-03 3.96E+00 1.33E+01 1.04E-03 9.30E-05 1.28E-05 4.75E-04 2.27E-02 2.85E-01 

 Median 9.90E-05 1.42E+00 7.77E+00 2.17E-05 6.30E-04 3.57E-10 9.03E-08 4.07E-03 2.34E-01 

 STD 8.95E-02 7.18E+00 1.78E+01 2.42E-03 2.01E-04 4.07E-05 2.10E-03 3.53E-02 2.74E-01 

ABWO Best 9.49E-11 4.28E-04 2.68E-04 1.91E-18 5.14E-19 2.02E-12 1.06E-15 1.36E-05 2.18E-05 

 Mean 2.05E-02 2.24E+00 1.87E+02 2.06E-03 1.34E-04 8.11E-07 1.90E-04 3.69E-02 2.77E-01 

 Median 1.05E-05 4.59E+01 1.07E+02 1.14E-05 7.54E-09 2.20E-11 5.34E-06 1.38E-02 1.29E-01 

 STD 6.29E-02 4.68E+00 2.48E+02 5.11E-04 3.20E-04 2.56E-06 4.77E-04 5.15E-02 3.25E-01 

MBWO Best 3.01E-12 2.33E-05 2.43E-05 5.66E-22 7.63E-20 2.69E-13 1.23E-16 6.32E-09 1.13E-07 

 Mean 1.60E-03 2.84E-01 2.43E+00 4.55E-04 2.38E-05 8.03E-09 5.37E-05 5.11E-03 8.37E-02 

 Median 5.46E-06 1.18E-01 1.01E+00 2.05E-06 3.16E-11 1.00E-11 1.12E-07 1.58E-03 8.64E-03 

 STD 5.49E-03 4.02E-01 2.72E+00 1.94E-04 8.85E-05 2.81E-08 2.20E-04 8.49E-03 1.39E-01 

GA Best 2.07E-04 3.69E-01 1.02E-01 7.38E-06 3.85E-05 8.18E-04 9.17E-09 6.28E-04 2.01E-02 

 Mean 3.76E-02 4.13E+01 3.99E+01 1.07E-02 6.81E-02 1.20E-01 1.54E-02 8.07E-01 1.16E+00 

 Median 3.66E-01 2.33E+01 1.08E+01 1.75E-03 1.26E-02 5.39E-02 4.29E-04 4.27E-01 5.78E-01 

 STD 9.87E-01 5.43E+01 5.26E+01 4.19E-02 1.10E-01 1.63E-01 2.84E-02 1.25E-01 1.35E+00 

BBO Best 9.02E-02 1.65E+01 1.72E+02 3.71E-02 5.68E-01 2.14E+00 2.48E-03 6.13E-01 4.40E+00 

 Mean 1.73E-01 3.35E+01 2.23E+02 5.26E-02 8.56E-01 2.36E+00 4.79E-03 8.28E-01 5.16E+00 

 Median 1.71E-01 3.33E+01 2.27E+02 5.02E-02 8.77E-01 2.38E+00 4.77E-03 8.46E-01 4.93E+00 

 STD 5.67E-02 7.28E+00 2.57E+01 9.94E-03 1.08E-01 1.55E-01 1.09E-03 1.82E-01 6.03E-01 

IWO Best 9.19E-06 1.00E+02 3.45E+03 3.15E-03 1.37E-02 3.58E-02 6.46E-06 1.44E-04 1.03E-03 

 Mean 1.28E-05 2.16E+02 1.79E+04 4.26E-03 1.17E-02 4.76E-02 1.17E-04 6.23E-03 9.14E-02 

 Median 1.35E-05 2.53E+02 1.47E+04 4.22E-03 1.70E-02 4.82E-02 1.22E-05 2.33E-03 9.59E-03 

 STD 1.99E-06 8.08E+01 1.21E+04 5.74E-04 1.85E-03 6.98E-03 3.12E-03 2.33E-04 6.00E-01 
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Function  F7   F8   F9   

Dim  10 20 30 10 20 30 10 20 30 

BWO Best 6.66E-01 6.70E-01 9.28E-01 0 0 0 2.1E+01 9.53E+01 4.91E+02 

 Mean 7.20E-01 1.60E+00 4.23E+00 2.80E-15 1.40E-17 5.27E-22 2.73E+02 5.67E+02 1.396E+03 

 Median 6.77E-01 1.02E+00 4.06E+00 1.39E-39 6.79E-33 7.44E-43 1.73E+02 5.00E+02 1.268E+03 

 STD 9.33E-02 8.85E-01 1.63E+00 1.25E-14 6.00E-17 1.66E-21 2.87E+02 4.94E+02 8.26E+02 

ABWO Best 6.66E-01 6.84E-01 8.29E-01 0 0 0 2.40E+01 4.80E+01 4.53E+02 

 Mean 7.21E-01 1.32E+00 3.66E+00 1.64E-21 1.80E-21 2.01E-28 2.56E+02 8.05E+02 1.54E+03 

 Median 6.93E-01 1.06E+00 2.95E+00 5.08E-33 4.02E-42 5.40E-44 2.73E+02 5.53E+02 1.32E+03 

 STD 6.30E-02 6.36E-01 1.09E+00 6.16E-21 8.05E-21 6.36E-28 1.60E+02 7.43E+02 4.32E+02 

MBWO Best 6.63E-01 6.70E-01 6.68E-01 0 0 0 1.13E+01 3.61E+01 3.60E+02 

 Mean 6.80E-01 8.10E-01 1.46E+00 1.14E-27 7.23E-32 3.71E-36 1.22E+02 4.41E+02 8.58E+02 

 Median 6.70E-01 7.79E-01 1.18E+00 1.34E-42 0 2.70E-48 9.53E+01 3.81E+02 8.10E+02 

 STD 1.98E-03 3.18E-01 8.90E-01 5.11E-27 3.23E-30 1.08E-35 1.02E+02 3.06E+02 3.67E+02 

GA Best 6.66E-01 7.79E-01 4.13E+00 3.88E-39 0 1.25E-38 1.56E+01 5.25E+02 2.24E+03 

 Mean 7.04E-01 9.97E+00 1.34E+01 7.09E-15 2.86E-08 3.56E-15 3.14E+02 1.56E+03 3.88E+03 

 Median 6.73E-01 2.66E+00 1.38E+01 1.96E-25 2.28E-17 9.81E-19 2.21E+02 1.37E+03 3.83E+03 

 STD 1.23E-01 5.09E+00 7.27E+00 2.29E-14 1.21E-07 8.40E-15 2.83E+02 7.34E+02 8.83E+02 

BBO Best 6.69E-01 1.33E+00 565E+00 4.58E-19 3.49E-09 4.67E-06 2.24E+01 3.89E+02 1.66E+03 

 Mean 6.72E-01 1.83E+00 8.08E+00 1.10E-15 1.40E-08 1.12E-05 2.82E+02 1.02E+03 2.63E+03 

 Median 6.71E-01 1.78E+00 8.19E+00 8.68E-16 2.66E-08 1.06E-05 2.35E+02 1.05E+03 2.60E+03 

 STD 2.11E-03 3.43E-01 1.67E+00 1.06E-15 4.63E-08 7.64E-06 1.86E+02 3.75E+02 5.71E+02 

IWO Best 6.66E-01 6.67E-01 6.68E-01 7.61E-33 5.11E-28 2.84E-25 1.20E+03 2.59E+03 5.76E+03 

 Mean 6.66E-01 6.67E-01 7.38E-01 3.32E-26 1.57E-27 3.17E-24 1.58E+03 3.65E+03 1.39E+03 

 Median 6.66E-01 6.67E-01 6.71E-01 1.56E-26 1.13E-27 1.42E-24 1.56E+02 3.71E+03 6.73E+03 

 STD 2.12E-06 1.77E-04 1.34E-01 5.35E-26 1.48E-27 3.58E-24 2.26E+02 4.95E+02 5.65E+02 

Function  F10   F11   F12   

Dim  10 20 30 10 20 30 10 20 30 

BWO Best 8.52E-14 0 5.68E-14 9.98E-02 9.98E-02 9.98E-02 9.00E-01 1.00E+00 1.00E+00 

 Mean 2.03E-03 4.21E-03 8.76E-05 1.39E-01 1.29E-02 1.79E-01 9.85E-01 1.01E+00 1.03E+00 

 Median 5.95E-05 3.44E-05 7.67E-09 1.09E-01 1.99E-01 1.99E-01 1.01E+00 1.00E+00 1.04E+00 

 STD 1.28E-02 1.28E-02 1.84E-04 4.64E-02 4.70E-02 6.32E-02 3.68E-02 2.58E+03 7.86E-03 

ABWO Best 0 0 5.68E-14 9.99E-02 9.98E-02 9.98E-02 9.00E-01 1.00E+00 1.00E+00 

 Mean 1.76E-02 2.41E-04 2.41E-05 9.99E-02 1.74E-01 1.69E-01 9.99E-01 1.00E+00 1.02E+00 

 Median 4.60E-07 1.13E-08 8.52E-11 9.99E-02 1.99E-01 2.49E-01 1.01E-02 1.00E+00 1.00E+00 

 STD 6.66E-01 1.02E-03 7.64E-05 7.90E-11 7.86E-02 8.23E-02 4.93E-02 3.23E-02 5.44E-03 

MBWO Best 0 0 5.68E-14 9.98E-02 9.98E-02 1.99E-01 9.00E-01 1.00E+00 1.00E+00 

 Mean 1.26E-03 5.93E-05 3.36E-06 9.98E-02 1.24E-02 1.09E-01 9.70E-01 1.00E+00 1.00E+00 

 Median 3.15E-08 2.84E-14 1.13E-13 9.98E-02 9.98E-02 1.99E-01 1.00E+00 1.00E+00 1.00E+00 

 STD 1.03E-02 2.47E-04 1.06E-05 8.53E-12 4.44E-02 3.16E-02 3.68E-02 2.23E-04 2.60E-04 

GA Best 3.79E-08 8.47E-04 4.42E-04 9.98E-02 9.98E-02 1.99E-01 1.00E+00 1.00E+00 1.04E+00 

 Mean 9.29E-02 6.70E-01 1.59E+00 1.19E-01 2.19E-01 3.49E-01 9.98E-01 1.01E+00 1.49E+00 

 Median 9.35E-04 4.51E-02 1.52E+00 9.98E-02 1.99E-01 3.99E-01 1.00E+00 1.02E+00 1.29E+00 

 STD 1.96E-01 1.74E+00 1.04E+00 5.23E-02 6.95E-02 7.07E-02 2.34E-02 3.05E-02 4.26E-01 

BBO Best 1.06E+00 1.13E+01 3.53E+01 9.98E-02 4.01E-02 8.37E-01 1.00E+00 1.05E+00 2.29E+00 

 Mean 3.26E+00 1.48E+01 4.12E+01 1.04E-01 5.20E-01 9.41E-01 1.00E+00 1.09E+00 2.62E+00 

 Median 3.05E+00 1.44E+01 4.14E+01 1.08E-01 5.15E-01 9.45E-01 1.00E+00 1.09E+00 2.68E+00 

 STD 1.34E+00 2.14E+00 1.04E+00 4.64E-02 5.22E-02 5.72E-02 6.70E-04 2.23E-02 1.62E-01 

IWO Best 1.99E+00 1.19E+01 2.58E+01 6.09E+00 1.38E+01 2.08E+01 1.00E+00 1.00E+00 1.06E+00 

 Mean 6.51E+00 2.80E+01 5.33E+01 8.58E+00 1.60E+01 2.24E+01 1.00E+00 1.00E+00 1.01E+00 

 Median 6.96E+00 2.63E+01 5.47E+01 8.24E+00 1.60E+01 2.23E+01 1.00E+00 1.00E+00 1.01E+00 

 STD 2.31E+00 9.90E+00 1.50E+01 1.12E+00 1.35E+00 1.06E+00 5.46E-07 3.23E-04 3.38E-04 

Function  F13   F14   F15   

Dim  10 20 30 10 20 30 10 20 30 

BWO Best 2.27E-10 7.54E-15 3.41E-10 7.38E-15 7.41E-11 5.72E-08 2.44E-10 8.88E-12 0 

 Mean 1.64E-03 1.71E-04 6.47E-08 2.09E-08 1.94E-08 4.78E-07 1.32E-02 6.13E-02 1.71E-01 

 Median 3.88E-05 2.05E-06 4.04E-10 1.14E-07 6.75E-09 2.23E-07 4.82E-02 2.91E-02 8.85E-02 

 STD 5.83E-04 5.07E-04 1.88E-07 9.25E-08 2.40E-08 6.00E-07 1.13E-02 9.37E-02 2.00E-01 

ABWO Best 2.24E-14 7.54E-15 8.84E-10 8.38E-13 1.99E-11 4.99E-08 1.16E-08 0 1.12E-14 

 Mean 4.17E-03 2.85E-04 4.02E-09 1.05E-09 8.97E-08 1.71E-06 2.10E-02 5.39E-02 2.41E-02 

 Median 9.41E-05 2.17E-11 2.38E-09 2.53E-10 5.19E-08 2.06E-07 1.50E-02 2.08E-02 1.28E-01 

 STD 1.19E-02 1.20E-03 9.02E-09 1.70E-09 2.05E-07 2.61E-06 1.61E-02 1.05E-01 3.04E-01 

MBWO Best 3.99E-15 7.54E-15 1.21E-10 6.67E-14 2.27E-12 2.87E-09 4.44E-16 0 0 

 Mean 3.24E-05 7.19E-07 7.68E-10 1.45E-10 6.78E-09 2.13E-07 5.11E-03 4.00E-02 9.30E-03 

 Median 3.84E-06 1.46E-14 4.22E-10 1.85E-11 1.76E-09 4.17E-08 4.30E-08 1.59E-02 9.58E-06 

 STD 6.12E-05 3.10E-06 9.15E-10 2.56E-10 1.82E-08 5.01E-07 1.00E-03 1.37E-02 1.22E-01 

GA Best 9.78E-05 1.30E-04 1.96E-05 4.30E-07 1.66E-11 6.05E-09 1.99E-02 7.68E-08 2.93E-13 

 Mean 3.91E-03 1.54E-01 9.60E-02 1.09E-09 3.56E-08 2.30E-06 8.63E-02 2.42E-01 2.57E-01 

 Median 6.76E-03 3.22E-02 1.52E-02 2.40E-10 4.85E-09 7.37E-08 6.30E-02 1.21E-01 2.11E-02 

 STD 9.33E-02 2.55E-01 1.96E-01 2.52E-09 6.40E-08 7.07E-06 1.49E-02 2.91E-01 4.56E-01 

BBO Best 9.22E-02 1.47E+00 2.44E+00 4.43E-10 8.09E-09 3.76E-08 1.71E-02 1.05E+00 1.29E+00 
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 Mean 1.65E-01 1.78E+00 2.78E+00 4.21E-08 2.01E-07 1.07E-06 2.71E-02 1.08E+00 1.35E+00 

 Median 1.64E-01 1.80E+00 2.81E+00 8.99E-09 9.60E-08 1.41E-07 2.76E-02 1.08E+00 1.35E+00 

 STD 4.36E-02 1.43E-01 1.70E-01 6.42E-08 2.77E-07 9.41E-07 4.93E-03 2.35E-02 5.13E+01 

IWO Best 1.70E-03 4.16E+00 1.81E+01 3.59E-07 2.68E-06 3.82E-06 2.50E+01 1.95E+02 3.18E+02 

 Mean 9.19E-01 1.50E+01 1.86E+01 2.49E-06 7.61E-06 1.73E-03 7.06E+01 2.43E+02 4.38E+02 

 Median 2.00E-03 1.81E+01 1.87E+01 2.03E-06 6.61E-06 1.92E-05 6.74E+01 2.50E+02 4.43E+02 

 STD 4.10E+00 4.83E+00 3.22E+01 1.55E-06 4.21E-06 3.85E-03 2.10E+01 2.97E+01 6.32E+02 

Function  F16  F17  F18   F19  

Dim  2  2  2   2  

BWO Best -1  0  -186.73   -2.0595  

 Mean -0.9958  3.86E-08  -182.61   -2.0244  

 Median -1  0  -186.73   -2.0417  

 STD 1.45E-02  1.72E-07  1.43E+01   3.74E-02  

ABWO Best -1  0  -186.73   -2.0626  

 Mean -0.9968  0  -186.73   -2.0626  

 Median -1  0  -186.73   -2.0626  

 STD 1.42E-02  0  8.83E-02   6.61E-08  

MBWO Best -1  0  -186.73   -2.0626  

 Mean -1  0  -186.73   -2.0626  

 Median -1  0  -186.73   -2.0626  

 STD 4.48E-04  0  1.39E-10   4.68E-16  

GA Best -1  0  -186.73   -2.0626  

 Mean -0.9995  0  -186.70   -2.0626  

 Median -1  0  -186.53   -2.0626  

 STD 2.1655E-03  0  1.28E-01   4.68E-16  

BBO Best -1  0  -186.73   -2.0626  

 Mean -1  2.88E-15  -186.73   -2.0626  

 Median -1  0  -186.73   -2.0626  

 STD 3.72E-03  7.70E-15  4.33E-10   6.50E-15  

IWO Best -1  3.01e-14  -186.73   -2.0626  

 Mean -1  3.14e-04  -186.73   -2.0626  

 Median -1  2.18e-13  -186.73   -2.0626  

 STD 6.26E-04  9.66e-04  8.11e-07   3.48E-11  

 

  
(a) F13 (dim=10) (b) F13 (dim=10)-Zoom 

 

Figure 4. Convergence of Ackley function 

 

4.3 Convergence 

 

The convergence speed of an algorithm is quite important 

to prove its efficiency and performance. With the aim of 

highlighting the fast convergence of the proposed approach, 

we have illustrated plots of the algorithms with different 

functions. 

The convergence curves of the experiment methods are 

shown in Figure 4, Figure 5, Figure 6 and Figure 7, with the 

functions F13 (Ackley), F3 (RosenBrock), F15 (Griewank) 

and F19 (Cross in try) respectively, where the fast 

convergence of the MBWO within a smaller number of 

iterations is remarkable in comparison with the other 

algorithms. 

All the figures are obtained after executing the algorithms 

for one independent run and 500 iterations with the mentioned 

functions in the dimensions of 10, 20, 30, and 2 respectively. 

Furthermore, in Figure 6 with Griewank function, it is seen 

that the MBWO was the first in achieving the global optima. 

The same in Figure 7 with Cross in try function. These plots 

confirm that the MBWO can achieve the potential optimum 

faster due to the opposite-based intialization and can converge 

rapidly because of the decrease in the diversity that is well 

maintained by the adaptive adjustment of the parameters that 

are responsible for the exploration and exploitation of the 

search space. 
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(a) F3 (dim=20) (b) F3 (dim=20)-Zoom 

 

Figure 5. Convergence of RosenBrock function 

 

  
(a) F15 (dim=30) (b) F15 (dim=30)-Zoom 

 

Figure 6. Convergence of Griewank function 

 

  
(a) F19 (dim=2) (b) F19 (dim=2)-Zoom 

 

Figure 7. Convergence of Cross in Try function 

 

 

5. CONCLUSIONS 

 

This paper proposed a Modified Black Widow Optimization 

algorithm. The first modification was the use of the opposite-

based initialization instead of the random one. The second was 

modifying the cannibalism process, where we suggested 

removing the sexual cannibalism and delaying destroying the 

father to the sibling cannibalism for the aim of avoiding the 

loss of fit solutions. Finally, an adaptive change of crossover 

and mutation probabilities is added for the purpose of keeping 
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the balance between the exploration and exploitation. The 

validation is carried out after comparing the results of the 

MBWO algorithm with a set of bio-inspired approaches 

(BWO, ABWO, BBO, GA and IWO) using 19 benchmark 

functions in different dimensions. The MBWO has 

outperformed the algorithms in both achieving the best global 

optima and convergence speed. Despite all the results achieved 

by the proposed approach, this does not mean that it is the best 

algorithm developed, however it can be considered relevant 

and useful in solving various optimization problems. 
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