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The fight against weed remains one of the major challenges in agriculture to improve land 

productivity. The first and most important step of this fight is to detect and locate this weed. 

Artificial intelligence has played a very important contribution in this detection. Several 

applications have been developed using Deep Learning techniques to detect and identify 

weed, but the variety of weed types complicates this operation. We propose a Deep 

Learning technique to detect and localize the crop, by training the pretrained Faster RCNN 

ResNet model with a rich dataset. We developed an algorithm able to detect and ultra-

localize the pea crop with a prediction up to 100%. The obtained results show the feasibility 

of this method to distinguish the crop among weed.  
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1. INTRODUCTION

The fight against weed is part of the daily life of farmers, 

because it affects their productivity. To achieve this fight, the 

use of chemical treatments is necessary. The Artificial 

intelligence, and more precisely Deep Learning, can help to 

identify or detect precisely the location of this weed, which 

can help to limit the use of chemical products by treating only 

the areas concerned. 

The works that have been realized in our research team has 

made it possible to optimize the use of chemical treatments, 

through the automatic control of sprayers according to the 

location of weed, with the objective of preserving the 

environment and limiting the use of herbicides, using artificial 

intelligence techniques. These works were based, in the first 

place, on the combination of Haar's pseudo-features with the 

Ada Boost algorithm, to detect weed of different crops in real 

time [1]. In the same framework, another work has developed 

a new adjacency descriptor for weed selection in real time for 

sprayer control [2]. 

In the context of organic agriculture, which excludes the use 

of chemical treatments [3-5], weed control is based on the 

practice of manual weeding, which is a tiring operation that 

requires the presence of humans in the fields [6, 7]. In the 

perspective of dehumanising this procedure and to explore the 

agriculture 4.0 [8-12], we have a vision of realising an 

automated mechanical system, based on Deep Learning [13], 

able to simulate manual weed removal by mechanical, thermal 

or chemical destruction of the weed by targeting only itself. 

Here appears the necessity to have a new method of detection 

and ultra-localization of weed. 

Using convolutional neural networks, and more precisely 

object detectors such as the SSD model [14], Faster RCNN 

[15], the ResNet [16], the CenterNet [17] etc., several 

researches have been elaborated in order to distinguish 

between crops and weeds [18, 19]. These studies have not been 

able to make the ultra-localization because they were based on 

aerial images, which can be obtained if we take images in a 

few centimeters of the earth. 

The objective of this study is to develop an algorithm based 

on Deep Learning, by training the Faster RCNN ResNet 

pretrained model, to detect and ultra-locate the crop among 

weed with a very high accuracy. 

2. MATERIALS AND METHODS

Our method consists of fine-tuning the predefined Faster 

RCNN ResNet model, with a collected and pre-treated DataSet 

and augmented to generate a neural network that can detect 

and locate the crop and draw a bounding box around it and 

associate its prediction percentage, i.e. discriminate the plant 

from the weed. 

We chose to work with the Faster RCNN ResNet 50 model 

which is one of the most popular models, it is a fast model (89 

ms), its accuracy is 30 COCO mAP and it is able to generate 

bounding boxes around the objects. 

2.1 Acquisition and images annotations 

The selected plant is the pea (JELBANA in Arabic), we 

chose it because it is a crop that is fragile and more sensitive 

to weed, and it is more popular in the study area. 

The images of this plant were collected using a digital 

camera phone (Huawei Y7 prime), the crop was planted in a 

field located in the city of MEKNES in MOROCCO 

(N33°52’37.647" & O5°34'4.25"). The images are captured 

using the devices shown in Figure 1. 
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Figure 1. Image acquisition devices (at about 40cm from the 

soil) 

 

The original dimensions of the images are 3120x4160 pixels, 

they are taken in different types of parcels of land and different 

times of the day. Subsequently they are resized to the working 

size of 780x1040 pixels using the image processing 

functionalities of the OpenCv and Python libraries, for reasons 

of acceptable size for the model and the limitation of storing 

the data in Google Drive. The samples of the captured images 

are shown in Figure 2. 

 

 
 

Figure 2. The basic samples of image data 

The annotations of the images (or labelling) were done 

manually with the LabelImg software, which allows to draw 

the bounding box around the plants and exports an xml file 

containing the coordinates (xmin, xmax, ymin, ymax) of each 

bounding box as well as the object class and the name of the 

image that contains it. 

 

2.2 DataSet augmentation 

 

The training data contains 1156 images, and to enrich the 

DataSet, we proceeded to increase the data, using image 

processing methods with the Python OpenCv library. From a 

single image we generated 8 different images, 180° rotation, 

brightness increases and decreases, horizontal mirroring, 

contrast enhancement, Gaussian noise and histogram 

equalization. With these methods we obtained 9248 images as 

it shows the Figure 3. 

 

2.3 The Faster R-CNN ResNet 50 model 

 

The R-CNN is a convolutional neural network based on 

selective search to extract about 2000 regions called region 

proposals from the image. It allows to reduce the number of 

locations taken into account considerably. The application of 

this method solved the CNN localisation problem, but it was 

still too slow. It takes almost 50 seconds of testing per image 

[20]. 

Faster R-CNN was introduced to solve the problem of slow 

image processing speed, it is composed of Deep CNN to 

propose regions and Fast R-CNN to use the proposed regions. 

Faster R-CNN is quite faster than other models because it uses 

the method of selective search. A region proposal network 

(RPN) mainly tells the R-CNN where to search exactly. the 

Figure 4 shows the architecture of RCNN model 

A single CNN takes the entire image as input and produces 

a feature map. On the feature map, RPN generates a set of 

proposed rectangles with objectivity scores as output. These 

values are then resized using RoI pooling to predict classes and 

bounding box regression. Figure 5 gives an idea of the 

functioning concept of the model. 

 

 
 

Figure 3. (a) An original image augmented 8 ways using: (b) 180° rotation; (c) brightness increase; (d) horizontal mirror; (e) 

brightness decrease; (f) contrast enhancement; (g) gaussian noise; (h) histogram equalization  
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Figure 4. R-CNN model architecture 

 

 
 

Figure 5. Structure of the Faster R-CNN model [21] 

 

ResNet is an abbreviation for a residual network, as Deep 

Learning reaches its limits Microsoft had proposed a method 

to overcome the problem, which is the use of ResNet. 

It consists of predicting results not only based on stacked 

layers, but also based on shortened connections that can skip 

one or more layers as shown in the example of the Figure 6. 

 

 
 

Figure 6. A comparative example of a network with ResNet 

(b) and a network without ResNet (a) 

 

For the 50-layer ResNet each 2-layers block is replaced in 

the 34-layers network by this 3-layers block, giving a 50-

layers ResNet. 

For the ResNet advantage, its results converge faster than 

its ordinary network. 

For this research we adopted the Faster RCNN ResNet 50 

model to detect the crop, it combines the functionalities of the 

two models which were already mentioned (Faster RCNN and 

ResNet 50).  

The platform we chose for the creation and training of our 

model is "Google Colab"[22], it is based on the Python 

language, as well as being configured with the essential 

machine learning and artificial intelligence libraries, such as 

TensorFlow, Matplotlib, and Keras. It is also possible to save 

and import files from google Drive, and most importantly it 

allows the use of GPU processor [23]. 

We took this opportunity to speed up and to perfect the 

learning of our model. 

In order to make the reading of the data quicker, we opted 

to import our data on Google Drive. The characteristics of the 

training equipment is shown in Figure 7. 

 

 
 

Figure 7. The processor performances and characteristics 

that we used for the training 

 

 

3. RESULTS AND DISCUSSION 

 

The code we created allows us to read the data stored in 

Google Drive, 80% of the data is used for training and 20% for 

validation. The code converts the xml annotations to a csv file 

which compiles all these annotations in a table format and then 

creates a TFRecord file which allows the 

serialization/deserialization of the data, this is a format highly 

recommended by TensorFlow as it uses less space to hold a 

large amount of data. 

The pre-trained model was downloaded from the 

TensorFlow 1 Detection Model Zoo open-source platform, 

with the configuration file [24]. 

We have modified the configurations in order to obtain 

better results, the initial configurations are mentioned in the 

Table 1. 

The training was started with a loss = 1.54, the training time 

in each 100 steps is almost 70 seconds, with a learning speed 

of 1.42 steps/sec almost stable throughout the training process: 

When arriving at very advanced stages we notice that the 

error decreases a lot (Figure 8), it stabilizes around values 

lower than 0.05 which means a good learning. 

 

 
 

Figure 8. The training loss plot (The real curve is the 

transparent curve and the other is the approximate curve) 

 

Table 1. The model training configurations 

 
Num classes Batch size Optimizer Initial learning rate Momentum Num steps Iou threshold 

1 4 Momentum optimizer 0.0003 0.9 20000 0.50 
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To measure the accuracy of our model during training, we 

used the mAP (mean Average Precision) index, which is a 

metric used to measure the accuracy of object detectors such 

as Faster R-CNN, SSD, etc. [25]. The general definition of 

mean average precision (AP) is: 

 

𝐴𝑃 = ∫ 𝑝(𝑟)
1

0

 (1) 

 

With p the precision and r the recall, these two parameters 

are defined by Goutte and Gaussier [26]:  

 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

TP: True Negative 

TN: True Positive 

FP: False Positive 

FN: False Negative 

Using the Tensor Board tool, we plotted the accuracy traces 

of our model for the evaluation data (Figure 9), the model 

evaluation is done at every 50 steps: 

 

 
 

Figure 9. mAP accuracy traces during training process (The 

real curve is the transparent curve and the other is the 

approximate curve) 

 

The results change depending on the IoU threshold [27], for 

a threshold of IoU=0.75 the evaluation accuracy is limited to 

around 55%, and with a threshold of IoU=0.5 the evaluation 

accuracy stabilizes around 85%, that's why we chose a 

threshold of IoU=0.5.  

At the end of the training, we tested the model generated by 

the test images with different conditions (Figures 10 and 11).  

 

 

 
 

Figure 10. Detection and ultra-localization of the culture 

under different conditions 

 

 
 

Figure 11. Detection of pea in the presence of a weed (red 

box) 

 

 
 

Figure 12. The yellow box indicates the desired result 
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Looking at the results obtained, it can be seen that the choice 

of a lower IoU threshold caused small errors in the bounding 

box occlusion of the whole crop (Figure 12), but this error does 

not affect the location of the plants, and can be resolved by 

enriching DataSet. 

So, the trained model can identify and ultra-locate the crop 

with high predictions. 

As we have previously mentioned, the variety of weed types 

has led us to the idea of crop detection alone which will help 

us to locate the weed as long as they are the rest of the weed 

that make up the image. This is a simpler method compared to 

the detection and classification of all weed types.  

 

 

4. CONCLUSION  

 

We have succeeded in building an algorithm based on Deep 

Learning that is able to detect and identify the pea plant among 

the weed. The algorithm is created from the pre-trained Faster 

RCNN ResNet model trained with images collected, pre-

processed, annotated and increased. The obtained results are 

satisfactory enough, the trained model detects the crop with 

very high prediction reaching 100%. 

The great variety of weed species complicates the detection 

process directly in images, because the model training requires 

a very rich database that contains all the weed variants, the 

absence of one type will cause the error of identification of this 

weed, so the idea of detecting the crop alone is more efficient 

and easier to implement. 

The algorithm we have created highly supports our vision 

of an automatic weed control system for organic agriculture, 

and the results obtained show the feasibility of this system. 
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